Stochastic Block Models

1 Block Models

Definition 1 (Vanilla SBM). Let n be a positive integer (the number of vertices). The
pair (X, G) is drawn under VSBM(n, Gin, qout) if X is an n-dimensional random vector
with i.3.d. components distributed under Rad(1/2) in the Bernoulli model, and X is drawn
uniformly at random with the constraint 17 X = 0, in the uniform or strictly balanced model,
and G is an n-vertex simple graph where vertices © and j are connected with probability p if
Xi = Xj and with probability q if X; # X, independently of other pairs of vertices. We
also define the community sets by ; = Q;(X) :={v € [n]: X, =1i},i € {—1,1}. Thus the
distribution of G given X, where G = ([n], E(G)) is defined as follows; for x € {—1,1}"
and y € {0, 1}(3),
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Recall (Rademacher distribution) : Y ~ Rad(e) if P(Y =1) =cand P(Y = —1) = 1—e¢.

Definition 2 (General SBM). Let n be a positive integer (the number of vertices), k be
a positive integer (the number of communities), p = (p1,...,pr) be a probability vector on
[k] :=={1,....,k} (the prior on the k communities) and W be a k x k symmetric matric with
entries in [0, 1] (the connectivity probabilities). The pair (X, G) is drawn under SBM(n,
p, W ) if X is an n-dimensional random vector with i.i.d. components distributed under
p, and G is an n-vertex simple graph where vertices i and j are connected with probability
Wx, x,, independently of other pairs of vertices. We also define the community sets by
Q = Q(X) :={ven:X, =i},ie[k]l. Thus the distribution of G given X, where
G = ([n], E(Q)) is defined as follows; for x € [k]"™ and y € {0, 1}(75)
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Remark 1. If W = pl, where 1 is a k X k matrix such that all entries are 1, then SBM is
equivalent to the Erdés-Rényi model.

Remark 2. For Vanilla SBM, W = ( jm %)ut )
out n

2 Some topology of SBM
2.1 Probability of an edge
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2.3 Community of a neighbour

P(E12 = 11X1 = x1, X2 = x2)p(22)
P(Xs = Fio=1 X1 = = :
(X2 = 22| B2 , X1 =11) >z, P(Br2 = 1|X1 = 21, Xo = x2)p(22)
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Define M := WP, where P = diag(p) (the square diagonal matrix with the vector p on
the diagonal). Let M be M with normalized rows, i.e. M = diag(M1)~*M. Then,

P(Xe =22|E12 =1, X1 = 21) = M(21,72),

that is the probability that 2 is in community x9, given that one of his neighbors is in
community z.

: Zz_n if Tl = X2
FOI' VSBM, P(X2 = $2|E1,2 — ]"X]. — fEl) — QinTqout '
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2.4 Cycles

Let us fix m vertices in [n], and let us compute the probability that these m vertices form
a cycle of length m

P(m — cycle) = Z Wi 2oWao zg-- X 2 0(x1)D(22)...0(Tm)

T1,..-Tm
= Z HWxi,xi+1p(mi+1) = TT((WP)m)’
T1,...Tm 1=1

where we assumed that m + 1 = 1 and where P = diag(p) (the square diagonal matrix
with the vector p on the diagonal).

ftw= %, where @ is a matrix that does not scale with n, then the expected number
of m-cycles is given by

m

E[nb. m-cycles] = (;) %Tr((WP)m) ~ Z—mTr((WP)m).
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3 Recovery requirements

The goal of community detection is to recover the labels X by observing G, up to some
level of accuracy.

Definition 3. Let (X,G) ~ VSBM(n,p,q). An algorithm X(G) solves reconstruction or
recovery with accuracy o € [0,1] if whp

1 A
~|x. x(@)] 2 .
We say that the LHS is the agreement between X and X (G).

Remark 3. If X, X(G) € {—1,1}", then 1
X and X (G) either agree or disagree perfectly, and in both cases X (G) recovered the true
partition. If 1 ‘(X, X'(G))’ = 0, then the partition recovered by X (G) is completely off.

