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ABSTRACT
The stochastic block model (SBM) is a random graph model
with different group of vertices connecting differently. It is
widely employed as a canonical model to study clustering
and community detection, and provides a fertile ground to
study the information-theoretic and computational tradeoffs
that arise in combinatorial statistics and more generally
data science.
This monograph surveys the recent developments that es-
tablish the fundamental limits for community detection in
the SBM, both with respect to information-theoretic and
computational tradeoffs, and for various recovery require-
ments such as exact, partial and weak recovery. The main
results discussed are the phase transitions for exact recovery
at the Chernoff-Hellinger threshold, the phase transition for
weak recovery at the Kesten-Stigum threshold, the optimal
SNR-mutual information tradeoff for partial recovery, and
the gap between information-theoretic and computational
thresholds.
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The monograph gives a principled derivation of the main
algorithms developed in the quest of achieving the limits, in
particular two-round algorithms via graph-splitting, semi-
definite programming, (linearized) belief propagation, classi-
cal/nonbacktracking spectral methods and graph powering.
Extensions to other block models, such as geometric block
models, and a few open problems are also discussed.



1
Introduction

1.1 Community detection, clustering and block models

The most basic task of community detection, or graph clustering, consists
in partitioning the vertices of a graph into clusters that are more densely
connected. From a more general point of view, community structures
may also refer to groups of vertices that connect similarly to the rest
of the graph without having necessarily a higher inner density, such
as disassortative communities that have higher external connectivity.
Note that the terminology of ‘community’ is sometimes used only for
assortative clusters in the literature, but we adopt here the more general
definition. Community detection may also be performed on graphs where
edges have labels or intensities, and if these labels represent similarities
among data points, the problem may be called data clustering. In this
monograph, we will use the terms communities and clusters exchange-
ably. Further, one may also have access to interactions that go beyond
pairs of vertices, such as in hypergraphs, and communities may not
always be well separated due to overlaps. In the most general context,
community detection refers to the problem of inferring similarity classes
of vertices in a network by having access to measurements of local
interactions.

3



4 Introduction

Figure 1.1: The above two graphs are the same graph re-organized and drawn
from the SBM model with 1000 vertices, 5 balanced communities, within-cluster
probability of 1/50 and across-cluster probability of 1/1000. The goal of community
detection in this case is to obtain the right graph (with five communities) from the
left graph (scrambled) up to some level of accuracy. In such a context, community
detection may be called graph clustering. In general, communities may not only refer
to denser clusters but more generally to groups of vertices that behave similarly.

Community detection and clustering are central problems in machine
learning and data science. A large number of data sets can be represented
as a network of interacting items, and one of the first features of interest
in such networks is to understand which items are “alike,” as an end
or as a preliminary step towards other learning tasks. Community
detection is used in particular to understand sociological behavior [3,
146, 134], protein to protein interactions [52, 121], gene expressions
[57, 62], recommendation systems [115, 148, 158], medical prognosis
[151], DNA 3D folding [50], image segmentation [97], natural language
processing [29], product-customer segmentation [56], webpage sorting
[109], and more.

The field of community detection has been expanding greatly since
the 1980’s, with a remarkable diversity of models and algorithms de-
veloped in different communities such as machine learning, computer
science, network science, social science and statistical physics. These rely
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on various benchmarks for finding clusters, in particular, cost functions
based on cuts or modularities [82]. We refer to [118, 146, 3, 134] for an
overview of these developments.

Nonetheless, various fundamental questions remain unsettled, such
as:

• When are there really communities? Algorithms may output com-
munity structures, but are these meaningful or artefacts?

• Can we always extract the communities when they are present;
fully, partially?

• What is a good benchmark to measure the performance of algo-
rithms, and how good are the current algorithms?

The goal of this monograph is to describe recent developments aimed at
answering these questions in the context of block models. Block models
are a family of random graphs with planted clusters. The “mother model”
is the stochastic block model (SBM), which has been widely employed as
a canonical model for community detection. It is arguably the simplest
model of a graph with communities (see definitions in the next section).
Since the SBM is a generative model, it benefits from a ground truth
for the communities, which allows us to consider the previous questions
in a formal context. Like any model, it is not necessarily realistic, but
it is insightful - judging for example from the powerful algorithms that
have emerged from its study.

In a sense, the SBM plays a similar role to the discrete memoryless
channel (DMC) in information theory. While the task of modelling
external noise may be more amenable to simplifications than real data
sets, the SBM captures some of the key bottleneck phenomena for
community detection and admits many possible refinements that im-
prove its fit to real data. Our focus here will be on the fundamental
understanding of the “canonical SBM,” without diving too much into
the refined extensions.

The SBM is defined as follows. For positive integers k, n, a probability
vector p of dimension k, and a symmetric matrix W of dimension
k× k with entries in [0, 1], the model SBM(n, p,W ) defines an n-vertex
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random graph with vertices split in k communities, where each vertex
is assigned a community label in {1, . . . , k} independently under the
community prior p, and pairs of vertices with labels i and j connect
independently with probability Wi,j .

Further generalizations allow for labelled edges and continuous vertex
labels, connecting to low-rank approximation models and graphons
(using the latter terminology as adapted in the statistics literature). For
example, a spiked Wigner model with observation Y = XXT +Z, where
X is an unknown vector and Z is Wigner, can be viewed as a labeled
graph where edge (i, j)’s label is given by Yij = XiXj + Zij . If the Xi’s
take discrete values, e.g., {1,−1}, this is closely related to the stochastic
block model—see [162] for a precise connection. Continuous labels can
also model Euclidean connectivity kernels, an important setting for
data clustering. In general, models where a collection of variables {Xi}
have to be recovered from noisy observations {Yij} that are stochastic
functions of Xi, Xj , or more generally that depend on local interactions
of some of the Xi’s, can be viewed as inverse problems on graphs or
hypergraphs that bear similarities with the basic community detection
problems discussed here. This concerns in particular topic modelling,
ranking, synchronization problems and other unsupervised learning
problems. We refer to Section 9 for further discussion on these. The
specificity of the stochastic block model is that the input variables are
discrete.

A first hint at the centrality of the SBM comes from the fact that the
model appeared independently in numerous scientific communities. It
appeared under the SBM terminology in the context of social networks
in the machine learning and statistics literature [93], while the model
is typically called the planted partition model in theoretical computer
science [49, 119, 41], and the inhomogeneous random graph in the math-
ematics literature [40]. The model takes also different interpretations,
such as a planted spin-glass model [63], a sparse-graph code [13, 68] or
a low-rank (spiked) random matrix model [123, 154, 162] among others.

In addition, the SBM has recently turned into more than a model for
community detection. It provides a fertile ground for studying various
central questions in machine learning, computer science and statistics:
It is rich in phase transitions [63, 122, 128, 13, 68], allowing us to study
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the interplay between statistical and computational barriers [161, 18,
32, 20], as well as the discrepancies between probabilstic and adversarial
models [125], and it serves as a test bed for algorithms, such as SDPs
[13, 159, 89, 85, 1, 22, 126, 141], spectral methods [154, 160, 122, 108,
42, 147], and belief propagation [63, 17].

1.2 Fundamental limits: information and computation

This monograph focuses on the fundamental limits of community detec-
tion. The term ‘fundamental limit’ is used to emphasize the fact that we
seek conditions for recovering the communities that are necessary and
sufficient. In the information-theoretic sense, this means finding condi-
tions under which a given task can or cannot be resolved irrespective of
complexity or algorithmic considerations, whereas in the computational
sense, this further constrains the algorithms to run in polynomial time
in the number of vertices. As we shall see in this monograph, such
fundamental limits are often expressed through phase transitions, which
provide sharp transitions in the relevant regimes between phases where
the given task can or cannot be resolved.

Fundamental limits have proved to be instrumental in the develop-
ments of algorithms. A prominent example is Shannon’s coding theorem
[149], which gives a sharp threshold for coding algorithms at the channel
capacity, and which has led the development of coding algorithms for
more than 60 years (e.g., LDPC, turbo or polar codes) at both the
theoretical and practical level [153]. Similarly, the SAT threshold [60]
has driven the developments of a variety of satisfiability algorithms such
as survey propagation [117].

In the area of clustering and community detection, where estab-
lishing rigorous benchmarks is a long standing challenge, the quest
of fundamental limits and phase transitions is also impacting the de-
velopment of algorithms. As discussed in this monograph, this has
already lead to developments of algorithms such as sphere-comparisons,
linearized belief propagation, nonbacktracking spectral methods. Fun-
damental limits also shed light on the limitations of the model versus
those of the algorithms used; see Section 1.3. However, unlike in the
data transmission context of Shannon, information-theoretic limits
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may not always be efficiently achievable in community detection, with
information-computation gaps that may emerge as discussed in Section
8.

1.3 An example on real data

This monograph focuses on the fundamentals of community detection,
but we want to give an application example here. We use the blogosphere
data set from the 2004 US political elections [110] as an archetype
example.

Consider the problem where one is interested in extracting features
about a collection of items, in our case n = 1, 222 individuals writing
about US politics, observing only some of their interactions. In our
example, we have access to which blogs refers to which (via hyperlinks),
but nothing else about the content of the blogs. The hope is to extract
knowledge about the individual features from these simple interactions.

To proceed, build a graph of interaction among the n individuals,
connecting two individuals if one refers to the other, ignoring the
direction of the hyperlink for simplicity. Assume next that the data set
is generated from a stochastic block model; assuming two communities
is an educated guess here, but one can also estimate the number of
communities (e.g., as in [18]). The type of algorithms developed in
Sections 7.2 and 7.1 can then be run on this data set, and two assortative
communities are obtained. In the paper [110], Adamic and Glance
recorded which blogs are right or left leaning, so that we can check
how much agreement the algorithms give with the true partition of the
blogs. The results give about 95% agreement on the blogs’ political
inclinations (which is roughly the state-of-the-art [133, 101, 80]).

Despite the fact that the blog data set is particularly ‘well behaved’–
there are two dominant clusters that are well balanced and well separated–
the above approach can be applied to a broad collection of data sets
to extract knowledge about the data from graphs of similarities or
interactions. In some applications, the graph is obvious (such as in
social networks with friendships), while in others, it is engineered from
the data set based on metrics of similarity/interactions that need to be
chosen properly (e.g, similarity of pixels in image segmentation). The
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Figure 1.2: The above graphs represent the real data set of the political blogs from
[110]. Each vertex represents a blog and each edge represents the fact that one of the
blogs refers to the other. The left graph is plotted with a random arrangement of the
vertices, and the right graph is the output of the ABP algorithm described in Section
7.2, which gives 95% accuracy on the reconstruction of the political inclination of
the blogs (blue and red colors correspond to left and right leaning blogs).

goal is to apply such approaches to problems where the ground truth
is unknown, such as to understand biological functionality of protein
complexes; to find genetically related sub-populations; to make accurate
recommendations; medical diagnosis; image classification; segmentation;
page sorting; and more (see references in the introduction).

In such cases where the ground truth is not available, a key question
is to understand how reliable the algorithms’ outputs may be. We now
discuss how the results presented in this monograph add to this question.
Following the definitions from Sections 7.2 and 7.1, the parameters
estimated by fitting an SBM on this data set in the constant degree
regime are

p1 = 0.48, p2 = 0.52, Q =
(

52.06 5.16
5.16 47.43

)
. (1.1)

and in the logarithmic degree regime

p1 = 0.48, p2 = 0.52, Q =
(

7.31 0.73
0.73 6.66

)
. (1.2)

Following the definitions of Theorem 7.9 from Section 7.2, we can now
compute the SNR for these parameters in the constant-degree regime,
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obtaining λ2
2/λ1 ≈ 18 which is much greater than 1. Thus, under an

SBM model, the data is largely in a regime where communities can
be detected, i.e., above the weak recovery threshold. Following the
definitions of Theorem 7.1 from Section 7.1, we can also compute the
CH-divergence for these parameters in the logarithmic-degree regime,
obtaining J(p,Q) ≈ 2 which is also greater than 1. Thus, under an SBM
and with an asymptotic approximation, the data is in a regime where
the graph communities can in fact be recovered entirely, i.e, above the
exact recovery threshold. This does not answer whether the SBM is
a good or a bad model, but it gives that under this model, the data
appears to be in a strong ‘clusterable regime.’

Note also that such a conclusion may not appear using a specific
algorithm, e.g., one that is sensitive to the degree variations and that
may split the vertices into high vs. low-degree vertices. This prompted
for example the development of degree-corrected SBMs in [27], as the
algorithm used in [27] for the blog data set with the fitting of an SBM
failed for such reasons. However, how do we know whether the failure
is due to the model or the algorithm? By establishing the fundamental
limits on the SBM, we will find algorithms that are ‘maximally’ robust by
succeeding in the most challenging regimes, i.e., down to the fundamental
limits, which achieve in particular the positive accuracy for the blog
data set described in Figure 1.2. We also refer to Section 5.3.2 for
discussions on the robustness of algorithms to degree variations.

1.4 Historical overview of the recent developments

This section provides a brief historical overview of the recent develop-
ments discussed in this monograph. The resurgent interest in the SBM
and its ‘modern study’ have been initiated in part due to the paper of
Decelle, Krzakala, Moore and Zdeborová [63], which conjectured1 phase

1The conjecture of the Kesten-Stigum threshold in [63] was formulated with what
we call in this note the max-detection criteria, asking for an algorithm to output a
reconstruction of the communities that strictly improves on the trivial performance
achieved by putting all the vertices in the largest community. This conjecture is
formally incorrect for general SBMs, see [20] for a counter-example, as the notion
of max-detection is too strong in some cases. The conjecture is believed to hold for
symmetric SBMs, as re-stated in [130], but it requires a different notion of detection
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transition phenomena for the weak recovery (a.k.a. detection) problem
at the Kesten-Stigum threshold and the information-computation gap at
4 symmetric communities in the symmetric case. These conjectures are
backed in [63] with insights from statistical physics, based on the cavity
method (belief propagation), and provide a detailed picture of the weak
recovery problem, both for the algorithmic and information-theoretic
behavior. With such insights, a new research program started driven by
the phase transition phenomena.

One of the first papers that obtained a non-trivial algorithmic result
for the weak recovery problem is [2] from 2010, which appeared before
the conjecture (and does not achieve the threshold by a logarithmic
degree factor). The first paper that made progress on the conjecture is
[130] from 2012, which proved the impossibility part of the conjecture
for two symmetric communities, introducing various key concepts in
the analysis of block models. In 2013, [72] also obtained a result on the
partial recovery of the communities, expressing the optimal fraction of
mislabelled vertices when the signal-to-noise ratio is large enough in
terms of the broadcasting problem on trees [105, 156].

The positive part of the conjecture for efficient algorithm and two
communities was first proved in 2014 with [122] and [128], using respec-
tively a spectral method from the matrix of self-avoiding walks and
weighted non-backtracking walks between vertices.

In 2014, [10, 13] and [73] found that the exact recovery problem for
two symmetric communities has also a phase transition, in the loga-
rithmic rather than constant degree regime, shown to be also efficiently
achievable. This relates to a large body of work from the first decades
of research on the SBM [49, 119, 41, 150, 59, 123, 38, 55, 154, 161],
driven by the exact or almost exact recovery problems without sharp
thresholds.

In 2015, the phase transition for exact recovery was obtained for the
general SBM [68, 18], and shown to be efficiently achievable irrespective
of the number of communities. For the weak recovery problem, [42]
showed that the Kesten-Stigum threshold can be achieved with a spectral
method based on the nonbacktracking (edge) operator in a fairly general

to hold for general SBMs; see definitions from [20] discussed in Section 7.2.
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setting (covering SBMs that are not necessarily symmetric), but felt
short of settling the conjecture for more than two communities in the
symmetric case due to technical reasons. The approach of [42] is based
on the ‘spectral redemption’ conjecture made in 2013 in [108], which
introduced the use of the nonbacktracking operator as a linearization
of belief propagation. This is one of the most elegant approaches to the
weak recovery problem, except perhaps for the fact that the matrix is
not symmetric (note that the first proof of [122] does provide a solution
with a symmetric matrix via the count of self-avoiding walks, albeit
less direct to construct). The general conjecture for arbitrary many
symmetric or asymmetric communities is settled later in 2015 with [17,
20], relying on a higher-order nonbacktracking matrix and a message
passing implementation. It was further shown in [17, 20] that it is
possible to cross information-theoretically the Kesten-Stigum threshold
in the symmetric case at 4 communities, settling both positive parts
of the conjectures from [63]. Crossing at 5 rather than 4 communities
is also obtained in [30, 32], which further obtains the scaling of the
information-theoretic threshold for a growing number of communities.

In 2016, a tight expression was obtained for partial recovery with
two communities in the regime of finite SNR with diverging degrees in
[162] and [129] for a different distortion measure. This also gives the
threshold for weak recovery in the regime where the SNR is finite while
the degrees are diverging.

Other major lines of work on the SBM have been concerned with
the performance of SDPs, with a precise picture obtained in [85, 126,
99] for the weak recovery problem and in [13, 159, 1, 5, 22, 141] for the
(almost) exact recovery problem; as well as with spectral methods on
classical operators [123, 2, 138, 160, 154, 147, 165]. A detailed picture
has also been developed for the problem of a single planted community
in [4, 91, 90, 51]. Recently, attention has been paid to graphs that have a
larger number of short loops [16, 9, 79, 14]. There is a much broader list
of works on the SBMs that is not covered in this monograph, especially
before the ‘recent developments’ discussed above but also after. It is
particularly challenging to track the vast literature on this subject as it
is split between different communities of statistics, machine learning,
mathematics, computer science, information theory, social sciences
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and statistical physics. This monograph mainly covers developments
until 2016, with some references from 2017 There a few additional
surveys available; community detection and statistical network models
are discussed in [118, 146, 3], and C. Moore has a recent overview paper
[127] that focuses on the weak recovery problem with emphasis on the
cavity method.

