Setting: /le=k, charle arbitrary, some useful notes: Edixhoven, van der Geer, Mooner Definition (Recall): X voiety/k complete $m: X \times X \to X$, $i: X \to X$, $e: Speck \to X$ Today: • X(L) as a grap: commutative, $n_X: X \to X$ is surj. for ptn. • Basic properties of \mathcal{I}_X , X trivial, \mathcal{I}_X trivial. 1. Commutativity: Lemma (Rigidity Lemma): X, Y, Z verieties/k, X complete, f: XxY-> 2 St Byo & Y and zoe 2 such that $f(X \times \{xoi\}) = \{xoi\} \Rightarrow \exists g: Y \rightarrow 2 f = gopsy.$ Picture: G J XxY JF J20 Remark: 7,2 ucrieties /k a,b: Y-> 2 if a and b agree on the closed Speak points of some dense open then Proof: $x \in X$, $(x_0, id): Y \longrightarrow X \times Y$, if we work $f = g \circ pr_Y \Rightarrow f \circ (x_0, id) = g$ $y \mapsto (x_0, y)$ So define $g := f \circ (x_0, id)$. Let $U \subseteq T$ be an open affine neigh of T and define $T := T \cap T$. Let $T := T \cap T$. V=YIG notice that yo EV. YyEV fo (id, y) has image in U, indeed take by contradiction X∈X St f(x,y) €U => (xy| & f-1(U) => y ∈ G. foidy: $X \longrightarrow U$ and as X proper + U affine \Rightarrow folidity Constant equal to gly) $f(x,y) = g \circ pr_y(x,y)$ for all closed $(x,y) \in X \times V \Rightarrow f = g \circ pr_y$. \square Corollary 1: X, Y group vcr. /-le, $f: X \rightarrow Y$ scheme morphism $\Rightarrow \exists h: X \rightarrow Y$ group vcr. morphism and $\alpha \in Y$ st $f = L_{\alpha} \circ h$ (here L_{α} is translation by a). Proof: Up to replacing f by $L_{i|f(e_x)|} \circ f$ we assume $f(e_x) = e_y$. Consider the map $\phi: X \times X \to Y$ $\phi(x,x|) = f(x,x|) \cdot f(x|)^{-1}$. $f(x)^{-1}$. But $\phi(x \times (e_x)) = (e_y)^2$ and $\phi((e_x)^2 \times X) = (e_x)^2 = (e_y)^2$ by previous Lemma $\phi = e_y$ and f is a group morphism. \Box Corollery 2: X Commutative Proof: $i: X \rightarrow X$ and $i(e_X) = e_X \Rightarrow i$ group morphism $\Rightarrow X$ commutative. \square 2. Dx Trivial (ie = Ox dimx): Observation: X smooth. Incleed smooth locus is dense open, take xXX in the smooth locus, L_{X-x} gives $O_{X,x} \cong O_{X,x} \Rightarrow x \in X$ smooth for all x closed $\Rightarrow X$ smooth. Setting, LCE]= lctx]/(x2), S=Spec-LCE], X vcr/Le, XE=X xeS, XE=(1X1, OxCE)) Recall, $X \in X \Rightarrow T_{X,X} = Des_k(O_{X,X}, k)$ and we consider tipy

For $T: S \to X$ we get a derivation $T^{\#}: O_{X,X} \to k[E]$ $t \mapsto t(X) \neq T(t) \in E$ Species $t \mapsto t(x) + \tau(t) \epsilon$. $O_{x}(U) \longrightarrow O_{x}(U)[E]$ +every Spec: { t \longrightarrow t + D(t). E

⇒ Tx,x= Tx,x ⊗ le(x), そe Tx(U) ⇒ そ:Ue→U ⇒ その(x,id): S→Ue →U Proposition: X abelian voiety, => 3 rectural iso Tx,0 & Ox -> Tx. Proof: We work \(\frac{7}{2}: \tau_{0} \rightarrow \tau_{0} \tau_{0} \), take \(\tau_{0} \tau_{0} \), \(\tau_{0} \tau_{0} \), \(\tau_{0} \tau_{0} \tau_{0} \), \(\tau_{0} \tau_{0} \tau_{0} \tau_{0} \), \(\tau_{0} \tau_{0} \tau_{0} \tau_{0} \tau_{0} \tau_{0} \), \(\tau_{0} \ta define, E(T) = XE (W,T), XXX m,X Claim: 3 is le-linear (Exercise) We obtain ₹: Tx,0 & Ox → Tx such that ₹(U)(7&s) = S. ₹(T)1U. To snow that ₹ is an iso it suffices that ξ is surjective. Claim: 3(T)(X)=dLx,e(T) Proof: Recall that for f: Y→Z, T: S→YETy,, $\begin{array}{c|c}
S & \xrightarrow{\tau} \times \\
(x,id) & \xrightarrow{\xi(\tau)(x)} & \downarrow (x,id) \\
\times \xi & \xrightarrow{(id,\tau)} \times \times \times & \xrightarrow{m} \times
\end{array}$ $\Rightarrow df_{\gamma}(T) = for.$ So $dL_{X,e}(T) = \xi(T)(X) \Rightarrow \xi(-1(X))$ is on iso Nulumena ₹ SUj ⇒ ₹ ISO. Corollary: $\Omega \cong \mathcal{O}_{x}^{\oplus dim \times}$ and $\omega_{x} \cong \mathcal{O}_{x}$. Also every global vector field is translation invariant 3. nx Surjective for ptn: applying $dm_{(0,0)}$ to this element yields, $T_1+T_2 \Rightarrow dm_{(0,0)}: T_{X,0} \longrightarrow T_{X,0}$ iterating this Shows, $dn_{X,0} = multiplication by n. <math>(T_1,T_2) \mapsto T_1+T_2$ (T1,T2) -> T1+T2 In perficular daxo is surjective. Suppose by contradiction nx not surjective, => nx(X) < X proper closed. $X \rightarrow n_X(X) \rightarrow X$ Every irreducible component of $n_X^{-1}(0)$ has dimension (dimension thm)[\geqslant dim X - dim $n_X(X) > 0$ dimn=(0)>1, 1: n=(0) -> × and nx07 = 0 = dnx0 d20=0 = Tn=(0),0=0 which is a contradiction => nx Suj.