1
n

<X,X(G)>) c[0,1]. If ‘(X,X(G»’ =1, then

Depending on the accuracy « that we require, we have different terminologies:

o ‘ "name”
Q(1) weak recovery
1 —o(1) | almost exact recovery
1 exact recovery

where (1) denotes some quantity that is bounded away from 0 as n — co. Note that an
accuracy a = o(1) can be obtained by random guessing. In other words, exact recovery
requires the entire partition to be correctly recovered, almost exact recovery allows for
a vanishing fraction of misclassified vertices, and weak recovery allows for a non-trivial
fraction of misclassified vertices.



4 Exact Recovery

Recall that an algorithm X (G) solves exact recovery if P{i ‘(X, X(G))‘ =1}=1-o0(1),
i.e. if it correctly recovers the entire partition with high probability.

A natural starting point is to resolve the estimation of X from the noisy observation G
by taking the Maximum A Posteriori estimator, i.e.

Xyap(G) = argmax P(X = z|Q)
ze{—1,1}"

This is the estimator that minimizes the probability of error, that is given by
P.:=P(Xnap(G) # X)
= Z P(XMAP(Q) # X|G = g)P(G = g)
g

=1- max P(X =z|G =g)P(G = g),
7 ze{-1,1}"

and this is minimized if P(X = z|G = g¢) is maximized for every realization g of G.

Lemma 1. In Uniform-VSBM(n,qin,qout), if Qin = Gour then MAP is equivalent to finding
the min-bisection of G, i.e. a balanced partition with the least number of crossing edges.

Proof.
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since Ein(z,9) + Eout(z,9) = E(g), that does not depend on x. Assuming ¢, > Gout, We

have M < 1, thus
an(l_QOut)

argmax P(X = z|G = g) = argmaxP(G = g|X = x) (1)
z:zT1=0 x:zT1=0
= argmin Fy,.(z, g). (2)
x:2T1=0

Note that (1) holds because P(X = z) is the same for all equal size partitions. It follows
that the MAP is equivalent to the Maximum Likelihood estimator. ]

Since MAP minimizes the probability of making an error for the reconstruction of the
entire partition X, it minimizes the error probability for exact recovery. Thus, if MAP
fails in solving exact recovery, no other algorithm can succeed.

Lemma 2. Ezact recovery is solvable whp if and only if the min-bisection of G is equal to
the true partition (or planted partition) X whp.



Theorem 1. Ezact recovery in V.SBM (n, %08n blosny

1. solvable if “T‘H’ —Vab > 1;

2. not solvable if ‘%‘b —Vab < 1.
Proof. part 2): see monography (p. 43-48). O

4.1 Spectral Methods

Assume that ‘IT‘H’ —+/ab > 1, how do we actually compute the Xma p(ie. the min-bisection)
estimator?

Naively, we could look at all the bisections of G and pick the one that minimizes the
number of cross-edges. It turns out that this problem is NP-hard, because the number of
possible bisections of a graph with n vertices is < 2". But can we still solve exact recovery
efficiently (i.e. in polynomial time) whp when a+b —Vab > 1?

Let Syyp be a typical set, i.e. P(G € Syyp) =1 — o( ). Then,

P(Xaap(G) = X) =P(Xp14p(G) = X|G € Syyp)P(G € Syyp) (3)
+P(Xnap(G) = X|G & Siyp)P(G & Siyp) (4)
= P(X14p(G) = X|G € Syyp) +o(1). (5)

In words, in order to solve exact recovery with high probability, we can ignore atypical
graphs. The Spectral Algorithm uses this relaxation.

Theorem 2. If aTer —Vab > 1, then the Spectral Algorithm solves exact recovery.

Spectral Algorithm for SBM:
Let Ag be the adjacency matrix of the graph G. We can express Ag as a perturbation of
its expected value, i.e.