In the table below, we summarize the main thresholds proved for
weak and exact recovery, covered in several chapters of this monograph:

Exact recovery Weak recovery (detection)
(logarithmic degrees) (constant degrees)

2-SSBM |
√
a−
√
b| >

√
2 [10, 73] (a− b)2 > 2(a+ b) [122, 128]

General SBM min
i<j

D+((PQ)i, (PQ)j) > 1 [68] λ2
2(PQ) > λ1(PQ) [42, 17]

1.5 Outline

In the next section, we formally define the SBM and various recovery
requirements for community detection, namely exact, weak, and partial
recovery. We then start with a quick overview of the key approaches
for these recovery requirements in Section 3, introducing the key new
concepts obtained in the recent developments. We then treat each of
these three recovery requirements separately for the two community
SBM in Sections 7.1, 7.2 and 6 respectively, discussing both fundamental
limits and efficient algorithms. We give complete (and revised) proofs
for exact recovery and partial proofs for weak and partial recovery. We
then move to the results for the general SBM in Section 7. In Section 9
we discuss other block models, such as geometric block models, and in
Section 10 we give concluding remarks and open problems.

1.6 Notations

We use the standard little-o and big-o notations. Recall that an = Ω(bn)
means that bn = O(an), and an = ω(bn) means that bn = o(an). In
particular, an = o(1) means that an is vanishing, an = Ω(1) means
that an is non-vanishing, and an = ω(1) means that an is diverging.
We use an . bn when an = Ω(bn); an � bn when an = o(bn) (and
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an � bn when bn = o(an)); an = Θ(bn), or equivalently an � bn, when
we simultaneously have an = Ω(bn) and an = O(bn); an ∼ bn when
an = bn(1 + o(1)).

We say that an event En takes place with high probability if its
probability tends to 1 as n diverges, i.e., P{En} = 1− o(1). We also use
a.a.e. and a.a.s. for asymptotically almost everywhere and asymptotically
almost surely (respectively).

We usually use superscripts to specify the dimensions of vectors; in
particular, 1n is the all-one vector of dimension n, 0n the all-zero vector
of dimension n, and xn = (x1, . . . , xn).



2
The stochastic block model

The history of the SBM is long, and we omit a comprehensive treat-
ment here. As mentioned earlier, the model appeared independently in
multiple scientific communities: the term SBM, which seems to have
dominated in the recent years, comes from the machine learning and
statistics literature [93], while the model is typically called the planted
partition model in theoretical computer science [49, 119, 41], and the
inhomogeneous random graphs model in the mathematics literature
[40].

2.1 The general SBM

Definition 2.1. Let n be a positive integer (the number of vertices), k
be a positive integer (the number of communities), p = (p1, . . . , pk) be a
probability vector on [k] := {1, . . . , k} (the prior on the k communities)
andW be a k×k symmetric matrix with entries in [0, 1] (the connectivity
probabilities). The pair (X,G) is drawn under SBM(n, p,W ) if X is an
n-dimensional random vector with i.i.d. components distributed under p,
and G is an n-vertex simple graph where vertices i and j are connected
with probabilityWXi,Xj , independently of other pairs of vertices. We also
define the community sets by Ωi = Ωi(X) := {v ∈ [n] : Xv = i}, i ∈ [k].

15
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Thus the distribution of (X,G) where G = ([n], E(G)) is defined as
follows; for x ∈ [k]n and y ∈ {0, 1}(

n
2),

P{X = x} :=
n∏
u=1

pxu =
k∏
i=1

p
|Ωi(x)|
i , (2.1)

P{E(G) = y|X = x} :=
∏

1≤u<v≤n
W yuv
xu,xv(1−Wxu,xv)1−yuv (2.2)

=
∏

1≤i≤j≤k
W

Nij(x,y)
i,j (1−Wi,j)N

c
ij(x,y), (2.3)

where

Nij(x, y) :=
∑
u<v

xu=i,xv=j

1(yuv = 1), (2.4)

N c
ij(x, y) :=

∑
u<v

xu=i,xv=j

1(yuv = 0) = |Ωi(x)||Ωj(x)| −Nij(x, y), i 6= j

(2.5)

N c
ii(x, y) :=

∑
u<v

xu=i,xv=i

1(yuv = 0) = |Ωi(x)|(|Ωi(x)| − 1)/2−Nii(x, y),

(2.6)

are the number of edges and non-edges between pairs of communities.
We may also talk aboutG drawn under SBM(n, p,W ) without specifying
the underlying community labels X.

Remark 2.1. Except for Section 10, we assume that p does not scale
with n, whereas W typically does. As a consequence, the number of
communities does not scale with n and the communities have linear
size. Nonetheless, various results discussed in this monograph should
extend (by inspection) to cases where k is growing slowly enough.

Remark 2.2. Note that by the law of large numbers, almost surely,
1
n
|Ωi| → pi.

Alternative definitions of the SBM require X to be drawn uniformly
at random with the constraint that 1

n |{v ∈ [n] : Xv = i}| = pi + o(1),
or 1

n |{v ∈ [n] : Xv = i}| = pi for consistent values of n and p (e.g.,
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n/2 being an integer for two symmetric communities). For the purpose
of this paper, these definitions are essentially equivalent, and we may
switch between the models to simplify some proofs.

Note also that if all entries ofW are the same, then the SBM collapses
to the Erdős-Rényi random graph, and no meaningful reconstruction of
the communities is possible.

2.2 The symmetric SBM

The SBM is called symmetric if p is uniform and if W takes the same
value on the diagonal and the same value outside the diagonal.

Definition 2.2. (X,G) is drawn under SSBM(n, k, qin, qout) if W takes
value qin on the diagonal and qout off the diagonal, and if the community
prior is p = {1/k}k in the Bernoulli model, and X is drawn uniformly
at random with the constraints |{v ∈ [n] : Xv = i}| = n/k, n a multiple
of k, in the uniform or strictly balanced model.

2.3 Recovery requirements

The goal of community detection is to recover the labels X by observing
G, up to some level of accuracy. We next define the notions of agreement.

Definition 2.3 (Agreement and normalized agreement). The agreement
between two community vectors x, y ∈ [k]n is obtained by maximizing
the common components between x and any relabelling of y, i.e.,

A(x, y) = max
π∈Sk

1
n

n∑
i=1

1(xi = π(yi)), (2.7)

Ã(x, y) = max
π∈Sk

1
k

k∑
i=1

∑
u∈[n] 1(xu = π(yu), xu = i)∑

u∈[n] 1(xu = i) , (2.8)

Note that the relabelling permutation is used to handle symmetric
communities such as in SSBM, as it is impossible to recover the actual
labels in this case, but we may still hope to recover the partition. In fact,
one can alternatively work with the community partition Ω = Ω(X),
defined earlier as the unordered collection of the k disjoint unordered
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subsets Ω1, . . . ,Ωk covering [n] with Ωi = {u ∈ [n] : Xu = i}. It is
however often convenient to work with vertex labels. Further, upon
solving the problem of finding the partition, the problem of assigning the
labels is often a much simpler task. It cannot be resolved if symmetry
makes the community label non identifiable, such as for SSBM, and
it is trivial otherwise by using the community sizes and clusters/cuts
densities.

For (X,G) ∼ SBM(n, p,W ) one can always attempt to reconstruct
X without even taking into account G, simply drawing each component
of X̂ i.i.d. under p. Then the agreement satisfies almost surely

A(X, X̂)→ ‖p‖22, (2.9)

and ‖p‖22 = 1/k in the case of p uniform. Thus an agreement becomes
interesting only when it is above this value.

One can alternatively define a notion of component-wise agreement.
Define the overlap between two random variables X,Y on [k] as

O(X,Y ) =
∑
z∈[k]

(P{X = z, Y = z} − P{X = z}P{Y = z}) (2.10)

and O∗(X,Y ) = maxπ∈Sk O(X,π(Y )). In this case, for X, X̂ i.i.d. under
p, we have O∗(X, X̂) = 0.

When discussing impossibility for weak recovery in the SSBM (Sec-
tion 5.2.1), we also use an alternative definition for which the conditional
mutual information between an arbitrary pair of vertices u 6= v vanishes,
i.e.,

I(Xu;Xv|G)→ 0

as n→∞. Note that if this mutual information between two arbitrary
vertices u and v is vanishing, i.e., the two vertex labels are asymptotically
independent conditioned on the graph, then it is not possible to obtain
a reconstruction of all vertices that solves weak recovery.

All recovery requirements in this note are going to be asymptotic,
taking place with high probability as n tends to infinity. We also assume
in the following sections—except for Section 2.5—that the parameters
of the SBM are known when designing the algorithms.
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Definition 2.4. Let (X,G) ∼ SBM(n, p,W ). The following recovery
requirements are solved if there exists an algorithm that takes G as an
input and outputs X̂ = X̂(G) such that

• Exact recovery: P{A(X, X̂) = 1} = 1− o(1),

• Almost exact recovery: P{A(X, X̂) = 1− o(1)} = 1− o(1),

• Partial recovery: P{Ã(X, X̂) ≥ α} = 1− o(1), α ∈ (1/k, 1),

• Weak recovery: P{Ã(X, X̂) ≥ 1/k + Ω(1)} = 1− o(1).

In other words, exact recovery requires the entire partition to be
correctly recovered, almost exact recovery allows for a vanishing fraction
of misclassified vertices, partial recovery allows for a constant fraction of
misclassified vertices and weak recovery allows for a non-trivial fraction
of misclassified vertices. We call α the agreement or accuracy of the
algorithm. Note that partial and weak recovery are defined by means of
the normalized agreement Ã rather the agreement A. The reason for
this is discussed in details below and matters for asymmetric SBMs; for
the case of symmetric SBMs, A can be used for all four definitions.

Different terminologies are sometimes used in the literature, with
following equivalences:

• exact recovery ⇐⇒ strong consistency

• almost exact recovery ⇐⇒ weak consistency

Sometimes ‘exact recovery’ is also called just ‘recovery’ and ‘almost
exact recovery’ is called ‘strong recovery.’

As mentioned above, values of α that are too small may not be
interesting or realizable. In the symmetric SBM with k communities,
an algorithm that ignores the graph and simply draws X̂ i.i.d. under
p achieves an accuracy of 1/k. Thus the problem becomes interesting
when α > 1/k, leading to the following definition.

Definition 2.5. Weak recovery (or detection) is solvable in SSBM(n, k,
qin, qout) if for (X,G) ∼ SSBM(n, k, qin, qout), there exists ε > 0 and
an algorithm that takes G as an input and outputs X̂ such that
P{A(X, X̂) ≥ 1/k + ε} = 1− o(1).
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Equivalently, P{O∗(XV , X̂V ) ≥ ε} = 1− o(1) where V is uniformly
drawn in [n]. Determining the counterpart of weak recovery in the
general SBM requires some discussion. Consider an SBM with two
communities of relative sizes (0.8, 0.2). A random guess under this prior
gives an agreement of 0.82 + 0.22 = 0.68, however an algorithm that
simply puts every vertex in the first community achieves an agreement
of 0.8. In [63], the latter agreement is used as the one to improve upon
in order to detect communities, leading to the following definition:

Definition 2.6. Max-detection is solvable in SBM(n, p,W ) if for (X,G)
∼ SBM(n, p,W ), there exists ε > 0 and an algorithm that takes G as an
input and outputs X̂ such that P{A(X, X̂) ≥ maxi∈[k] pi+ε} = 1−o(1).

As shown in [20], the previous definition is not the right definition
to capture the Kesten-Stigum threshold in the general case. In other
words, the conjecture that max-detection is always possible above the
Kesten-Stigum threshold is not accurate in general SBMs. Back to our
example with communities of relative sizes (0.8, 0.2), an algorithm that
could find a set containing 2/3 of the vertices from the large community
and 1/3 of the vertices from the small community would not satisfy
the above above weak recovery criteria, while the algorithm produces
nontrivial amounts of evidence on what communities the vertices are
in. To be more specific, consider a two community SBM where each
vertex is in community 1 with probability 0.99, each pair of vertices in
community 1 have an edge between them with probability 2/n, while
vertices in community 2 never have edges. Regardless of what edges a
vertex has it is more likely to be in community 1 than community 2, so
weak recovery according to the above definition is not impossible, but
one can still divide the vertices into those with degree 0 and those with
positive degree to obtain a non-trivial detection—see [20] for a formal
counter-example.

Using the normalized agreement fixes this issue. Weak recovery can
then be defined as obtaining with high probability a weighted agreement
of

Ã(X, X̂(G)) = 1/k + Ωn(1),
and this applies to the general SBM. Another definition of weak recovery
that seems easier to manipulate and that implies the previous one is as
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follows; note that this definition requires a single partition even for the
general SBM.

Definition 2.7. Weak recovery (or detection) is solvable in SBM(n, p,W )
if for (X,G) ∼ SBM(n, p,W ), there exists ε > 0, i, j ∈ [k] and an algo-
rithm that takes G as an input and outputs a partition of [n] into two
sets (S, Sc) such that

P{|Ωi ∩ S|/|Ωi| − |Ωj ∩ S|/|Ωj | ≥ ε} = 1− o(1),

where we recall that Ωi = {u ∈ [n] : Xu = i}.

In other words, an algorithm solves weak recovery if it divides the
graph’s vertices into two sets such that vertices from two different
communities have different probabilities of being assigned to one of
the sets. With this definition, putting all vertices in one community
does not detect, since |Ωi ∩ S|/|Ωi| = 1 for all i ∈ [k]. Further, in the
symmetric SBM, this definition implies Definition 2.5 provided that we
fix the output:

Lemma 2.1. If an algorithm solves weak recovery in the sense of Defini-
tion 2.7 for a symmetric SBM, then it solves max-detection (or detection
according to Decelle et al. [63]), provided that we consider it as returning
k − 2 empty sets in addition to its actual output.

See [19] for the proof. The above extends to other weakly symmetric
SBMs, i.e., those that have constant expected degrees, but not all.

Finally, note that our notion of weak recovery requires us to separate
at least two communities i, j ∈ [k]. One may ask for a definition where
two specific communities need to be separated:

Definition 2.8. Separation of communities i and j, with i, j ∈ [k], is
solvable in SBM(n, p,W ) if for (X,G) ∼ SBM(n, p,W ), there exists
ε > 0 and an algorithm that takes G as an input and outputs a partition
of [n] into two sets (S, Sc) such that

P{|Ωi ∩ S|/|Ωi| − |Ωj ∩ S|/|Ωj | ≥ ε} = 1− o(1).

There are at least two additional questions that are natural to ask
about SBMs, both can be asked for efficient or information-theoretic
algorithms:
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• Distinguishability (or testing): Consider an hypothesis test
where a random graph G is drawn with probability 1/2 from an
SBM model (with same expected degree in each community) and
with probability 1/2 from an Erdős-Rényi model with matching
expected degree. Is is possible to decide with asymptotic probabil-
ity 1−o(1) from which ensemble the graph is drawn? In particular,
this is not possible if the total variation distance between the two
ensembles is vanishing. This problem is sometimes called ‘detec-
tion’, which partly explains why we prefer to use ‘weak recovery’
in lieu of ‘detection’ for the reconstruction problem discussed
earlier. Distinguishability is further discussed in Section 8.

• Model learnability or parameter estimation: Assume that
G is drawn from an SBM ensemble, is it possible to obtain a
consistent estimator for the parameters? E.g., can we estimate
k, p,Q from a graph drawn from SBM(n, p,Q/n)? This is further
discussed in Section 2.5.

The obvious implications are: exact recovery⇒ almost exact recovery⇒
partial recovery⇒ weak recovery⇒ distinguishability, and almost exact
recovery ⇒ learnability. Moreover, for symmetric SBMs with two sym-
metric communities: learnability ⇔ weak recovery ⇔ distinguishability,
but these are broken for general SBMs; see Section 2.5.

2.4 SBM regimes and topology

Before discussing when the various recovery requirements can be solved
or not in SBMs, it is important to recall a few topological properties of
the SBM graph.

When all the entries of W are the same and equal to w, the SBM
collapses to the Erdős-Rényi model G(n,w) where each edge is drawn
independently with probability w. Let us recall a few basic results for
this model derived mainly from [76]:

• G(n, c log(n)/n) is connected with high probability if and only if
c > 1,
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• G(n, c/n) has a giant component (i.e., a component of size linear
in n) if and only if c > 1.

• For δ < 1/2, the neighborhood at depth r = δ logc n of a vertex v
in G(n, c/n), i.e., B(v, r) = {u ∈ [n] : d(u, v) ≤ r} where d(u, v)
is the length of the shortest path connecting u and v, tends in
total variation to a Galton-Watson branching process of offspring
distribution Poisson(c).

For SSBM(n, k, qin, qout), these results hold by essentially replacing
c with the average degree.

• For a, b > 0, SSBM(n, k, a logn/n, b logn/n) is connected with
high probability if and only if a+(k−1)b

k > 1 (if a or b is equal to 0,
the graph is of course not connected).

• SSBM(n, k, a/n, b/n) has a giant component (i.e., a component
of size linear in n) if and only if d := a+(k−1)b

k > 1,

• For δ < 1/2, the neighborhood at depth r = δ logd n of a vertex
v in SSBM(n, k, a/n, b/n) tends in total variation to a Galton-
Watson branching process of offspring distribution Poisson(d)
where d is as above.