Aq = ElAg) + (Aq — E[Ag). (6)
If Ag is indexed such that the first n/2 rows and columns are in the same community, then
n/2xn/2 n/2xn/2
E[Ac] = ( qlﬁn/QXnm q%%m/z > ) (7)
Qout Qin

where qn/ /2 i the n /2 x n/2 marix with all entries equal to ¢;,. Here, in order to have

¢in, on the diagonal of E[Ag], we assumed that for each vertex i in G, P(E;; = 1) = ¢ip, i.e.
each vertex contains a self-loop with probability ¢;,. M has rank 2, and therefore it has
two non-zero eigenvalues. The eigenvalues and the corresponding normalized eigenvectors
of E[A¢] are

ay = Dbty g } " 0
m — Youw 1n/2

Ay = %ﬂﬂ P2 = T ( _qn/2 ) ) (9)

As=..=X =0, (B3, ... n) = (b1, 02)". (10)



Note that ¢, takes opposite signs on each community. If the noise Z = Ag — E[Ag]
does not disrupt the first two eigenvectors of Ag to be somewhat aligned with those of
E[A¢], then we can exploit the second eigenvector of A¢ to obtain a plausible reconstruction.

Denote by ggg the eigenvector corresponding to the second largest eigenvalue of Ag. Define
for ¢ € [n]

o [ A1 i (i) >0
XspeC(Z) T { —1 if ¢2( ) <0

Theorem 3. Xspec = XMAP with high probability if ‘%"b —+Vab> 1.

(11)

The proof of this Theorem uses some results of spectral theory, such as the Weyl’s
Theorem and the Davis-Kahan Theorem.

5 Weak Recovery

Recall that an algorithm X (G) solves weak recovery if P{i ‘(X, X(G))‘ >Q(1)} =1-0(1),

i.e. if it performs better than any trivial algorithm (such as random guessing).

Theorem 4. Weak recovery in VSBM(n, %, %) is

‘n’n

1. solvable if “5 ath _ % > 1;

2. not solvable if “TH’ 3_7_% < 1.

5.1 Broadcasting on Trees

Let T; be a d—regular tree, i.e. each vertex has exactly d descendants, where d € Z,. Let
X () ~ Rad(1/2) be the root bit, that is drawn uniformly at random in {—1,1}. Assume
that on each branch of the tree the incoming bit is flipped with probability £ € [0, 1]

independently from the other branches, and let X® = (X ft), . Xc(l?) be the bits received
at depth ¢ in this tree. For instance the distribution of X given X(© will be

P 2V, 2P = [Ja- eyt =a) (a2 (12)

Xfl),.-.,XéU\X(O)( et
1=

The problem consists of broadcasting a bit from the root of the tree down to its leaves
and trying to guess back the root bit from the leaf bits at large depth. We call this prob-
lem broadcasting on a d—regular tree with flip probability £, and we denote it by BOT(d, ¢).

To define weak recovery in this context, note that E(X(|X®) is a random variable
that gives the difference between the probability that X () = 1 and the probability that
X () = 1 given the leaf bits, as a function of the leaf bits X®). If E(X(®|X®) = 0, then
P(X©® =1]x®) = P(X©® = —1|X®), and thus the leaf bits provide no useful information
about the root. We are interested in understanding whether this takes place in the limit of
large t or not.



Definition 4. Weak recovery (or reconstruction) is solvable in broadcasting on a regular
tree if limy_,o0 E[E(X @ X®)] > 0.

We can give another definition of reconstruction on trees based on an hypothesis
testing formulation. Let Py (z®) := Px|x© (z|H), with H € {—1,1}. Upon observing

X® = 2® we declare H such that Py (z®) is maximal. Then the probability of error is
given by

1 t t
PeZZ%P—l(x())/\Pl(x())v (13)

where P_i(z®) A Pi(z®) = min{P_;(z®)), Py (z®)}.
Notice that 3 ) |[P-1(x®) — Py(z®)| + 23 1y Po1(z®) A Pi(2®) = 2, thus

11
Fo= 35— STV(P.1, P, (14)

where TV (P_1, Py) := 2 3" s |P-1(2)) — Py (z®)| denotes the Total Variation distance
between P_; and Pj.