Similar results hold for the general SBM, at least for the case of a con-
stant excepted degree. For connectivity, one has that SBM(n, p,Q logn/n)
is connected with high probability if

min
i∈[k]
‖(diag(p)Q)i‖1 > 1 (2.11)

and is not connected with high probability if mini∈[k] ‖(diag(p)Q)i‖1 < 1,
where (diag(p)Q)i is the i-th column of diag(p)Q.

These results are important to us as they already point regimes
where exact or weak recovery are not possible. Namely, if the SBM
graph is not connected, exact recovery is not possible (since there is
no hope to label disconnected components with higher chance than
1/2), hence exact recovery can take place only if the SBM parameters
are in the logarithmic degree regime. In other words, exact recovery in
SSBM(n, k, a logn/n, b logn/n) is not solvable if a+(k−1)b

k < 1. This is
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however unlikely to provide a tight condition, i.e., exact recovery is not
equivalent to connectivity, and the next section will precisely investigate
how much more than a+(k−1)b

k > 1 is needed to obtain exact recovery.
Similarly, it is not hard to see that weak recovery is not solvable if
the graph does not have a giant component, i.e., weak recovery is not
solvable in SSBM(n, k, a/n, b/n) if a+(k−1)b

k < 1, and we will see in
Section 7.2 how much more is needed to go from the giant component
to weak recovery.

2.5 Learning the model

In this section we overview the results on estimating the SBM parameters
by observing a realization of the graph. The estimation problem tends to
be ‘easier’ than the recovery problems, although some problems remain
for the general sparse SBM, see Section 2.5.2. We consider first the
case where degrees are diverging, where estimation can be obtained
as a side result of universal almost exact recovery, and the case of
constant degrees, where estimation can be performed without being
able to recover the clusters but only above the weak recovery threshold.

2.5.1 Diverging degree regime

For diverging degrees, one can estimate the parameters by first solving
almost exact recovery without knowing the parameters, and proceeding
then to estimate the parameters by simply computing the clusters’ cuts
and volumes. This requires solving a potentially harder problem, but it
turns out to be achievable:

Theorem 2.2. [18] Given δ > 0 and for any k ∈ Z, p ∈ (0, 1)k with∑
pi = 1 and 0 < δ ≤ min pi, and any symmetric matrix Q with no

two rows equal such that every entry in Qk is strictly positive (in other
words, Q such that there is a nonzero probability of a path between
vertices in any two communities in a graph drawn from SBM(n, p,Q/n)),
there exist ε(c) = O(1/ log(c)) such that for all sufficiently large α, the
Agnostic-sphere-comparison algorithm detects communities in graphs
drawn from SBM(n, p, αQ/n) with accuracy at least 1 − e−Ω(α) in
On(n1+ε(α)) time.
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The algorithm used in this theorem (agnostic-sphere-comparison) is
discussed in section 6.1 in the context of two communities and is based
on comparing neighborhoods of vertices. Note that assumption that δ
is given in this theorem can be removed when α = ω(1), i.e., when the
degrees diverge. We then obtain:

Corollary 2.3. [18] The number of communities k, the community prior
p and the connectivity matrix Q can be consistently estimated in quasi-
linear time in SBM(n, p, ω(1)Q/n).

Note that for symmetric SBMs, certain algorithms such as SDPs or
spectral algorithms discussed in Section 3 can also be used to recover
the communities without knowledge of the parameters, and thus to
learn the parameters in the symmetric case. A different line of work
has also studied the problem of estimating ‘graphons’ [55, 70, 137]
via block models, assuming regularity conditions on the graphon, such
as piecewise Lipschitz, to obtain estimation guarantees. In addition,
[48] considers private graphon estimation in the logarithmic degree
regime, and obtains a non-efficient procedure to estimate ‘graphons’ in
an appropriate version of the L2 norm. More recently, [43] extends the
type of results from [157] to a much more general family of ‘graphons’
and to sparser regimes (though still with diverging degrees) with efficient
methods (based on degrees) and non-efficient methods (based on least
square and least cut norm).

2.5.2 Constant degree regime

In the case of the constant degree regime, it is not possible to recover the
clusters fully, and thus estimation has to be done differently. The first
paper that shows how to estimate tightly the parameter in this regime is
[130], which is based on approximating cycle counts by nonbacktracking
walks. An alternative method based on expectation-maximization using
the Bethe free energy is also proposed in [63] (without a rigorous
analysis).

Theorem 2.4. [130] Let G ∼ SSBM(n, 2, a/n, b/n) such that (a− b)2 >

2(a+ b), and let Cm be the number of m-cycles in G, d̂n = 2|E(G)|/n
be the average degree in G and f̂n = (2mnCmn − d̂mnn )1/mn where
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mn = blog1/4(n)c. Then d̂n + f̂n and d̂n − f̂n are consistent estimators
for a and b respectively. Further, there is a polynomial time estimator
to calculate d̂n and f̂n.

This theorem is extended in [17] for the symmetric SBM with k

clusters, where k is also estimated. The first step needed is the following
estimate.

Lemma 2.5. Let Cm be the number of m-cycles in SBM(n, p,Q/n). If
m = o(log log(n)), then

ECm ∼ VarCm ∼
1

2mtr(diag(p)Q)m. (2.12)

To see this lemma, note that there is a cycle on a given selection of
m vertices with probability∑

x1,...,xm∈[k]

Qx1,x2

n
· Qx2,x3

n
· . . . · Qxm,x1

n
· px1 · . . . · pxm (2.13)

= tr(diag(p)Q/n)m. (2.14)

Since there are ∼ nm/2m such selections, the first moment follows. The
second moment follows from the fact that overlapping cycles do not
contribute to the second moment. See [130] for proof details for the
2-SSBM and [17] for the general SBM.

Hence, one can estimate 1
2mtr(diag(p)Q)m for slowly growing m. In

the symmetric SBM, this gives enough degrees of freedom to estimate
the three parameters a, b, k. Theorem 2.4 uses for example the average
degree (m = 1) and slowly growing cycles to obtain a system of equations
that allows to solve for a, b. This extends easily to all symmetric SBMs,
and the efficient part follows from the fact that for slowly growingm, the
cycle counts coincide with the nonbacktracking walk counts with high
probability [130]. Note that Theorem 2.4 provides a tight condition for
the estimation problem, i.e., [130] also shows that when (a−b)2 ≤ 2(a+b)
(which we recall is equivalent to the requirement for impossibility of
weak recovery) the SBM is contiguous to the Erdős-Rényi model with
edge probability (a+ b)/(2n).

However, for the general SBM, the problem is more delicate and one
has to first stabilize the cycle count statistics to extract the eigenvalues of
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PQ, and use weak recovery methods to further peel down the parameters
p and Q. Deciding which parameters can or cannot be learned in the
general SBM seems to be a non-trivial problem. This is also expected
to come into play in the estimation of graphons [55, 70, 48].



3
Tackling the stochastic block model

In this section, we discuss how to tackle the problem of community
detection for the various recovery requirements of Section 2.4. One
feature of the SBM is that it can (and has) been viewed from many
different angles. In particular, we will pursue here the algebraic and
information-theoretic (or statistical) interpretations, viewing the SBM:

• As a low-rank perturbation model: the adjacency matrix of the
SBM has low rank in expectation; thus one may hope to char-
acterize its behavior, e.g., its eigenvectors, as perturbations of
its expected counterparts. For example, the expected adjacency
matrix of a two-community SBM(n, p,Q/n) has the form:

EA =



Q11 . . . Q11 Q12 . . . Q12
...

...
...

...
Q11 . . . Q11 Q12 . . . Q12
Q12 . . . Q12 Q22 . . . Q22

...
...

...
...

Q12 . . . Q12 Q22 . . . Q22


︸ ︷︷ ︸

np1

︸ ︷︷ ︸
np2

28
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• As a noisy channel: the SBM graph can be viewed as the output
on a channel that takes the community memberships as inputs.
In particular, this corresponds to a memoryless channel encoded
with a sparse graph code as in Figure 3.1.

X1

Xn

Y1

YN

..
.

..
.

W

W

channel:

W =

✓
1 � qin qin

1 � qout qout

◆

Figure 3.1: The stochastic block model can be seen as an unorthodox code on a
memoryless channel. In the above Figure, we illustrate the case of SSBM(n, 2, qin, qout).
The information bits represent the binary community labels of the vertices. The
encoder is a linear code that takes the XOR of any pair of bits, so that N =

(
n
2

)
and the code is R = n/N ∼ 2/n. The binary output for each channel represents the
presence or absence of an edge between the corresponding vertices. The memoryless
channel is determined by the matrix W .

3.1 The block MAP estimator

A natural starting point (e.g., from viewpoint 2) is to resolve the
estimation of X from the noisy observation G by taking the Maximum A
Posteriori estimator. Upon observing G, if one estimates the community
partition Ω = Ω(X) with Ω̂(G), the probability of error is given by

Pe := P{Ω 6= Ω̂(G)} =
∑
g

P{Ω̂(g) 6= Ω|G = g}P{G = g}, (3.1)

and an estimator Ω̂map(·) minimizing the above must minimize P{Ω̂(g) 6=
Ω|G = g} for every g. To minimize P{Ω̂(g) 6= Ω|G = g}, we must declare
a reconstruction ω that maximizes the posterior distribution

P{Ω = ω|G = g} ∝ P{G = g|Ω = ω}P{Ω = ω}. (3.2)
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Consider now the strictly balanced SSBM, where P{Ω = ω} is the
same for all equal size partitions. Then MAP is thus equivalent to the
Maximum Likelihood estimator:

maximize P{G = g|Ω = ω} over equal size partitions ω. (3.3)

In the two-community case, denoting by Nin and Nout the number
of edges inside and across the clusters respectively,

P{G = g|Ω = ω} ∝
(
qout(1− qin)
qin(1− qout)

)Nout
. (3.4)

Assuming qin ≥ qout, we have qout(1−qin)
qin(1−qout) ≤ 1 and thus

MAP is equivalent to finding a min-bisection of G,

i.e., a balanced partition with the least number of crossing edges.
This brings us to a first question:

Is it a good idea to use MAP, i.e, clusters from a min-bisection?

Since MAP minimizes the probability of making an error for the
reconstruction of the entire partition Ω, it minimizes the error probability
for exact recovery. Thus, if MAP fails in solving exact recovery, no other
algorithm can succeed. In addition, MAP may not be optimal for weak
recovery, since the most likely partition may not necessarily maximize
the agreement. To see this, consider for example the uniform SSBM in
a sparse regime with a+ b slightly above 2. In this case, the graph has a
giant component that contains less than half of the vertices, and there
are various balanced partitions of the graph that have zero crossing
edges (they separate the giant component from a collection of small
disconnected components). Clearly, these are min-bisections, but they
do not solve weak recovery. Nonetheless, weak recovery can still be
solved in some of these cases:

Lemma 3.1. There exist a, b such that weak recovery is solvable in
SSBM(n, 2, a/n, b/n) but block MAP fails to solve weak recovery.

Proof. Let a = 2.5 and b = 0.1. We have that (a − b)2 > 2(a + b), so
there is an algorithm that solves weak recovery on SSBM(n, 2, a/n, b/n).
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However, in a graph drawn from SSBM(n, 2, a/n, b/n), with high proba-
bility, only about 42% of the vertices are in the main component of the
graph while the rest are in small components of size O(logn). So, one
can partition the vertices of the graph into two equal sized sets with no
edges between them by assigning every vertex in the main component
and some suitable collection of small components to community 1 and
the rest to community 2. However, the vertices in the main component
are split approximately evenly between the two communities, and there
is no way to tell which of the small components are disproportionately
drawn from one community or the other, so for any ε > 0, each set
returned by this algorithm will have less than 1/2 + ε of its vertices
drawn from each community with probability 1− o(1).

Note that such an argument is harder to establish if one restricts the
min-bisection to the giant component (though we still conjecture that
MAP can fail at weak recovery with this restriction). We summarize
the two points obtained so far:

• Fact 1: If MAP does not solve exact recovery, then exact recovery
is not solvable.

• Fact 2: Weak recovery may still be solvable when MAP does not
solve weak recovery.

3.2 Computing block MAP: spectral and SDP relaxations

Exactly resolving the maximization in (3.3) requires comparing expo-
nentially many terms a priori, so the MAP estimator may not always
reveal the computational threshold for exact recovery. In fact, in the
worst-case model, min-bisection is NP-hard, and approximations leave
a polylogarithmic integrality gap [107]. Various relaxations have been
proposed for the MAP estimator. Here we review two of the main ideas.

Spectral relaxations. Consider again the symmetric SBM with
strictly balanced communities. Recall that MAP maximizes

max
x∈{+1,−1}n
xt1n=0

xtAx, (3.5)
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since this counts the number of edges inside the clusters minus the num-
ber of edges across the clusters, which is equivalent to the min-bisection
problem (the total number of edges being fixed by the graph). The
general idea behind spectral methods is to relax the integral constraint
to an Euclidean constraint on real valued vectors. This leads to looking
for a maximizer of

max
x∈Rn:‖x‖22=n

xt1n=0

xtAx. (3.6)

Without the constraint xt1n = 0, the above maximization gives precisely
the eigenvector corresponding to the largest eigenvalue of A. Note that
A1n is the vector containing the degrees of each node in g, and when
g is an instance of the symmetric SBM, this concentrates to the same
value for each vertex, and 1n is close to an eigenvector of A. Since A
is real symmetric, this suggests that the constraint xt1n = 0 leads the
maximization (3.6) to focus on the eigenspace orthogonal to the first
eigenvector, and thus to the eigenvector corresponding to the second
largest eigenvalue. Thus it is reasonable to take the second largest
eigenvector φ2(A) of A and round it to obtain an efficient relaxation of
MAP:

X̂spec =

1 if φ2(A) ≥ 0,
2 if φ2(A) < 0.

(3.7)

We will discuss later on whether this is a good algorithm or not (in
brief, it works well in the exact recovery regime but not in the weak
recovery regime). Equivalently, one can write the MAP estimator as a
minimizer of

min
x∈{+1,−1}n
xt1n=0

∑
1≤i<j≤n

Aij(xi − xj)2 (3.8)

since the above minimizes the size of the cut between two balanced
clusters. From simple algebraic manipulations, this is equivalent to
looking for minimizers of

min
x∈{+1,−1}n
xt1n=0

xtLx, (3.9)
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where L is the Laplacian of the graph, i.e.,

L = D −A, (3.10)

and D is the degree matrix of the graph. With this approach 1n is
precisely an eigenvector of L with eigenvalue 0, and the relaxation to a
real valued vector leads directly to the second eigenvector of L, which
can be rounded (positive or negative) to determine the communities. A
third variant of such basic spectral approaches is to center A and take
the first eigenvector of A− qin+qout

2n 1n1tn and round it.
The challenge with such ‘basic’ spectral methods is that, as the

graph becomes sparser, the fluctuations in the node degrees become
more important, and this can disrupt the second largest eigenvector
from concentrating on the communities (it may concentrate instead on
large degree nodes). To analyze this, one may express the adjacency
matrix as a perturbation of its expected value, i.e.,

A = EA+ (A− EA). (3.11)

When indexing the first n/2 rows and columns to be in the same
community, the expected adjacency matrix takes the following block
structure

EA =
(
q
n/2×n/2
in q

n/2×n/2
out

q
n/2×n/2
out q

n/2×n/2
in

)
, (3.12)

where qn/2×n/2in is the n/2× n/2 matrix with all entries equal to qin. As
expected, EA has two eigenvalues, the expected degree (qin+qout)/2 with
the constant eigenvector, and (qin − qout)/2 with the eigenvector taking
the same constant with opposite signs on each community. The spectral
methods described above succeeds in recovering the true communities
if the noise Z = A− EA does not disrupt the first two eigenvectors of
A to be somewhat aligned with those of EA. We will discuss when this
takes place in Section 7.1.

SDP relaxations. Another common relaxation can be obtained
from semi-definite programming. We discuss again the case of two
symmetric strictly balanced communities. The idea of SDPs is instead
to lift the variables to change the quadratic optimization into a linear
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optimization (as for max-cut [83]). Namely, since tr(AB) = tr(BA) for
any matrices of matching dimensions, we have

xtAx = tr(xtAx) = tr(Axxt), (3.13)

hence defining X := xxt, we can write (3.13) as

X̂map(g) = argmax X�0
Xii=1,∀i∈[n]

rankX=1
X1n=0

tr(AX). (3.14)

Note that the first three constraints on X force X to take the form xxt

for a vector x ∈ {+1,−1}n, as desired, and the last constraint gives
the balance requirement. The advantage of (3.14) is that the objective
function is now linear in the lifted variable X. The constraint rankX = 1
is now responsible for keeping the optimization hard. Hence, we simply
remove that constraint to obtain an SDP relaxation:

X̂sdp(g) = argmax X�0
Xii=1,∀i∈[n]
X1n=0

tr(AX). (3.15)

A possible approach to handle the constraint X1n = 0 is to again use a
centering of A. For example, one can replace the adjacency matrix A
by the matrix B such that Bij = 1 if there is an edge between vertices
i and j, and Bij = −1 otherwise. Using −T for a large T instead of −1
for non-edges would force the clusters to be balanced, and it turns out
that −1 is already sufficient for our purpose. This gives another SDP:

X̂SDP (g) = argmax X�0
Xii=1,∀i∈[n]

tr(BX). (3.16)

We will further discuss the performance of SDPs in Section 4.3.2. In
brief, they work well for exact recovery, and while they are suboptimal
for weak recovery, they are not as senstive as vanilla spectral methods
to degree variations. However, the complexity of SDPs is significantly
higher than that of spectral methods. We will also discuss how other
spectral methods can afford optimality in both the weak and exact
recovery regimes while preserving a quasi-linear time complexity. Notice
however that we are putting the cart before the horse by talking about
weak recovery now: we viewed spectral and SDP methods as relaxations
of the MAP estimator, which is only an optimal estimator for exact
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recovery. These relaxations may still work for weak recovery, but the
connection is less clear. Let us thus move to what would be the objective
of merit for weak recovery.

3.3 The bit MAP estimator

If block MAP is not optimal for weak recovery, what is the right ob-
jective? To answer this more easily in the symmetric SBM, we have
to in some way break the symmetry again, as done in the previous
section using the partition function Ω(X). This is slightly more techni-
cal for weak recovery. We use a different trick to avoid uninteresting
technicalities, and consider a weakly symmetric SBM. I.e., consider a
two-community SBM with a Bernoulli prior given by (p1, p2), p1 6= p2,
and connectivity Q/n such that PQ has two rows with the same sum.
In other words, the expected degree of every vertex is the same (and
weak recovery is non-trivial), but the model is slightly asymmetrical
and one can determine the community labels from the partition. In this
case, we can work with the agreement between the true labels and the
algorithm reconstruction without use of the relabelling π, i.e.,

A(X, X̂(G)) =
n∑
v=1

1(Xv = X̂v(G)). (3.17)

Consider now an algorithm that maximizes the expected agreement, i.e,

EA(X, X̂(G)) =
n∑
v=1

P(Xv = X̂v(G)). (3.18)

To solve weak recovery, one needs a non-trivial expected agreement,
and to maximize the above, one has to maximize each term given by

P(Xi = X̂v(G)) =
∑
g

P(Xv = X̂v(g)|G = g)P(G = g), (3.19)

i.e., X̂v(g) should take the maximal value of the function xv 7→ P(Xv =
xv|G = g). In other words, we need the marginal P(Xv = ·|G = g).
Note that in the symmetric SBM, this marginal is 1/2, hence the need
for the symmetry breaking.1

1There are different ways to break the symmetry in the symmetric SBM. One
may reveal each vertex with some noisy genie; another option is to call community 1
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3.4 Computing bit MAP: belief propagation

How do we compute the marginal P(Xv = xv|G = g)? By Bayes’ rule,
this requires the term P(G = g|Xv = xv), which can easily be obtained
from the conditional independence of the edges given the vertex labels,
and the marginal P(G = g) =

∑
x∈[2]n P(G = g|X = x), which is the

non-trivial part.
Set v0 to be a specific vertex in G. Let v1, ...vm be the vertices that

are adjacent to v0, and define the vectors q1, ..., qm such that for each
community i and vertex vj ,

(qj)i = P(Xvj = i|G\{v0} = g\{v0}).

Assume for a moment2 that, ignoring v0, the probability distribu-
tions of Xv1 , Xv2 , ..., Xvm are asymptotically independent, i.e., for all
x1, ..., xm,

P (Xv1 = x1, Xv2 = x2, ..., Xvm = xm|G\{v0} = g\{v0}) (3.20)

= (1 + o(1))
m∏
i=1

P (Xvi = xi|G\{v0} = g\{v0}) . (3.21)

This is a reasonable assumption in the sparse SBM because the graph is
locally tree-like, i.e., with probability 1− o(1), for every i and j, every
path between vi and vj in G\{v0} has a length of Ω(logn). So we would
expect that knowing the community of vi would provide little evidence
about the community of vj . Then, with high probability,

P(Xv0 = i|G = g) = (1 + o(1))
pi
∏m
j=1(Qqj)i∑k

i′=1 pi′
∏m
j=1(Qqj)i′

.

One can now iterate this reasoning. In order to estimate P [Xv =
i|G = g], one needs P [Xvj = i′|G\{v} = g\{v}] for all community
labels i′ and all vj adjacent to v. In order to compute those, one needs
P (Xv′ = i′|G\{v, vj} = g\{v, vj}) for all vj adjacent to v, v′ adjacent to

the community that has the largest number of vertices among the 2b
√
nc+ 1 largest

degree vertices in the graph (we pick 2b
√
nc+ 1 to have an odd number and avoid

ties).
2This is where the symmetry breaking based on large degree vertices discussed

in the previous footnote is convenient, as it allows to make the statement.
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vj , and every community label i′. To apply the formula recursively with t
layers of recursion, one needs an estimate of P (Xv0 = i′|G\{v1, ..., vt} =
g\{v1, ..., vt}) for every path v0, ..., vt in G. The number of these paths
is exponential in t, and so this approach would be inefficient. However,
again due to the tree-like nature of the sparse SBM, it may be reasonable
to assume that

P (Xv′ = i′|G\{v, vj} = g\{v, vj}) (3.22)
= (1 + o(1))P (Xv′ = i′|G\{vj} = g\{vj}), (3.23)

which should hold as long as there is no small cycle containing v, vj ,
and v′.

Therefore, using an initial estimate (qv,v′)i of P (Xv′ = i|G\{v} =
g\{v}) for each community i and each adjacent v and v′, we can
iteratively refine our beliefs using the following algorithm which is
essentially3 belief propagation (BP):

Belief Propagation Algorithm (t,q, p,Q, G):

1. Set q(0) = q, where q provides (qv,v′)i ∈ [0, 1] for all v, v′ ∈ [n],
i ∈ [k]; the initial belief that vertex v′ sends to vertex v (one can
set qv′,v = qv′′,v).

2. For each 0 < t′ < t, each v ∈ G, and each community i, set

(q(t′)
v,v′)i =

pi
∏
v′′:(v′,v′′)∈E(G),v′′ 6=v(Qq

(t′−1)
v′,v′′ )i∑k

i′=1 pi′
∏
v′′:(v′,v′′)∈E(G),v′′ 6=v(Qq

(t′−1)
v′,v′′ )i′

.

3. For each v ∈ G and each community i, set

(q(t)
v )i =

pi
∏
v′′:(v,v′′)∈E(G)(Qq

(t−1)
v,v′′ )i∑k

i′=1 pi′
∏
v′′:(v,v′′)∈E(G)(Qq

(t−1)
v′,v′′ )i′

.

4. Return q(t).
3One should normally also factor in the non-edges, but we ignore these for now as

their effect is negligible in BP, although we will factor them back in when discussing
linearized BP.
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This algorithm is efficient and terminates with a probability dis-
tribution for the community of each vertex given the graph, which
seems to converge to the true distribution with enough iterations even
with a random initialization. Showing this remains an open problem.
Instead, we will discuss in Section 5.3.1 how one can linearize BP in
order to obtain a version of BP that can be analyzed more easily. This
linearization of BP will further lead to a new spectral method on an
operator called the nonbacktracking operator (see Section 5.3.1), which
connects us back to spectral methods without the issues mentioned
previously for the adjacency matrix in the weak recovery regime (i.e.,
the sensitivity to degree variations).



4
Exact recovery for two communities

Exact recovery for linear size communities has been one of the most
studied problems for block models in its first decades. A partial list of
papers is given by [49, 119, 41, 150, 59, 123, 38, 55, 154, 161]. In this line
of work, the approach is mainly driven by the choice of the algorithms,
and in particular for the model with two symmetric communities. The
results are as follows1:

Bui, Chaudhuri, qin = Ω(1/n)
Leighton, Sipser ’84 maxflow-mincut qout = o(n−1− 4

(qin+qout)n )
Boppana ’87 spectral qin−qout√

qin+qout
= Ω(

√
log(n)/n)

Dyer, Frieze ’89 degree min-cut qin − qout = Ω(1)
Snijders, Nowicki ’97 EM qin − qout = Ω(1)
Jerrum, Sorkin ’98 Metropolis qin − qout = Ω(n−1/6+ε)
Condon, Karp ’99 augmentation algo. qin − qout = Ω(n−1/2+ε)
Carson, Impagliazzo ’01 hill-climbing qin − qout = Ω(log4(n)/

√
n)

McSherry ’01 spectral qin−qout√
qin

= Ω(
√

log(n)/n)
Bickel, Chen ’09 N-G modularity qin−qout√

qin+qout
= Ω(log(n)/

√
n)

Rohe, Chatterjee, Yu ’11 spectral qin − qout = Ω(1)

More recently, [154] obtained a result for a spectral algorithm that
1Some of the conditions have been borrowed from attended talks and have not

been double-checked.

39
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works in the regime where the expected degrees are logarithmic, rather
than poly-logarithmic as in [123, 55], extending results also obtained
in [160]. Note that exact recovery requires the node degrees to be at
least logarithmic, as discussed in Section 2.4. Thus the results of [154]
are tight in the scaling, and the first to apply in such generality, but as
for the other results in Table 1, these results do not reveal the phase
transition. The fundamental limit for exact recovery was derived first
for the case of symmetric SBMs with two communities:

Theorem 4.1. [10, 73] Exact recovery in SSBM
(
n, 2, a log(n)

n , b log(n)
n

)
is solvable and efficiently so if |

√
a −
√
b| >

√
2 and unsolvable if

|
√
a−
√
b| <

√
2.

A few remarks regarding this result:

• At the threshold, one has to distinguish two cases: if a, b > 0, then
exact recovery is solvable (and efficiently so) if |

√
a−
√
b| =

√
2,

as first shown in [73]. If a or b are equal to 0, exact recovery is
solvable (and efficiently so) if

√
b >
√

2 or
√
a >
√

2 respectively,
and this corresponds to connectivity.

• Theorem 4.1 provides a necessary and sufficient condition for exact
recovery, and covers all cases in SSBM(n, 2, qin, qout) were qin and
qout may depend on n but not be asymptotically equivalent (i.e.,
qin/qout 9 1). For example, if qin = 1/

√
n and qout = log3(n)/n,

which can be written as qin =
√
n

logn
logn
n and qout = log2 n logn

n , then
exact recovery is trivially solvable as |

√
a−
√
b| goes to infinity. If

instead qin/qout → 1, then one needs to look at the second order
terms. This is covered by [73] for the 2 symmetric community case,
which shows that for an, bn = Θ(1), exact recovery is solvable if
and only if ((√an −

√
bn)2 − 1) logn+ log logn/2 = ω(1).

• Note that |
√
a−
√
b| >

√
2 can be rewritten as a+b

2 > 1 +
√
ab and

recall that a+b
2 > 2 is the connectivity requirement in SSBM. As

expected, exact recovery requires connectivity, but connectivity is
not sufficient. The extra term

√
ab is the ‘over-sampling’ factor

needed to go from connectivity to exact recovery, and the connec-
tivity threshold can be recovered by considering the case where



4.1. Warm up: genie-aided hypothesis test 41

b = 0. An information-theoretic interpretation of Theorem 4.1 is
also discussed in Section 7.1.

4.1 Warm up: genie-aided hypothesis test

Before discussing exact recovery in the SBM, we discuss a simpler
problem which will turn out to be crucial to understanding exact
recovery. Namely, exact recovery with a genie that reveals all the
vertices labels except for a few. By ‘a few’ we really mean here one or
two. If one works with the strictly balanced model for the community
prior, then it is not interesting to reveal all vertices but a single one,
as this one is forced to take the value of the community that does not
have exactly n/2 vertices. In this case one should isolate two vertices.
If one works with the Bernoulli model for the community prior, then
one can isolate a single vertex and it is already non-trivial to decide for
the labelling of that vertex given the others.

To further clean up the problem, assume for now that we have a
single vertex (say vertex 0) that needs to be labelled, with n/2 vertices
revealed in each community, i.e., assume that we have a model with
two communities of size exactly n/2 and an extra vertex that can be in
each community with probability 1/2.

To minimize the probability of error for this vertex we need to use
the MAP estimator that picks u maximizing

P{X0 = u|G = g,X∼0 = x∼0}. (4.1)

Note that the above probability depends only on the number of edges
that vertex 0 has with each of the two communities; denoting by N1
and N2 these edge counts, we have

P{X0 = u|G = g,X∼1 = x∼1} (4.2)
= P{X0 = u|N1(G,X∼0) = N1(g, x∼0)} (4.3)
∝ P{N1(G,X∼0) = N1(g, x∼0)|X0 = u} (4.4)

This gives an hypothesis test with two hypotheses corresponding to
the two values that vertex 0 can take, with equiprobable prior and
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distributions for the observable N1 = N1(G,X∼0) given by

Genie-aided hypothesis test:

X0 = 1 : N1 ∼ Bin(n/2, qin)
X0 = 2 : N1 ∼ Bin(n/2, qout)

(4.5)

The probability of error of the MAP test is then given by2

Pe := P{Bin(n/2, qin) ≤ Bin(n/2, qout)}. (4.6)

This is the probability that a vertex has more “friends” in the other
community than its own. We have the following key estimate.

Lemma 4.2. Let qin = a log(n)/n, qout = b log(n)/n. The probability
of error of the genie-aided hypothesis test is given by

P{Bin(n/2, qin) ≤ Bin(n/2, qout)} = n
−
(√

a−
√
b√

2

)2
+o(1)

. (4.7)

Remark 4.1. The same equality holds for P{Bin(n/2, qin) + O(1) ≤
Bin(n/2, qout)}; these are all special cases of Lemma 1 in [15], initially
proved in [13].

The next result, which we will prove in the next section, reveals why
this hypothesis test is crucial.

Theorem 4.3. Exact recovery in SSBM(n, a log(n)/n, b log(n)/n) issolvable if nPe → 0
unsolvable if nPe →∞.

(4.8)

In other words, when the probability of error of classifying a single
vertex when all others are revealed scales sublinearly, one can classify
all vertices correctly whp, and when it scales supperlinearly, one cannot
classify all vertices correctly whp.

4.2 The information-theoretic threshold

In this section, we establish the information-theoretic threshold for
exact recovery in the two-community symmetric SBM with the uniform

2Ties can be broken arbitrarily; assume that an error is declared in case of ties
to simplify the expressions.
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prior. That is, we assume that the two communities have size exactly
n/2, where n is even, and are uniformly drawn with that constraint.

Recall that the MAP estimator for this model picks a min-bisection
(see Section 3.1), i.e., a partition of the vertices in two balanced groups
with the least number of crossing edges (breaking ties arbitrarily). We
will thus investigate when this estimator succeeds/fails in recovering
the planted partition. Recall also that we work in the regime where

qin = a
logn
n

, qout = b
logn
n

(4.9)

where the logarithm is in natural base, a, b are two positive constants.

4.2.1 Converse

First recall that the term ‘converse’ is commonly used in information
theory to refer to the impossibility part of a result, i.e., when exact
recovery cannot be solved in this case. Note next that exact recovery
cannot be solved in a regime where the graph is disconnected with high
probability, because two disconnected components cannot be correctly
labelled with a probability tending to one. So this gives us already a
simple condition:

Lemma 4.4 (Disconnectedness). Exact recovery is not solvable if
a+ b

2 < 1. (4.10)

Proof. Under this condition, the graph is disconnected with high prob-
ability [76].

As we will see, this condition is not tight and exact recovery requires
more than connectivity:

Theorem 4.5. Exact recovery is not solvable if
a+ b

2 < 1 +
√
ab ⇐⇒ |

√
a−
√
b| <

√
2. (4.11)

We will now describe the main obstruction for exact recovery. First
assume without loss of generality that the planted community is given
by

x0 = (1, . . . , 1, 2, . . . , 2), (4.12)
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with resulting communities

C1 = [1 : n/2], C2 = [n/2 : n], (4.13)

and let

G ∼ PG|X(·|x0) (4.14)

be the SBM graph generated from this planted community assignment.

Definition 4.1. We define the set of bad pairs of vertices by

B(G) := {(u, v) : u ∈ C1, v ∈ C2, PG|X(G|x0) ≤ PG|X(G|x0[u↔ v])},
(4.15)

where x0[u↔ v] denotes the vector obtained by swapping the values of
coordinates u and v in x0.

Lemma 4.6. Exact recovery is not solvable if B(G) is non-empty with
non-vanishing probability.

Proof. If there exists (u, v) in B(G), we can swap the coordinates u and
v in x0 and increase the likelihood of the partition, thus obtaining a
different partition than the planted one that is as likely as the planted
one, and thus a probability of error of at least 1/2.

We now examine the condition PG|X(G|x0) ≤ PG|X(G|x0[u ↔ v]).
This is a condition on the number of edges that vertex u and v have in
each of the two communities. First note that an edge between vertex u
and v stays in the cut if the two vertices are swapped. So the likelihood
can only vary based on the number of edges that u has in its community
and in the other community ignoring v, and similarly for v.

Definition 4.2. For a vertex u, define d+(u) and d−(u) as the number
of edges that u has in its own and other community respectively. For
vertices u and v in different communities, define d−(u\v) as the number
of edges that a vertex u has in the other community ignoring vertex v.

We then have

PG|X(G|x0) ≤ PG|X(G|x0[u↔ v]) (4.16)
⇐⇒ d+(u) + d+(v) ≤ d−(u \ v) + d−(v \ u). (4.17)
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We can now define the set of bad vertices (rather than bad pairs) in
each community.

Definition 4.3.

Bi(G) := {u : u ∈ Ci, d+(u) ≤ d−(u)− 1}, i = 1, 2. (4.18)

Lemma 4.7. If B1(G) is non-empty with probability 1/2 + Ω(1), then
B(G) is non-empty with non-vanishing probability.