Definition 5. Weak recovery in BOT(d, €) is solvable if P, = &+ —Q(1), where Q(1) denotes
some quantity that is bounded away from 0 as t — oo.

Remark 4. Definition 4 and 5 are equivalent, because

E E(X(0)|X(t))‘ =3 [Pxoxwz®) - Px<o>\x<t>(—1|$(t))‘ Py (™) (15)

= Pxo xw(1,2") - Px(m,xu)(—l,x(t))‘ (16)
z(t)
= > |PxoPE?) =Py (~1)P-1 ()] (17)
z(®)
1
=32 |P@®) = P )| = TV (P, P, (18)
()

thus E[E(XO|X®)| = Q1) <= TV(P,P1) =Q(1) > P. =3 -9(1).

The first result is due to Kesten-Stigum.

Theorem 5 (Kesten-Stigum). Weak recovery in BOT(d,¢) is
1. solvable if d(1 — 2¢)? > 1;
2. not solvable if d(1 — 2¢)? < 1.

Proof of the positive part of Theorem 5.
Following Definition 5 we want to show that TV (P, P_1) = Q(1) if d(1 — 2¢)? > 1. Let

Al = Z?il Xi(t) = #{+1 at depth t} — #{—1 at depth t} be the difference variable at
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depth ¢t. Note that A® > 0 means that the majority of the leaves at depth ¢ is in community
+1, and A® < 0 implies that the majority of the leaves at depth ¢ is in community —1.
Hence, upon observing A® = §® we may declare H = sign(é(t)), by majority vote. Let
Qg? (6®) = PaAwx© (6W|H), H € {—1,1}. We compute the first and the second moment
of these distributions. If there are x bits of value 1 and y bits of value —1 at generation
t, then A+ would be the sum of zd Rad(1 — ¢) and yd Rad(e) (all independent), and

since the expectation of Rad(1 — ¢) is 1 — 2¢, we have

E(A(t“) ‘A(t))

de(l —2¢e) + dy(2e — 1)
d(1 —2e)(z —y)
d(1 —2e)A®,

Then,

E(ACTD| X0y = E(E(AEHD|AM) | x )
= d(1 —2e)E(AD | X O))
— dt+1(1 o 2€)t+1X(0).

We now look at the second moment.

dy
Var(A“DIADY = var ZRad (1—¢)+ ZRad
=1 7j=1
dy
= ZVa'r Rad(1 —¢€)) + ZVar Rad())
=1 7j=1

=dz(de(l —¢)) + dy(4e(1 —¢))
= d"4e(1 - ¢),
since x +y = d'. Hence,

E(( t+1 ) |A(t ) VaT(A(t+1)|A(t)) + (E(A(t+1)’A(t)))2
= dtMe(1 — ) 4+ d*(1 — 26)2(AM)?
= d™ o + ds(AD)?,

where we denoted v := 4e(1 — ¢) and s := d(1 — 2¢)2.



Then,
E((AUHD)?X ) = E(E((AUHD)?|AW) | X () (32)
= d 1w + dsE((AM)?| X ©) (33)
= d" w4+ d s + (ds)?E((ATD)2| X (O)) (34)
— dH o+ dt s + dles? + (ds)3E((A(t_2))2|X(0)) (35)
(36)

=dM ol +s+s*+ ... +5")+ (ds) ! 36
i, (ST -1 t+1
=d v po + (ds) (37)
t+1
_ a1 v 1) d" v
(ds) (s — T > Py (38)
= (ds)t*! (il + 1> (1+ 04(1)) (39)

4e(1—¢)
_ 20t4+1) (1 _ 9-\2(t41)
a7 - 2) (d(l —2e)2— 1

where in (37) and in (39) we used the hypothesis that s > 1.
By applying Lemma 3 we obtain

27V (Q"), Q1) >

+ 1) (1+0,(1)), (40)

A(ds)*
T 2(ds) (55 + 1)
It can be shown (by Data Processing Inequality) that TV(Q1 ,QY )) <TV(P P ) Etl)),
thus TV (QY, Q") = (1) = Tv(PY, Py = Q(1).