Proof. If u ∈ C1 and v ∈ C2 are such that d+(u) ≤ d−(u) − 1 and
d+(v) ≤ d−(v)− 1, then d+(u) + d+(v) ≤ d−(u) + d−(v)− 2, and since
d−(u) ≤ d−(u\v)+1, this implies d+(u)+d+(v) ≤ d−(u\v)+d−(v \u).
Therefore

P{∃(u, v) ∈ B(G)} ≥ P{∃u ∈ B1(G),∃v ∈ B2(G)}. (4.19)

Using the union bound and the symmetry in the model, we have

P{∃u ∈ B1(G),∃v ∈ B2(G)} ≥ 2P{∃u ∈ B1(G)} − 1. (4.20)

We can now see the theorem’s bound appearing: the probability
that a given vertex is bad is essentially the genie-aided hypothesis

test of previous section, which has a probability of n
−
(√

a−
√
b√

2

)2
+o(1)

,
and there are order n vertices in each community, so under “approx-
imate independence,” there should exists a bad vertex with proba-

bility n
1−
(√

a−
√
b√

2

)2
+o(1)

which gives the theorem’s bound. We now
handle the “approximate independence” part. Recall that if Z is a
positive random variable with finite variance, P{Z > 0} ≥ (EZ)2/EZ2

since by Cauchy-Schwarz (EZ)2 = (EZ1(Z > 0))2 ≤ EZ2P{Z > 0}.
This also implies P{Z = 0} ≤ Var(Z)/EZ2, or the weaker form
P{Z = 0} ≤ Var(Z)/(EZ)2 (which can also be proved by Markov’s
inequality since P{Z = 0} ≤ P{(Z − EZ)2 ≥ (EZ)2}).

Lemma 4.8. If
√
a−
√
b <
√

2, then

P{∃u ∈ B1(G)} = 1− o(1). (4.21)
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Proof. We have

P{∃u ∈ B1(G)} = 1− P{∀u ∈ C1, u /∈ B1(G)} (4.22)

If the events {u /∈ B1(G)}u∈C1 were pairwise independent, then we
would be done. The technical issue is that for two vertices u and v, the
events are not exactly independent since the vertices can share an edge.
This does not however create significant dependencies. Let

Bu := 1{d+(u) ≤ d−(u)− 1}. (4.23)

By the second moment bound,

P{∀u ∈ C1, u /∈ B1(G)} = P{
n/2∑
u=1

Bu = 0} (4.24)

≤ Var
∑n/2
u=1Bu

(E
∑n/2
u=1Bu)2

(4.25)

thus

P{∃u ∈ B1(G)} ≥ E(
∑n/2
u=1Bu)2

(E
∑n/2
u=1Bu)2

= (4.26)

(n/2)P{B1 = 1}+ (n/2)(n/2− 1)P{B1 = 1, B2 = 1}
((n/2)P{B1 = 1})2 (4.27)

and the last bound tends to 1 if the following three conditions hold

nP{B1 = 1} = ω(1), (4.28)
P{B1 = 1|B2 = 1}

P{B1 = 1} = 1 + o(1). (4.29)

The first condition follows from the genie-aided hypothesis test3 and
reveals the bound in the theorem; the second condition amounts to say
that B1 and B2 are asymptotically independent.

3In this case, one of the two Binomial random variables has n− 1 trails rather
than n, with a trial replace by 1, which makes no difference in the result as mentioned
in Remark 4.1.
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We now show the second condition. We have

P{B1 = 1|B2 = 1} = P{d+(1) ≤ d−(1)− 1|d+(2) ≤ d−(2)− 1}
(4.30)

= P{B(n/2− 2, qin) +B1,2 ≤ B(n/2, qout)− 1 (4.31)
|B′(n/2− 2, qin) +B1,2 ≤ B′(n/2, qout)− 1} (4.32)

where B(m,C) or B′(m,C) denotes a Binomial random variable with
m trials and success probability C, B1,2 is Bernoulli(qin), and the five
different random variables appearing in (4.32) are mutually independent.
Thus,

P{B1 = 1|B2 = 1} (4.33)

=
∑
b=0,1

P{B(n/2− 2, qin) + b ≤ B(n/2, qout)− 1 (4.34)

|B′(n/2− 2, qin) + b ≤ B′(n/2, qout)− 1, B1,2 = b} (4.35)
· P{B1,2 = b|B′(n/2− 2, qin) +B1,2 ≤ B′(n/2, qout)− 1} (4.36)

=
∑
b=0,1

P{B(n/2− 2, qin) + b ≤ B(n/2, qout)− 1} (4.37)

· P{B1,2 = b|B′(n/2− 2, qin) +B1,2 ≤ B′(n/2, qout)− 1}. (4.38)

Let

∆ := B(n/2− 2, qout)−B(n/2− 2, qin)− 1. (4.39)

We have

P{B1,2 = b|B1,2 ≤ ∆} = P{B1,2 = b}P{b ≤ ∆}∑
b=0,1 P{B1,2 = b}P{b ≤ ∆} (4.40)

and since P{B1,2 = 1} ≤ P{B1,2 = 0} = 1 − o(1) and P{1 ≤ ∆} ≤
P{0 ≤ ∆}, we have∑

b=0,1
P{B1,2 = b}P{b ≤ ∆} = P{0 ≤ ∆}(1 + o(1)), (4.41)

P{B1,2 = 0|B1,2 ≤ ∆} = P{B1,2 = 0}(1 + o(1)) = 1 + o(1), (4.42)
P{B1,2 = 1|B1,2 ≤ ∆} = o(1) (4.43)
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Thus

(4.38) = P{0 ≤ ∆}(1 + o(1)) + P{1 ≤ ∆}o(1) = P{0 ≤ ∆}(1 + o(1)).
(4.44)

On the other hand, for a random variable B′ that is Bernoulli(qin) and
independent of ∆, we have

P{B1 = 1} = P{B(n/2− 2, qin) +B′ ≤ B(n/2, qout)− 1} (4.45)
= P{B′ ≤ ∆} = P{0 ≤ ∆}(1 + o(1)) (4.46)

Thus,

P{B1 = 1|B2 = 1}
P{B1 = 1} = 1 + o(1), (4.47)

which concludes the proof.

4.2.2 Achievability

The next result shows that the previous bound is tight.

Theorem 4.9. Exact recovery is solvable if

|
√
a−
√
b| >

√
2. (4.48)

We will discuss the boundary case |
√
a −
√
b| >

√
2 later on (it is

still possible to solve exact recovery in this case as long as both a and b
are non-zero). To prove this theorem, one can proceed with different
approaches:

1. Showing k-swaps are dominated by 1-swaps. The converse shows
that below the threshold, there exists a bad pair of vertices in each
community that can be swapped (and thus placed in the wrong
community) while increasing the likelihood (i.e., reducing the cut).
To show that the min-bisection gives the planted bisection, we
need to show instead that there is no possibility to swap k vertices
from each community and reduce the cut for any k ∈ {1, . . . , n/4}
(we can use n/4 because the communities have size n/2). That is,
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above the threshold,

P{∃S1 ⊆ C1, S2 ⊆ C2 : (4.49)
|S1| = |S2|, d+(S1) + d+(S2) ≤ d−(S1 \ S2) + d−(S2 \ S1)}

(4.50)
= o(1). (4.51)

For T1 ⊆ C1, T2 ⊆ C2 such that |T1| = |T2| = k, define

Pe(k) := P{|d+(T1) + d+(T2) ≤ d−(T1 \ T2) + d−(T2 \ T2)}.
(4.52)

Then, by a union bound,

P{∃S1 ⊆ C1, S2 ⊆ C2 : (4.53)
|S1| = |S2|, d+(S1) + d+(S2) ≤ d−(S1 \ S2) + d−(S2 \ S1)}

(4.54)
= P{∃k ∈ [n/4], S1 ⊆ C1, S2 ⊆ C2 : |S1| = |S2| = k, (4.55)

d+(S1) + d+(S2) ≤ d−(S1) + d−(S2)} (4.56)

≤
n/4∑
k=1

(
n/4
k

)(
n/4
k

)
Pe(k) (4.57)

= (n/4)2Pe(1) +R (4.58)

where R :=
∑n/4
k=2

(n/4
k

)(n/4
k

)
Pe(k). Note that Pe(1) behaves like

the error probability of the genie-aided test squared (we look at
two vertices instead of one), and one can show that the product
n2Pe(1) is vanishing above the threshold. So it remains to show
that the reminder R is also vanishing, and in fact, one can show
that R = O(n2Pe(1)), i.e., the first term (1-swaps) dominates the
other terms (k-swaps). This approached is used in [13].

2. Using graph-splitting. The technique of graph-splitting is developed
in [13, 68] to allow for multi-round methods, where solutions are
successively refined. The idea is to split the graph G into two
new graphs G1 and G2 on the same vertex set, by throwing
each edge independently from G to G1 with probability γ and
keeping the other edges in G2. In a sparse enough regime, such
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as logarithmic degrees, one can further treat the two graphs as
essentially independent SBMs on the same planted community.
Taking γ = log log(n)/ log(n), one obtains for G1 an SBM with
degrees that scale with log log(n), and it is not too hard to show
that almost exact recovery can be solved in such a diverging-degree
regime. One can then use the almost exact clustering obtained on
G1 and refine it using the edges of G2, using a genie-aided test for
each vertex, where the genie is not an exact genie as in Section 4.1,
but an almost-exact genie obtained from G1. One then shows that
the almost-exact nature of the genie does not change the outcome,
and the same threshold emerges. This approach is discussed in
more details in Section 7.1 when we consider exact recovery in
the general SBM.

3. Using the spectral algorithm. While it is not necessary to use an
efficient algorithm to establish the information-theoretic threshold,
the spectral algorithm offers a nice algebraic intuition to the
problem. This approach is discussed in detail in next section.

4.3 Achieving the threshold

4.3.1 Spectral algorithm

In this section, we show that the vanilla spectral algorithm discussed in
Section 3.2 achieves the exact recovery threshold. The proof is based on
[15]. Recall that the algorithm is a relaxation of the min-bisection, chang-
ing the integral constraint on the community labels to an Euclidean-
norm constraint. This suggest that taking the second largest eigenvector
of A, i.e., the eigenvector corresponding to the second largest eigenvalue
of A, and rounding it, gives a plausible reconstruction. Techniques from
random matrix theory are naturally relevant here, as used in various
works such as [155, 132, 136, 154, 164, 144] and references therein.

For the rest of the section, we write p := qin and q := qout for
simplicity. Denote by A′ the adjacency matrix of the graph with self-
loops added with probability p for each vertex. Therefore,

EA′ = n
p+ q

2 φ̄1φ̄
t
1 + n

p− q
2 φ̄2φ̄

t
2 (4.59)
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where

φ̄1 = 1n/
√
n, (4.60)

φ̄2 = [(−1)1{X1=1}, . . . , (−1)1{Xn=1}]/
√
n. (4.61)

In words, φ̄2 is a vector whose signs indicate the assignment of X. We
will work with the “centered” adjacency matrix4 which we denote by A
in this section (with an abuse of notation compared to previous sections)
where we subtract the top expected eigenvector:

A := A′ − np+ q

2 φ̄1φ̄
t
1. (4.62)

The slight advantage is that A is now rank 1 in expectation:

Ā := EA = n
p− q

2 φ̄2φ̄
t
2 (4.63)

= λ̄φ̄φ̄t (4.64)

where we renamed

λ̄ := (a− b) log(n)
2 (4.65)

φ̄ := φ̄2 (4.66)

We now want to show that the top eigenvector φ of A has all its
components aligned with φ̄ in terms of signs (up to a global flip). Define,
for i ∈ [n],

Xspec(i) =

1 if φ(i) ≥ 0,
2 if φ(i) < 0.

(4.67)

Theorem 4.10. The spectral algorithm that outputs Xspec solves exact
recovery when

|
√
a−
√
b| >

√
2. (4.68)

Note that the algorithm runs in polynomial time in n, at most n3

counting loosely and less using the sparsity of A. Also note that we do
4Strictly speaking, obtaining the centered adjacency matrix requires that p+ q

is known. A better approach is to replace p+ q by an estimate, or use the second
eigenvector of A′ directly as analyzed in [15].
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not have to worry about the case where the resulting community is not
balanced, as this enters the vanishing error probability. Another way to
write the theorem is as follows:

Theorem 4.11. In the regime p = a logn
n , q = b logn

n , a 6= b, a, b > 0,
|
√
a−
√
b| 6=

√
2,

P{Xspec ≡ XMAP} = 1− o(1) whenever P{X ≡ XMAP} = 1− o(1),
(4.69)

i.e., the spectral and MAP estimators are equivalent whenever MAP
succeeds at recovering the true X (we use x ≡ y in the above for x ∈
{y, yc} where yc flips the components of y, due to the usual symmetry).

This an interesting phenomenon that seems to take place for more
than one problem in combinatorial statistics, see for example discussion
in [15].

We now proceed to prove Theorem 4.11. We will break the proof in
several parts. A first important result due to [78] gives a bound on the
norm of A− Ā (see [15] for a proof):

Lemma 4.12. [78] For any a, b > 0, there exist c1, c2 > 0 such that

P{‖A− Ā‖2 ≥ c1

√
log(n)} ≤ c2n

−3. (4.70)

This implies a first reassuring fact, i.e., the first eigenvalue λ of
A is in fact asymptotic to λ̄ in our regime. This follows from the
Courant-Fisher Theorem:

Lemma 4.13 (Courant-Fisher or Weyl’s Theorem). The following holds
surely,

|λ− λ̄| ≤ ‖A− Ā‖2. (4.71)

This implies that λ ∼ λ̄ with high probability, since λ̄ � log(n).
However, this does not imply anything for the eigenvectors yet. A
classical result to convert bounds on the norm A − Ā to eigenvector
alignments is the Davis-Kahan Theorem. Below we present a user-
friendly version based on the Lemma 3 in [15].
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Theorem 4.14 (Davis-Kahan Theorem). Suppose that H̄ =
∑n
j=1 µ̄j ūj ū

t
j

and H = H̄ + E, where µ̄1 ≥ · · · ≥ µ̄n, ‖ūj‖2 = 1 and E is symmetric.
Let uj be an eigenvector ofH corresponding to its j-th largest eigenvalue,
and ∆ = min{µ̄j−1 − µ̄j , µ̄j − µ̄j+1}, where we define µ̄0 = +∞ and
µ̄n+1 = −∞. We have

min
s=±1

‖suj − ūj‖2 .
‖E‖2

∆ . (4.72)

In addition, if ‖E‖2 ≤ ∆, then

min
s=±1

‖suj − ūj‖2 .
‖Eūj‖2

∆ , (4.73)

where both . only hide absolute constants.

Corollary 4.15. For any a, b > 0, with high probability,

|〈φ, φ̄〉| = 1− o(1). (4.74)

While this gives a strong alignment, it does not give any result
for exact recovery. One can use a graph-splitting step to leverage this
result into an exact recovery result by using a cleaning phase on the
eigenvector (see item 2 in Section 4.2.2). Interestingly, one can also
proceed directly using a sharper spectral analysis, and show that the
sign of the eigenvector φ directly recovers the communities. This was
done in [15] and is covered below.

A first attempt would be to show that φ and φ̄ are close enough in
each component, i.e., that with high probability,

|φi − φ̄i|
?
< |φ̄i|, ∀i ∈ [n] (4.75)

⇐⇒ ‖φ− φ̄‖∞
?
< 1/

√
n (4.76)

or ‖φ − (−φ̄)‖∞
?
< 1/

√
n since we must allow for a global flip due to

symmetry. This would imply that rounding the components of φ to
their signs would produce with high probability the same signs as φ̄ (or
−φ̄), which solves exact recovery.

Unfortunately the above inequality does not hold all the way down
to the exact recovery threshold, which makes the problem more difficult.
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However, note that it is not necessary to have (4.75) in order to obtain
the correct sign by rounding φ: one can have a large gap for |φi − φ̄i|
which still produces the good sign as long as this gap in “on the right
side," i.e., φi can be much larger than φ̄i if φ̄i is positive and φi can be
much smaller than φ̄i if φ̄i is negative (or the reverse statement for −φ̄).
This is illustrated in Figure 4.1 and is shown below.
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Figure 4.1: For the original uncentered adjacency matrix A′, the plot shows the
second eigenvector u2 and its first-order approximation in SBM. For the centered
adjacency matrix as analyzed here, the top eigenvector shows the same phenomenon.
The left plot: The histogram of coordinates of

√
nu2 computed from a single realiza-

tion of adjacency matrix A, where n is 5000, a is 4.5 and b is 0.25. Under this regime,
exact recovery is expected, and indeed coordinates form two well-separated clusters.
The right plot: boxplots showing three different distance/errors (up to sign) over 100
realizations. (1)

√
n ‖u2 − u∗2‖∞, (2)

√
n ‖Au∗2/λ∗2 − u∗2‖∞, (3)

√
n ‖u2 −Au∗2/λ∗2‖∞.

These boxplots show that Au∗2/λ∗2 is a good approximation of u2 under `∞ norm
even though ‖u2 − u∗2‖∞ may be large.

The main idea is to show that the components of φ are well-
approximated by the components of Aφ̄/λ̄ (rather than φ̄), i.e.,

φ = Aφ/λ ≈ Aφ̄/λ̄ = φ̄+ (A− EA)φ̄/λ̄. (4.77)

Formally:

Theorem 4.16. Let a > b > 0. There exist constants C and c such that
for sufficiently large n,

P
(

min
s=±1

‖sφ−Aφ̄/λ̄‖∞ ≤
c√

n log logn

)
≥ 1− Cn−2. (4.78)
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Note that Aφ̄ is familiar to us: it contains exactly the random
variable entering the error event for the genie-aided hypothesis test in
(4.6), i.e.,

√
n (Aφ̄)isgn(φ̄i)

(d)= Bin(n/2, p)− Bin(n/2, q). (4.79)

This is because

√
n (Aφ̄)isgn(φ̄i) =

√
n (A′φ̄)isgn(φ̄i) =

n∑
j=1

A′ijsgn(φ̄iφ̄j), (4.80)

and each A′ij is an independent Bernoulli variable whose success prob-
ability depends on whether Xi = Xj . We know from Lemma 4.2 has
probability n−1−Ω(1) to be negative (i.e., to move to “the other side”)
above the exact recovery threshold. Since Aφ̄ is normalized by λ̄, we
will use the stronger version of Lemma 4.2 mentioned in Remark 4.1.
We now give the proof for Theorem 4.10, and then proceed to proving
Theorem 4.16.

Proof of Theorem 4.10. Define the following events:

E1 :=
{

min
i∈[n]

(Aφ̄/λ̄)isgn(φ̄i) ≥
2ε

(a− b)
√
n

}
(4.81)

E2 :=
{

min
s=±1

‖sφ−Aφ̄/λ̄‖∞ ≤
c√

n log logn

}
. (4.82)

Note that Theorem 4.16 says that E2 takes place with high probability.
Therefore if E1 takes place with high probability as well, the event

sgn(φ) = ±sgn(φ̄) (4.83)

must take place with high probability, because entrywise (up to a global
flip) φ is at distance O( 1√

n log logn) from Aφ̄/λ̄, and Aφ̄/λ̄ is at distance
Ω( 1√

n
) from the origin, so the noise that takes φ̄ to φ cannot make φ

across the origin and change sign since |φ̄i| = 1/
√
n (though it could

take φ far on the other side).
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We now show that E1 takes place with high probability. We have

P (E1) (4.84)

≥ 1−
n∑
i=1

P
(

(Aφ̄/λ̄)isgn(φ̄i) <
2ε

(a− b)
√
n

)
(4.85)

= 1− nP
(

(Aφ̄/λ̄)1sgn(φ̄1) < 2ε
(a− b)

√
n

)
. (4.86)

When
√
a−
√
b >
√

2, we can choose some ε = ε(a, b) > 0 such that
(
√
a −
√
b)2/2 − ε log(a/b)/2 > 1. Thus from (a strengthening of) the

genie-aided error bound,

P
(
|(Aφ̄/λ̄)1| ≤

2ε
(a− b)

√
n

)
≤ n−(

√
a−
√
b)2/2+ε log(a/b)/2 = n−1−Ω(1)

(4.87)

and therefore,

P (E1) = 1− o(1). (4.88)

We now proceed with the proof of Theorem 4.16.

Proof of Theorem 4.16. To simplify the notation, assume that φ is cho-
sen such that φtφ̄ ≥ 0, so that we can remove the sign variable s. We
want to obtain a bound on

‖φ−Aφ̄/λ̄‖∞ = ‖φ−Aφ/λ̄+Aφ/λ̄−Aφ̄/λ̄‖∞ (4.89)
≤ ‖φ−Aφ/λ̄‖∞ + ‖Aφ/λ̄−Aφ̄/λ̄‖∞ (4.90)

= |λ̄− λ|
λ̄
‖φ‖∞ + 1

λ̄
‖A(φ− φ̄)‖∞. (4.91)

Let us define the event

E := {‖A− Ā‖2 ≤ c1

√
log(n)}. (4.92)

Recall that Weyl’s theorem gives |λ− λ̄| ≤ ‖A− Ā‖2, and thus under
the event E , which takes place with high probability by Lemma 4.12, we
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must have |λ− λ̄| = O(
√

log(n)). Given that λ̄ = Θ(log(n)), we must
have under E

λ̄/2 ≤ λ ≤ 2λ̄ (4.93)

and a fortiori |λ̄−λ|
λ̄

= O(1/
√

log(n)). Therefore, under E , we have that
the first term in (4.91) is bounded as

|λ̄− λ|
λ̄
‖φ‖∞ ≤ O(‖φ‖∞/

√
log(n)). (4.94)

Before worrying about estimating ‖φ‖∞, we move to the second term in
(4.91). One difficulty in estimating ‖A(φ− φ̄)‖∞ is that A and (φ− φ̄)
are dependent since φ is an eigenvector of A. Thus, to bound the m-th
component of A(φ− φ̄), namely Am(φ− φ̄), where Am is the m-row of A,
we cannot directly use a concentration result that applies to expressions
of the kind Amw where w is an independent test vector. To decouple
the dependencies, we use a leave-one-out technique, as used for example
in [34], [100], and [168].

Define n auxiliary matrices {A(m)}nm=1 ⊆ Rn×n as follows: for any
m ∈ [n], let

(A(m))ij = Aijδ{i 6=m,j 6=m}, ∀i, j ∈ [n]

where δA is the indicator function on the event A. Therefore, A(m) is
obtained from A by zeroing out the m-th row and column. Let φ(m)

be the leading eigenvector of A(m). Again, φ(m) is chosen such that
(φ̄)tφ(m) ≥ 0. Denoting the mth row vector as Am, we can write

(A(φ− φ̄))m = Am(φ− φ̄) = Am(φ− φ(m)) +Am(φ(m) − φ̄) (4.95)

and thus

|(A(φ− φ̄))m| ≤ |Am(φ− φ(m))|+ |Am(φ(m) − φ̄)| (4.96)
≤ ‖Am‖2‖φ− φ(m)‖2 + |Am(φ(m) − φ̄)| (4.97)
≤ ‖A‖2→∞‖φ− φ(m)‖2︸ ︷︷ ︸

T1

+ |Am(φ(m) − φ̄)|︸ ︷︷ ︸
T2

(4.98)

where we used the Cauchy-Schwarz Inequality in the first inequality,
and ‖A‖2→∞ := maxm∈[n] ‖Am‖2 in the second inequality. The point
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of introducing A(m) is that for the second term in (4.98), we have that
Am and (φ(m)− φ̄) are now independent. Thus this term can be tackled
with concentration results. We now handle both terms in (4.98). Recall
the definition of the event E in (4.92).

Claim 1: Under E, T1 = ‖A‖2→∞‖φ− φ(m)‖2 = O(
√

log(n)‖φ‖∞).
To prove this claim, assume that E takes place. To bound ‖u−φ(m)‖2,

we will view A(m) as a perturbation of A and apply the Davis-Kahan
Theorem (Theorem 4.14).

We first show that

E ⊆
{
‖φ(m) − φ‖2 = min

s=±1
‖sφ(m) − φ‖2

}
. (4.99)

Note that

‖A(m) −A‖2 ≤ ‖A(m) −A‖F ≤
√

2‖A‖2→∞, (4.100)

and

‖A‖2→∞ ≤ ‖A− Ā‖2 + ‖Ā‖2→∞ .
√

logn+ logn√
n

.
√

logn. (4.101)

Therefore, (4.100) and (4.101) imply that

‖A(m) − Ā‖2 ≤ ‖A(m) −A‖2 + ‖A− Ā‖2 .
√

logn. (4.102)

By definition we have (φ̄)Tφ ≥ 0 and (φ̄)Tφ(m) ≥ 0. Using Theorem
4.14, we have

‖φ(m) − φ̄‖2 = min
s=±1

‖sφ(m) − φ̄‖2 . ‖A(m) − Ā‖2/λ̄ . 1/
√

logn,

(4.103)
‖φ− φ̄‖2 = min

s=±1
‖sφ− φ̄‖2 . ‖A− Ā‖2/λ̄ . 1/

√
logn. (4.104)

and thus

‖φ(m) − φ‖2 . 1/
√

logn. (4.105)

When n is large enough, we have that ‖φ(m) − φ‖2 ≤ 1, which implies
(4.99) since {±1} 3 s 7→ ‖sφ(m) − φ‖2 = 2− s〈φ(m), φ〉 has its minima
below 1 for s = 1.
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By Weyl’s inequality, maxi |λi(A)− λi(Ā)| ≤ ‖A− Ā‖2. Recall that
we are under E , thus

λ1(A)− λ2(A) ≥ λ̄− 2‖A− Ā‖2 & λ̄ & logn. (4.106)

Moreover from (4.102) we have that for n large enough,

‖A(m) −A‖2 < λ1(A)− λ2(A). (4.107)

Therefore (4.107) satisfies the conditions for Theorem 4.14. Com-
bined with (4.99), this yields

‖φ(m) − φ‖2 = min
s=±1

‖sφ(m) − φ‖2 .
‖(A(m) −A)φ‖2
λ1(A)− λ2(A) (4.108)

.
‖(A−A(m))φ‖2

λ̄
. (4.109)

Note that ((A−A(m))φ)m = Amφ = λφm and ((A−A(m))φ)i = Aimφm
for i 6= m. By (4.93) and (4.101),

‖(A−A(m))φ‖2 =

λ2|φm|2 +
∑
i 6=m

A2
imφ

2
m

1/2

(4.110)

≤ |φm|
√
λ2 + ‖A‖22→∞ . |φm|λ̄. (4.111)

Using this with (4.109), we have that there exists C1 > 0 such that

‖φ(m) − φ‖2 ≤ C1|φm| ≤ C1‖φ‖∞, ∀m ∈ [n]. (4.112)

Finally, from (4.101) and (4.112), there exists C2 > 0 such that

T1 = ‖A‖2→∞‖φ− φ(m)‖2 ≤ C2

√
log(n)‖φ‖∞, (4.113)

which proves Claim 1.
Claim 2: Under E, T2 = |Am(φ(m)−φ̄)| = O(log(n)‖φ‖∞/ log log(n)).
To prove this claim, we work again under E and use a concentration

bound. This is where we exploit the independence between φ(m)− φ̄ and
{Ami}ni=1 to control |Am(φ(m)−φ̄)|. From concentration bounds, namely
taking w = φ(m) − φ̄, {Xi}ni=1 = {A′mi}ni=1 (note that Ami − Āmi =
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A′mi − EA′mi), p = (a ∨ b) logn
n and α = 3/(a ∨ b) in Lemma 10 from

[15], we get

P

∣∣∣∣∣
n∑
i=1

(Ami − Āmi)(φ(m) − φ̄)i

∣∣∣∣∣ < [2(a ∨ b) + 3] logn · ‖φ(m) − φ̄‖∞
1 ∨ log

(√
n‖φ(m)−φ̄‖∞
‖φ(m)−φ̄‖2

)


> 1− 2n−3.

Had we applied Bernstein’s inequality directly, we would get a loose
upper bound that contains the term logn · ‖φ(m) − φ̄‖∞ without the
denominator, which turns out to be critical for the analysis. In fact,
as we show below, the denominator will give us an additional log logn
factor.

For a scalar C3, define

E(m)
0 :=

{
∣∣∣Am(φ(m) − φ̄)

∣∣∣ < C3 logn√
n

(‖φ(m) − φ̄‖2 +
√
n‖φ(m) − φ̄‖∞

1 ∨ log
(√

n‖φ(m)−φ̄‖∞
‖φ(m)−φ̄‖2

))},

(4.114)

E0 :=
n⋂

m=1
E(m)

0 . (4.115)

Since∣∣∣∣∣
n∑
i=1

Āmi(φ(m) − φ̄)i

∣∣∣∣∣ ≤ ‖Ā‖2→∞‖φ(m) − φ̄‖2 .
logn√
n
‖φ(m) − φ̄‖2,

there exists a choice of C3 > 0 in the definition of E(m)
0 such that

P(E(m)
0 ) > 1− 2n−3, (4.116)

and from the union bound,

P(Ec0) ≤ 2n−2. (4.117)

From (4.105), we have

E ⊆
n⋂

m=1

{
‖φ(m) − φ̄‖2 ≤ C4/

√
logn

}
(4.118)
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for some constant C4 ≥ 1. Define γ = C4/
√

logn, which is smaller than
1 for large enough n, and define function h(z) = [1 ∨ log(1/z)]−1 where
z ∈ (0, 1]. It is easily checked that h(z) is non-decreasing and h(z)/z is
non-increasing, so h(z) ≤ h(γ) ∨ h(γ)z/γ. Setting z = ‖φ(m)−φ̄‖2√

n‖φ(m)−φ̄‖∞
, we

can use this inequality to simplify the bound in (4.114) and obtain

E ∩ E(m)
0 ⊆

∣∣∣Am(φ(m) − φ̄)
∣∣∣ < 2C3 logn

‖φ(m) − φ̄‖∞ ∨ 1√
n

log(1/γ)

 .
Note that under E , (4.112) leads to

‖φ(m) − φ̄‖∞ ≤ ‖φ(m) − φ‖∞ + ‖φ− φ̄‖∞
≤ ‖φ(m) − φ‖2 + ‖φ‖∞ + ‖φ̄‖∞

≤ (C1 + 1)‖φ‖∞ + 1√
n
≤ (C1 + 2)‖φ‖∞,

where we use ‖φ‖∞ ≥ 1/
√
n. Hence, recalling that γ = C4/

√
logn, we

have that under E ∩ E0 there exists C5 > 0 such that∣∣∣Am(φ(m) − φ̄)
∣∣∣ < C5 log(n)‖φ‖∞

log logn , ∀m ∈ [n], (4.119)

which implies Claim 2.
Let us use now plug the bounds from Claim 1 and 2 in (4.98), which

gives under E ∩ E0,

1
λ̄
‖A(φ− φ̄)‖∞ .

‖φ‖∞
log log(n) . (4.120)

Putting this back in (4.91) together with (4.94), we obtain under E ∩E1,

‖φ−Aφ̄/λ̄‖∞ .
‖φ‖∞

log log(n) . (4.121)

We are now left to show that ‖φ‖∞ = O(1/
√
n), which implies the

theorem’s statement since E ∩E0 takes place with probability 1−Ω(n−2).
Claim 3: ‖φ‖∞ = O(1/

√
n).

To prove this claim, note that from (4.121) and ‖φ‖∞ ≤ ‖φ −
Aφ̄/λ̄‖∞ + ‖Aφ̄/λ̄‖∞, we have ‖φ‖∞ . ‖Aφ̄‖∞/λ̄. Hence it remains to
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show that ‖Aφ̄‖∞ . logn√
n
. Observe that |Amφ̄| ≤ ‖φ̄‖∞

∑n
i=1 |Ami| =∑n

i=1 |Ami|/
√
n and

|Ami| =
∣∣∣∣A′mi − a− b

2n logn
∣∣∣∣ =

 |1− a−b
2n logn|, if A′mi = 1

|a−b2n logn|, if A′mi = 0

≤ 2A2
mi + |a− b|2n logn,

where the last inequality holds for n large enough. Moreover from
(4.101),
n∑
i=1
|Ami| ≤

n∑
i=1

2A2
mi +

|a− b|
2 logn ≤ 2‖A‖22→∞+ |a− b|2 logn . logn.

Therefore,
∥∥∥Aφ̄∥∥∥

∞
. logn√

n
, which proves Claim 3 and the theorem.

4.3.2 SDP algorithm

Recall that an SDP was derived in Section 3.2, lifting the variables
to change the quadratic optimization into a linear optimization, and
removing the rank-one constraint to obtain

X̂sdp(g) = argmax X�0
Xii=1,∀i∈[n]
X1n=0

tr(AX). (4.122)

or the version using the matrix B such that Bij = 1 if there is an edge
between vertices i and j, and Bij = −1 otherwise,

X̂SDP (g) = argmax X�0
Xii=1,∀i∈[n]

tr(BX). (4.123)

The dual of this SDP is given by

min
Yij=0∀1≤i 6=j≤n

Y�B

tr(Y ). (4.124)

Since the dual minimization gives an upper-bound on the primal
maximization, a solution is optimal if it makes the dual minimum
match the primal maximum. The Ansatz here consists in taking Y =
2(Din − Dout) + In as a candidate for the diagonal matrix Y , which
gives the primal maxima. It we thus have Y � B(g), this is a feasible
solution for the dual, and we obtain a dual certificate. The following is
shown in [13] based on this reasoning.
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Definition 4.4. Define the SBM Laplacian for G drawn under the
symmetric SBM with two communities by

LSBM = D(Gin)−D(Gout)−A, (4.125)

where D(Gin) (D(Gout)) are the degree matrices of the subgraphs of G
containing only the edges inside (respectively across) the clusters, and
A is the adjacency matrix of G.

Theorem 4.17. [13] The SDP solves exact recovery in the symmetric
SBM with 2 communities if 2LSBM + 11t + In � 0 and λ2(2LSBM + 11t +
In) > 0.

The second requirement above is used for the uniqueness of the
solution. This condition is verified all the way down to the exact recovery
threshold. In [13], it is shown that this condition holds in a regime that
does not exactly match the threshold, off roughly by a factor of 2 for
large degrees. This gap is closed in [159, 5], which show that SDPs
achieve the exact recovery threshold in the symmetric case. Results
for unbalanced communities were also obtained in [141], although it
is still open to achieve the general CH threshold with SDPs. Many
other works have studied SDPs for the stochastic block model, we refer
to [1, 13, 5, 22, 159, 126, 141] for further references. In particular,
[126] shows that SDPs can approach the threshold for weak recovery in
the two-community SSBM arbitrarily close when the expected degrees
diverge. Recently, [36] also studied an Ising model with block structure,
obtaining results for exact recovery and SDPs.