= Q(1). (41)

O
Lemma 3.
)2
2TV(Q1. Q1) > (()m(ﬁ) (12)
1
where m; = E[A®|X©) =] and m(2) =E[(AM)2 X O) =), fori=—1,1.
Proof.
—m_y = 25(Q1(5) - Q-1(9)) (43)
oezZ
44
; \/Q1 \/Q () (44)
> \/Z P@0)+ Q) (19)
deZ éez
D 1Q1(6) = Q-1(8)], [ 6%(Qu1(6) + Q-1(5)) (46)
0ezZ 0eZ

2TV(Q_1, Q1)) m'? +m®), (47)

9



where (45) follows from Cauchy-Schwarz inequality and (46) follows because %

1 for any 4.

LIIA

Intuition for the negative part of Theorem 5.
Let I(X(©; X®) be the Mutual Information between X and X®. One can show that

I(X©; x0) < gt(1 — 2¢)%, (48)

that is vanishing as t — oo, if d(1 — 2¢)? < 1. Intuitively, the mutual information between
two variables is a measure of dependency. For instance, [(X;Y) =0 <= X and Y are
independent. Thus, (48) that in the limit of ¢ — oo, the communities of the leaves gives
no information about the community of the root, hence weak recovery is not solvable. [

It has been shown that the result of Theorem 5 is still true if instead of a d-regular
tree we take a Galton-Watson tree of Poisson(d) offspring.

Theorem 6. In the broadcasting model with a Galton-Watson tree of Poisson(d) offspring
and flip probability €, weak recovery is solvable if and only if

d(1—2¢)? >1

5.2 Negative part of Theorem 4

Lemma 4. If P(Xy = +1|G, X1 = +1) — % almost surely, then weak recovery is not
solvable.

In words, if the community of vertex 1 does not give any information about the
community of vertex 2 then weak recovery will not be solvable. Here the role of vertex 1
and 2 is arbitrary, it could be any pair of vertices. The proof of this lemma requires some
thoughts.

To connect weak recovery on VSBM with reconstruction on BOT we need two facts
that follow from the homeworks:

1. dg(1,2) = Q(logn) with high probability, where dg(1,2) is the length of the shortest
path from vertex 1 to vertex 2 in G.

2. B(1,loglogn) = {v' € [n] : dg(1,v") < loglogn} is a tree with high probability. In
fact, one can show that |B(1,loglogn) — GW (Pois(“E))|ry — 0 as n — oo, where
GW(POZ'S(“TH’)) is the Galton-Watson tree with offspring distribution Pois(aT‘H’).

To establish the negative part of Theorem 4, it is sufficient to argue that, if it is impossible
to weakly recover a single vertex when a genie reveals all the leaves at such a depth, it
must be impossible to solve weak recovery. In fact, consider P{X, = z,|G = ¢, X, = z,},
the posterior distribution given the graph and an arbitrary vertex revealed (here u and v
are arbitrary and chosen before the graph is drawn). With high probability, these vertices
will not be within small graph-distance of each other, e.g. at distance Q(logn) with high
probability (fact 1), and one can open a small neighborhood around u of diverging but
small enough depth (e.g., loglogn). Now reveal not only the value of X, but in fact all

10



the values at the boundary of this neighborhood. This is an easier problem since the
neighborhood is a tree with high probability (fact 2) and since there is approximately
a Markov relationship between these boundary vertices and the original X, (note that
‘approximately’ is used here since there is a negligible effect due to non-edges). We are
now back to the broadcasting problem on trees discussed above, and the requirement
d(1 — 2¢)? < 1 gives the theorem’s bound (since d = (a + b)/2 and € = b/(a + b)).

11
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