5
Weak recovery for two communities

The focus on weak recovery, also called detection, was initiated1 with
[2, 63]. Note that weak recovery is typically investigated in SBMs where
vertices have constant expected degree, as otherwise the problem can
trivially be resolved by exploiting the degree variations.

The following conjecture was stated in [63] based on deep but non-
rigorous statistical physics arguments, and is responsible in part for the
resurgent interest in the SBM:

Conjecture. [63, 130] Let (X,G) be drawn from SSBM(n, k, a/n, b/n),
i.e., the symmetric SBM with k communities, probability a/n inside the
communities and b/n across. Define SNR = (a−b)2

k(a+(k−1)b) . Then,

(i) For any k ≥ 2, it is possible to solve weak recovery efficiently if
and only if SNR > 1 (the Kesten-Stigum (KS) threshold);

(ii) If2 k ≥ 4, it is possible to solve weak recovery information-
theoretically (i.e., not necessarily in polynomial time in n) for

1The earlier work [145] also considers detection in the SBM.
2The conjecture states that k = 5 is necessary when imposing the constraint that

a > b, but k = 4 is enough in general.
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some SNR strictly below 1.3

It was proved in [122, 128] that the KS threshold can be achieved
efficiently for k = 2, and [130] shows that it is impossible to detect
below the KS threshold for k = 2. Further, [162] extends the results for
k = 2 to the case where a and b diverge while maintaining the SNR
finite. So weak recovery is closed for k = 2 in SSBM.

Theorem 5.1. [Converse in [130], achievability in [122, 128]] Weak
recovery is solvable (and efficiently so) in SSBM(n, 2, a/n, b/n) when
a, b = O(1) if and only if (a− b)2 > 2(a+ b).

Theorem 5.2. [162] Weak recovery is solvable (and efficiently so) in
SSBM(n, 2, an/n, bn/n) when an, bn = ω(1) and (an − bn)2/(2(an +
bn))→ λ if and only if λ > 1.

Theorem 5.2 is discussed in Section 6 in the context of partial
recovery. Here we discuss Theorem 5.1. An additional result is obtained
in [130], showing that when SNR ≤ 1, the symmetric SBM with two
communities is in fact contiguous to the Erdős-Rényi model with edge
probability (a + b)/(2n), i.e, distinguishability is not solvable in this
case. Contiguity is further discussed in Section 8.

For several communities, it was also shown in [42] that for SBMs
with multiple communities that are balanced and that satisfy a certain
asymmetry condition (i.e., the requirement that µk is a simple eigenvalue
in Theorem 5 of [42]), the KS threshold can be achieved efficiently. The
achievability parts of previous conjecture for k ≥ 3 are resolved in [17,
20]. We discuss these in Section 7.2.

Note that the terminology ‘KS threshold’ comes from the reconstruc-
tion problem on trees [105, 156, 74, 124], referring to the first paper by
Kesten-Stigum (KS). A transmitter broadcasts a uniform bit to some
relays, which themselves forward the received bits to other relays, etc.
The goal is to reconstruct the root bit from the leaf bits as the depth
of the tree diverges. In particular, for two communities, [130] makes
a reduction between failing in the reconstruction problem in the tree

3[63] made in fact a more precise conjecture, stating that there is a second
transition below the KS threshold for information-theoretic methods when k ≥ 4,
whereas there is a single threshold when k = 3.
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setting and failing in weak recovery in the SBM. This is discussed in
more details in next section. The fact that the reconstruction problem
on tree also gives the positive behavior for efficient algorithms requires
a more involved argument, as discussed in Section 5.3.

Achieving the KS threshold raises an interesting challenge for com-
munity detection algorithms, as standard clustering methods fail to
achieve the threshold, as discussed in Section 5.3.1. This includes spec-
tral methods based on the adjacency matrix or standard Laplacians, as
well as SDPs. For standard spectral methods, a first issue is that the
fluctuations in the node degrees produce high-degree nodes that disrupt
the eigenvectors from concentrating on the clusters. A classical trick is
to suppress such high-degree nodes, by either trimming or shifting the
matrix entries [103, 112, 2, 154, 85, 138], throwing away some informa-
tion, but this does not suffice to achieve the KS threshold [104]. SDPs
are a natural alternative, but they also appear to stumble before the KS
threshold [85, 126, 125], focusing on the most likely rather than typical
clusterings. As shown in [122, 128, 42, 17], approximate BP algorithms
or spectral algorithms on more robust graph operators instead allow us
to achieve the KS threshold.

5.1 Warm up: broadcasting on trees

As for exact recovery, we start with a simpler problem that will play a
key role in understanding weak recovery. The idea is similar to that of
the exact recovery warm up, except that we do not reveal only the direct
neigbors of a vertex, but the neighbors at a small depth. In particular, at
depth (1/2− ε) log(n)/ log((a+ b)/2), the SBM neigborhood of a vertex
can be coupled with a Galton-Watson tree, and so we will consider trees
for the warm up. In contrast to exact recovery, we will not be interested
in reconstructing the isolated vertex with probability tending to 1, but
with probability greater than 1/2. This is known in the literature as
the reconstruction problem for broadcasting on trees. We refer to [74]
for a survey on this topic.

The problem consists of broadcasting a bit from the root of a tree
down to its leaves, and trying to guess back this bit from the leaf bits
at large depth. First consider the case of a deterministic tree with fixed
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degree c+ 1, i.e., each vertex has exactly c descendants (note that the
root has degree c). Assume that on each branch of the tree the incoming
bit is flipped with probability ε ∈ [0, 1], and that each branch flips
independently. Let X(t) be the bits received at depth t in this tree, with
X(0) being the root bit, assumed to be drawn uniformly at random in
{0, 1}.

We now define weak recovery in this context. Note that E(X(0)|X(t))
is a random variable that gives the probability that X(0) = 1 given the
leaf bits, as a function of the leaf bits X(t). If this probability is equal
to 1/2, then the leaf bits provide no useful information about the root,
and we are interested in understanding whether this takes place in the
limit of large t or not.

Definition 5.1. Weak recovery (also called reconstruction) is solvable
in broadcasting on a regular tree if limt→∞ E|E(X(0)|X(t))− 1/2| > 0.
Equivalently, weak recovery is solvable if limt→∞ I(X(0);X(t)) > 0,
where I is the mutual information.

Note that the above limits exist due to monotonicity arguments.
The first result on this model is due to Kesten-Stigum:

Theorem 5.3. In the tree model with constant degree c and flip proba-
bility ε,

• [105] weak recovery is solvable if c(1− 2ε)2 > 1,

• [39, 156] weak recovery is not solvable4 if c(1− 2ε)2 ≤ 1.

In fact, one can show a seemingly stronger result where weak recovery
fails in the sense that, when c(1− 2ε)2 ≤ 1,

lim
t→∞

E(X(0)|X(t)) = 1/2 a.s. (5.1)

Thus weak recovery in the tree model is solvable if and only if c(1−2ε)2 >

1, which gives rise to the so-called Kesten-Stigum (KS) threshold in
this tree context. Note that [74] further shows that the KS threshold is
sharp for “census reconstruction,” i.e., deciding about the root-bit by

4The proof from [156] appeared first in 1996.
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taking majority on the leaf-bits, which is shown to still hold in models
such as the multicolor Potts model where the KS threshold is no longer
sharp for reconstruction.

To see this result, let us compute the moments of the number of
0-bits minus 1-bits at generation t. First, consider ±1 variables rather
than bits, i.e., redefine X(t)

i ← (−1)X
(t)
i , and consider the difference

variable:

∆(t) =
∑
i∈[ct]

X
(t)
i . (5.2)

Note that, if there are x bits of value 1 and y bits of value −1 at
generation t, then ∆(t+1) would be the sum of xc Radamacher(1− ε)
and yc Radamacher(ε) (all independent), and since the expectation of
Radamacher(1− ε) is 1− 2ε, we have

E(∆(t+1)|∆(t)) = c(1− 2ε)∆(t). (5.3)

Since X(0) −∆(t) −∆(t+1) forms a Markov chain and E(∆(0)|X(0)) =
X(0),

E(∆(t+1)|X(0)) = E(E(∆(t+1)|∆(t))|X(0)) (5.4)
= c(1− 2ε)E(∆(t)|X(0)) (5.5)
= ct+1(1− 2ε)t+1X(0). (5.6)

We now look at the second moment. A direct computation gives

E((∆(t+1))2|∆(t)) = ct+14ε(1− ε) + c2(1− 2ε)2(∆(t))2. (5.7)

Defining the signal-to-noise ratio as SNR =
√
c(1− 2ε) and assuming

that SNR > 1, we have by iteration

E((∆(t+1))2|X(0)) = c2(t+1)(1− 2ε)2(t+1)( 4ε(1− ε)
c(1− 2ε)2 − 1 + 1)(1 + ot(1))

(5.8)

and

Var(∆(t+1)|X(0)) = c2(t+1)(1− 2ε)2(t+1) 4ε(1− ε)
c(1− 2ε)2 − 1(1 + ot(1)).

(5.9)
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Denote now by µ+ the distribution of ∆(t) given that X(0) = 1, and
by µ− the distribution of ∆(t) given that X(0) = −1. We have by
Cauchy-Schwarz,

E(∆(t)|X(0) = 1)− E(∆(t)|X(0) = −1) (5.10)

=
∑
δ

δ(µ+(δ)− µ−(δ)) (5.11)

≤

√√√√∑
δ

(µ+(δ)− µ−(δ))2

µ+(δ) + µ−(δ)

√∑
δ

δ2(µ+(δ) + µ−(δ)) (5.12)

=

√√√√∑
δ

(µ+(δ)− µ−(δ))2

µ+(δ) + µ−(δ)

√
E((∆(t))2|X(0) = 1) + E((∆(t))2|X(0) = −1)

(5.13)

and (trivially)

∑
δ

(µ+(δ)− µ−(δ))2

µ+(δ) + µ−(δ) ≤ ‖µ+ − µ−‖1. (5.14)

Therefore, we have from previous expansions that the total variation
distance between µ+ and µ− is Ω(1), which implies that it is possible
to distinguish between the hypotheses X(0) = 1 and X(0) = −1 with a
probability of error that is 1/2− Ω(1).

Conversely, irrespective of the statistics used, one can show that the
mutual information I(X(0);X(t)) vanishes as t grows if SNR < 1. In
the binary case, it turns out that the mutual information is subadditive
among leaves [156], i.e.,

I(X(0);X(t)) ≤
ct∑
i=1

I(X(0);X(t)
i ) = ctI(X(0);X(t)

1 ). (5.15)

Note that this subadditivity holds in greater generality for the first
layer, i.e., if we have a Markov chain Y1−X−Y2, such as happens when
a root variable X is broadcast on two independent channels producing
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Y1 and Y2, then

I(X;Y1) + I(X;Y2)− I(X;Y1, Y2) (5.16)
= H(Y1)−H(Y1|X) +H(Y2)−H(Y2|X) (5.17)
−H(Y1, Y2) +H(Y1|X) +H(Y2|X) (5.18)
= H(Y1) +H(Y2)−H(Y1, Y2) (5.19)
= I(Y1;Y2) ≥ 0. (5.20)

However, going to depth 2 of the tree, there is no simple inequality as the
above that shows the subadditivity, and in fact, the subadditivity is not
true in general for binary non-symmetric noise or for non-binary labels.
For binary labels and symmetric channels, it is shown in [156] that the
distribution of labels on the tree can be obtained by degradation from a
so-called “stringy tree”, where branches are “detached”, which implies
the inequality.

Further, the channel between X(0) and a one leaf-bit such as X(t)
1

corresponds to t Bernoulli(ε) random variables added, and the mutual
information scales as (1− 2ε)2t,

I(X(0);X(t)
1 ) = O((1− 2ε)2t) (5.21)

which implies with the subadditivity

I(X(0);X(t)) = O(ct(1− 2ε)2t). (5.22)

Therefore, if c(1− 2ε)2 < 1,

I(X(0);X(t)) = o(1)

and the information of the root-bit gets lost in the leaves.
The subadditivity property in (5.15) can also be established for the

Chi-squared mutual information, i.e., using I2(X;Y ) = Dχ2(pX,Y ‖pXpY )
where Dχ2 is the Chi-squared f -divergence with f(z) = (z − 1)2. We
describe here how this can be obtained with an induction on the tree
depth, assuming the following two building blocks:

I2(X(0);Y1, Y2) ≤ I2(X(0);Y1) + I2(X(0);Y2) (5.23)

if Y1 − X(0) − Y2 (i.e., Y1, Y2 are independent conditionally on X(0)

and X(0) is Bernoulli(1/2) as before) and

I2(X(0);Yt) = I2(X(0);Y1)I2(Y1;Yt) (5.24)
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if Y1 is a direct descendant of X(0) and Yt are descendants of Y1 at
depth t (in the broadcasting on trees model). One then obtains the
subadditivity by applying inequality (5.23) to the sub-trees pending at
the root, and equality (5.24) to factor out the first edge on each sub-tree,
reducing the depth by one and allowing for the induction hypothesis.
Interestingly, while the inequality also holds for the mutual information,
the equality does not hold for the mutual information, and can in fact
go in the wrong direction. On the other hand, one has

I2(X(0);X(t)
1 ) = (1− 2ε)2t, (5.25)

and since the Chi-squared mutual information upper-bounds the classical
mutual information for binary inputs, the same threshold of c(1−2ε)2 =
1 is obtained with this argument.

We will soon turn to the connection between the reconstruction on
trees problem and weak recovery in the SBM. It is easy to guess that the
tree will not be a fixed degree tree for us, but the local neighborhood
of a vertex in the SBM, which behaves like a Galton-Watson tree of
Poisson offspring. We first state the above results for Galton-Watson
trees.

Definition 5.2. A Galton-Watson tree with offspring distribution µ

on Z+ is a rooted tree where the number of descendants from each
vertex is independently drawn under the distribution µ. We denote by
T (t) ∼ GW (µ) a Galton-Watson tree with offspring µ and t generations
of descendants, where T (0) is the root vertex.

Define as before X(t) as the variables at generation t obtained from
broadcasting the root-bit on a Galton-Watson tree T (t).

Definition 5.3. Weak recovery is solvable in broadcasting on a Galton-
Watson tree {T (t)}t≥0 if limt→∞ E|E(X(0)|X(t), T (t))−1/2| > 0. Equiva-
lently, weak recovery is solvable if limt→∞ I(X(0);X(t)|T (t)) > 0, where
I is the mutual information.

In [156], it is shown that the threshold c(1−2ε)2 > 0 is necessary and
sufficient for weak recovery for a large class of offspring distributions,
where c is the expectation of µ. The case of µ being the Poisson(c)
distribution is of particular interest to us:
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Theorem 5.4. [156] In the broadcasting model with a Galton-Watson
tree of Poisson(c) offspring and flip probability ε, weak recovery is
solvable if and only if

c(1− 2ε)2 > 1.

Another important extension is the ‘robust reconstruction’ problem
[98], where the leaves are not revealed exactly but with the addition of
independent noise. It was shown in [98] that for very noisy leaves, the
KS threshold is also tight.

5.2 The information-theoretic threshold

In this Section, we discuss the proof for the threshold of Theorem
5.1, i.e., that weak recovery is solvable in SSBM(n, 2, a/n, b/n) (and
efficiently so) if and only if

(a− b)2 > 2(a+ b).

We focus in particular on the information-theoretic converse. Interest-
ingly, for the achievability part, there is not currently a simpler proof
available in the literature than the proof that directly gives an efficient
algorithm. Below we discuss some attempts, and in Section 5.3 we will
the efficient achievability.

5.2.1 Converse

We will now prove the converse using two important technical results
proved in [130]: (1) the coupling of a neighborhood of the SBM with
the broadcasting on Galton-Watson tree, (2) the weak effect of non-
edges. The second point refers to the fact that the absence of an edge
between two vertices does not make their probability of being in the same
community exactly half; in fact, P{X1 = X2|E1,2 = 0} = 1−a/n

1−a/n+1−b/n =
1/2(1 + (b − a)/2n) + o(1/n), and there is a slight repulsion towards
being in the same community.

The following result is shown in [130]:

Theorem 5.5. [130] Let (X,G) ∼ SSBM(n, 2, a/n, b/n), the SBM with
two symmetric communities. If (a− b)2 ≤ 2(a+ b),

P{X1 = 1|G,X2 = 1} → 1/2 a.a.s. (5.26)
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Here we show the following equivalent result that also implies the
impossibility of weak recovery:

Theorem 5.6. [130] Let (X,G) ∼ SSBM(n, 2, a/n, b/n) with (a− b)2 ≤
2(a+ b). Then,

I(X1;X2|G) = o(1). (5.27)

Note that the role of vertex 1 and 2 is arbitrary above, it could be
any fixed pair of vertices (not chosen based on the graph).

The connection between the warm-up problem and the SBM comes
from the fact that if one picks a vertex v in the SBM graph, its neigh-
borhood at small enough depth behaves likes a Galton-Watson tree
of offspring Poisson(c), c = ((a + b)/2), and the labelling on the ver-
tices behaves like the broadcasting process discussed above with a
flip probability of ε = b/(a + b). Note that the latter parameter is
precisely the probability that two vertices have different labels given
that there is an edge between them. More formally, if the depth is
t ≤ (1/2− δ) log(n)/ log(a+ b)/2) for some δ > 0, then the true distri-
bution and the above have a vanishing total variation when n diverges.
This depth requirement can be understood from the fact that the ex-
pected number of leaves in that case is in expectation n1/2−δ, and by
the birthday paradox, no collision will likely occur between two vertices’
neighborhoods if δ > 0 (hence no loops take place and the neighborhood
is a tree with high probability).

To establish the converse of Theorem 5.1, it is sufficient to argue
that, if it is impossible to weakly recover a single vertex when a genie
reveals all the leaves at such a depth, it must be impossible to solve weak
recovery. In fact, consider P{Xu = xu|G = g,Xv = xv}, the posterior
distribution given the graph and an arbitrary vertex revealed (here
u and v are arbitrary and chosen before the graph is drawn). With
high probability, these vertices will not be within small graph-distance
of each other (e.g., at distance Ω(log(n)) with high probability), and
one can open a small neighborhood around u of diverging byt small
enough depth (e.g., ε log(n) for a small enough ε.) Now reveal not
only the value of Xv but in fact all the values at the boundary of this
neighborhood. This is an easier problem since the neighborhood is a
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tree with high probability and since there is approximately a Markov
relationship between these boundary vertices and the original Xv (note
that ‘approximately’ is used here since there is a negligible effect due
to non-edges). We are now back to the broadcasting problem on trees
discussed above, and the requirement c(1− 2ε)2 ≤ 0 gives the theorem’s
bound (since c = (a+ b)/2 and ε = b/(a+ b)).

The reduction extends to more than two communities (i.e., non-
binary labels broadcasted on trees) and to asymmetrical communities,
but the tightness of the KS bound is no longer present in these cases.
For two asymmetrical communities, the result still extends if the com-
munities are roughly symmetrical, using [47] and [72, 71]. For more
than three symmetric communities, new gap phenomena take place [20];
see Section 8.

We now proceed to proving Theorem 5.6. The first step is to formalize
what is meant by the fact that the neighborhoods of the SBM look like
a Galton-Watson tree. Let G

Lemma 5.7. [130] Let (X,G) ∼ SSBM(n, 2, a/n, b/n) and R = R(n) =
b 1

10 log(n)/ log(2(a + b))c. Let BR := {v ∈ [n] : dG(1, v) ≤ R} be the
set of vertices at graph distance at most R from vertex 1, GR be the
restriction of G on BR, and let XR = {Xu : u ∈ BR}. Let TR be a
Galton-Watson tree with offspring Poisson(a+ b)/2 and R generations,
and let X̃(t) be the labelling on the vertices at generation t obtained
by broadcasting the bit X̃(0) := X1 from the root with flip probability
b/(a + b). Let X̃R = {X̃(t)

u : t ≤ R}. Then, there exists a coupling
between (GR, XR) and (TR, X̃R) such that

(GR, XR) = (TR, X̃R) a.a.s. (5.28)

The second technical lemma that we need regards the negligible
effect of non-edges outside from our local neighborhood of a vertex. The
difficulty here is that these non-edges are negligible if the vertices labels
are more or less balanced; for example, the effect of non-edges would
not be negligible if the vertices had all the same labels.

Lemma 5.8. [130] Let (X,G) ∼ SSBM(n, 2, a/n, b/n), R = R(n) =
b 1

10 log(n)/ log(2(a+ b))c and X∂R = {Xu : dG(u, 1) = R}. Then,

P{X1 = 1|X∂R, X2, G} = (1 + o(1))P{X1 = 1|X∂R, GR} (5.29)
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for a.a.e. (X,G).

The statement means that the probability that (X,G) satisfies
(5.29) tends to one as n tends to infinity. Note that R could actually be
c log(n)/ log((a+ b)/2)c for any c < 1/2; we keep the same R as in the
previous lemma to reduce the number of parameters.

Corollary 5.9. Using the same definition as in Lemma 5.8,

H(X1|X∂R, G,X2) = H(X1|X∂R, GR) + o(1). (5.30)

We can now prove Theorem 5.6.

Proof of Theorem 5.6. Let TR and {X̃(t)}Rt=0 be the random variables
appearing in the coupling of Lemma 5.7. We have,

1 ≥ H(X1|G,X2) ≥ H(X1|X∂R, G,X2) (5.31)
= H(X1|X∂R, GR) + o(1) (5.32)
= H(X̃(1)|X̃(R), TR) + o(1) (5.33)
= 1 + o(1) (5.34)

where (5.31) follows from the fact that conditioning reduces entropy,
(5.32) follows from the asymptotic conditional independence of Lemma
5.8, (5.33) from the fact that the neighbordhood of a vertex can be
coupled with the broadcasting on Galton-Watson tree, i.e., Lemma 5.7,
and (5.34) follows from the fact that below the KS threshold weak
recovery is not solvable for the broadcasting on trees problem, i.e.,
Theorem 5.4. Therefore,

I(X1;X2|G) = 1−H(X1|G,X2) = o(1). (5.35)

5.2.2 Achievability

Interestingly, the achievability part of Theorem 5.1 was directly proved
for an efficient algorithm, as discussed in the next section. Using an
efficient algorithm should a priori require more work than what could
be achieved if complexity considerations were put aside, but a short
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information-theoretic proof has not been given in the literature yet.
Here we sketch how this could potentially be achieved, although there
may be simpler ways. In Section 8, we discuss an alternative approach
that is simpler than the approach described below; however, it does not
provide the right constant for two communities.

Since (a− b)2 > 2(a+ b) is the threshold for weak recovery in the
broadcasting on trees problem (when the expected degree is (a+ b)/2
and the flip probability is b/(a + b)), one would hope to find a proof
that reduces weak recovery in the SBM to this broadcasting on trees
problem. For a converse argument, it is fairly easy to connect to this
problem since one can always use a genie that gives further information
in a converse argument, in this case, the values at the boundary of a
vertex’ neighborhood. How would one connect to the broadcasting on
trees problem for an achievability result?

We will next discuss how one can hope to replace the genie by
many random guesses. First consider the effect of making a random
guess about each vertex. Let (X,G) ∼ SSBM(n, 2, a/n, b/n) and let
X(ε) = {Xv + Berv(1/2 − ε) : v ∈ [n]} be the noisy genie, i.e., a
corruption of each community labels with independent additive Bernoulli
noise for each vertex with flip probability 1/2 − ε, with ε ∈ [0, 1/2].
Note that X(0) is pure noise, so we can assume that we have access
to (X(0), G) rather than G only (which may seem irrelevant). Next we
argue that we can replace (X(0), G) with (X(Θ(1/

√
n)), G), i.e., not a

purely noisy genie but a genie with a very small bias of order Θ(1/
√
n)

towards the truth.

Lemma 5.10. If weak recovery is solvable by observing (X(1/
√
n), G),

then it is solvable by observing G only.

The proof follows by noting that if weak recovery is solvable using
(X(0), G), then it is solvable using G only since X(0) is independent
of (X,G). But with high probability X(0) produces a bias of Θ(

√
n)

vertices on either the good or bad side (by the Central Limit Theorem);
since both are equivalent in view of weak recovery, we can assume that
we have a genie that gives Θ(

√
n) vertices on the good side.

Naive plan: as one can obtain a weak genie ‘for free’ by random
guessing, one may hope to connect to the broadcasting problem on trees
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by amplifying this weak genie for each vertex at tree-like depth. That
is, take a vertex v in the graph, open a neighborhood at depth R(n) as
in the converse argument of the previous section, and re-decide for the
vertex v by solving the broadcasting on trees problem using the noisy
vertex labels at the leaves. Do this for each vertex in parallel; assuming
that correlations between different vertices are negligible.

We next explain why this plan is doomed to fail, because the depth
R(n) is too small to amplify such a weak genie. In fact, For a vertex
v and integer t, let Nt(v) be the number of vertices t edges away from
v, ∆t(v) be the difference between the number of vertices t edges away
from v that are in community 1 and the number of vertices t edges away
from v that are in community 2, and ∆̃t(v) be the difference between
the number of vertices t edges away from v that are in C1 and the
number of vertices t edges away from v that are in C2. For small t,

E[Nt(v)] �
(
a+ b

2

)t
and

E[∆t(v)] �
(
a− b

2

)t
· (−1)Xv .

For any fixed values of Nt(v) and ∆t(v), the probability distribu-
tion of ∆̃t(v) is essentially a Gaussian distribution with a mean of
Θ(∆t(v)/

√
n) and a variance of ≈ Nt(v) because it is the sum of Nt(v)

nearly independent variables that are approximately equally likely to be 1
or−1. So, ∆̃t(v) is positive with a probability of 1

2+Θ(∆t(v)/
√
|Nt(v)|n).

In other words, if v is in community 1 then ∆̃t(v) is positive with a
probability of

1
2 −Θ

((
a− b

2

)t
·
(
a+ b

2

)−t/2 1√
n

)

and if v is in community 2 then ∆̃t(v) is positive with a probability of

1
2 + Θ

((
a− b

2

)t
·
(
a+ b

2

)−t/2 1√
n

)
.

If (a − b)2 ≤ 2(a + b), then this is not improving the accuracy of
the classification, so this technique is useless. On the other hand, if
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(a−b)2 > 2(a+b), the classification becomes more accurate as t increases.
However, this formula says that to classify vertices with an accuracy of
1/2 + Ω(1), we would need to have t such that(

a− b
2

)2t
= Ω

((
a+ b

2

)t
n

)
.

However, unless a or b is 0, that would imply that(
a+ b

2

)2t
= ω

((
a− b

2

)2t)
= ω

((
a+ b

2

)t
n

)
(5.36)

which means that (a+b
2 )t = ω(n). It is obviously impossible for Nt(v) to

be greater than n, so this t is too large for the approximation to hold.
In any case, this shows that working in the tree-like regime is not going
to suffice.

Figure 5.1: The left figure shows the neighborhood of vertex v pulled from the
SBM graph at depth c logλ1 n, c < 1/2, which is a tree with high probability. If one
had an educated guess about each vertex’s label, of good enough accuracy, then it
would be possible to amplify that guess by considering only such small neighborhoods
(deciding with the majority at the leaves). However, we do not have such an educated
guess. We thus initialize our labels purely at random, obtaining a small advantage of
roughly

√
n vertices by luck (i.e., the central limit theorem), in either an agreement

or disagreement form. This is illustrated in agreement form in the right figure.

This takes us to two possibilities:

• Go deeper. In order to amplify our weak bias of order 1/
√
n to

a constant bias, we can go deeper in the neighborhoods, leaving
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the regime where the neighborhood is tree-like. In fact, according
to (5.36), this requires going beyond the diameter of the graph
whcih is log(n)/ log((a+b)/2), and having to repeat vertices (i.e.,
count walks). The problem is, the above approximation assumes
that each vertex at a distance of t− 1 from v has one edge leading
back towards v, and that the rest of its edges lead towards new
vertices. Once a significant fraction of the vertices are fewer than
t edges away from v, a significant fraction of the edges incident
to vertices t − 1 edges away from v are part of loops and thus
do not lead to new vertices. This obviously creates significant
complications. This is the approach that is discussed in the next
section, using nonbacktracking walks. In fact, we re-derive this
approach in the next section from our principles on weak recovery
from Section 5.3.1. Note also that this approach is efficient, and
it is thus legitimate to ask whether a simpler argument could
be obtained information-theoretically, which takes us to the next
point;

• Repeat guessing. A single random guess gives a bias of order 1/
√
n.

However, if we keep guessing again and again, eventually one
random guess will be atypically correlated with the ground truth.
In particular, with enough guesses, one would get a strong enough
correlation for the random guess that the naive plan described
above could work at the tree-like depth (connecting us to the
(robust) broadcasting on trees problem, as desired). Of course,
a new difficulty is now to identify which of these many random
guesses leads to a good reconstruction. For this, we propose to
use a graph-splitting argument as discussed next.

Information-theoretic procedure:
(1) Graph-split G into G1 and G2 such that G1 is above the KS thresh-
old.
(2) Take M = M(n) independent random guesses (i.e., partitions of [n])
and amplify each at the three-like depth on G1. Let X̂1, . . . , X̂M be the
amplified guesses, which represent each a partition of [n].
(3) Test the edge density of the residue graph G2 on each partition
X̂i, and output the first X̂i that gives a non-trivial edge density (i.e.,
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an edge density above by a constant factor of what a purely random
partition gives in expectation).

We conjecture that there exists an appropriate choice of M such that
(i) a “good guess” will come up whp, i.e., a guess with enough initial
correlation that the naive plan described above amplifies that guess to
a weak recovery solution using G1, (ii) the “good guess” amplification
is tested positive on the residue graph G2 before any bad guess amplifi-
cation is potentially tested positive. Note that one could use variants
for testing the validity of the good guess, for example, using the ∆t

statistics of previous section to set the validity test. The advantage of
this plan is that its analysis would mainly be based on estimates at
tree-like depths and moment computations.

5.3 Achieving the threshold

In the previous section we mentioned two plans to amplify a random
guess to a valid weak recovery reconstruction: (i) one can repeat guessing
exponentially many times until one hits an atypically good random guess
that can be amplified on shallow neighorhoods to a valid weak recovery
solution; (ii) one can take a single random guess and amplify it on deep
neighborhoods to directly reach a valid weak recovery construction. We
now discuss the latter plan, which can be run efficiently.

For this, we continue the reasoning from the previous section that
explained why the tree-like regime was not sufficient to amplify a random
guess. An obvious way to solve the problem caused by running out of
vertices would be to simply count the walks of length t from v to vertices
in C1 or C2. Recall that a walk is a series of vertices such that each
vertex in the walk is adjacent to the next, and a path is a walk with
no repeated vertices. The last vertex of such a walk will be adjacent
to an average of approximately a/2 vertices in its community outside
the walk and b/2 vertices in the other community outside the walk.
However, it will also be adjacent to the second to last vertex of the
walk, and maybe some of the other vertices in the walk as well. As a
result, the number of walks of length t from v to vertices in C1 or C2
cannot be easily predicted in terms of v’s community. So, the numbers
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of such walks are not useful for classifying vertices.
We could deal with this issue by counting paths5 of length t from

v to vertices in C1 and C2. The expected number of paths of length
t from v is approximately (a+b

2 )t and the expected difference between
the number that end in vertices in the same community as v and the
number that end in the other community is approximately (a−b2 )t. The
problem with this is that counting all of these paths is inefficient.

A compromise is to count nonbacktracking walks ending at v, i.e.
walks that never repeat the same edge twice in a row. We can efficiently
determine how many nonbacktracking walks of length t there are from
vertices in Ci to v. Furthermore, most nonbacktracking walks of a given
length logarithmic in n are paths, so it seems reasonable to expect that
counting nonbacktracking walks instead of paths in our algorithm will
have a negligible effect on the accuracy.

5This type of approach is considered in [37].
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Figure 5.2: This figure extends Figure 5.1 to a larger neighborhood. The ABP
algorithm amplifies the belief of vertex v by considering all the walks of a given
length that end at it. To avoid being disrupted by backtracking or cycling the beliefs
on short loops, the algorithm considers only walks that do not repeat the same vertex
within r steps, i.e., r-nonbacktracking walks. For example, when r = 3 and when
the walks have length 7, the green walk starting at vertex v1 is discarded, whereas
the orange walk starting at the vertex v2 is counted. Note also that the same vertex
can lead to multiple walks, as illustrated with the two magenta walks from v3. Since
there are approximately equally many such walks between any two vertices, if the
majority of the vertices were initially classified as blue, this is likely to classify all of
the vertices as blue. Hence we need a compensation step to prevent the classification
from becoming biased towards one community.

5.3.1 Linearized BP and the nonbacktracking matrix

To derive the algorithm more formally, we now go back to the weak
recovery benchmarks discussed in Section 3.4. The idea of using non-
backtracking walks results from a series of papers [108, 128, 42, 17], as
discussed in Section 1.4.

Recall that the Belief Propagation algorithm presented in Section
3.4 as a derivation of the Bayes Optimal estimator. Recall also that
we purposely work with a slightly more general SBM to break the
symmetry: i.e., a weakly symmetric SBM with community prior p =
(p1, p2) and connectivity channel W = Q/n such that diag(p)Q has
constant row sums, i.e., the expected degrees in the graph are constant d.
As mentioned in Section 3.4, the BP algorithm ends with a probability



5.3. Achieving the threshold 83

distribution for the community of each vertex, and taking for each
vertex the most likely assignment is conjectured to give a weak recovery
solution. However, this algorithm has several downsides. First of all, it
uses a nonlinear formula to calculate each sucessive set of probability
distributions (Bayes rule), and its analysis remains challenging to date.
From a practical point of view, one needs to know the parameters of the
model in order to run the algorithm, which makes it model-dependent.

We now discuss how both issues can be mitigated by “linearizing”
the algorithm. First recall that our original guesses of the vertices’
communities gives only a very weak bias. As such, it may be useful to
focus on the first order approximation of our formula when our beliefs
about the communities of v1, ..., vm are all close to the prior probabilities
for a vertex’s community. In this case, every entry of Qp must be equal
to d. So, we have that

P [Xv0 = i|G = g] ≈
pi
∏m
j=1(Qqj)i∑k

i′=1 pi′
∏m
j=1(Qqj)i′

=
pi
∏m
j=1(d+ (Q(qj − p))i)∑k

i′=1 pi′
∏m
j=1(d+ (Q(qj − p))i′)

≈
pi(1 +

∑m
j=1(Q(qj − p))i/d)∑k

i′=1 pi′(1 +
∑m
j=1((Q(qj − p))i′/d))

=
pi(1 +

∑m
j=1(Q(qj − p))i/d)

1 +
∑m
j=1 p ·Q(qj − p)/d

= pi + pi

m∑
j=1

(Q(qj − p))i/d.

We can then rewrite the Belief Propagation Algorithm using this
approximation in order to get the following algorithm.
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Pseudo Linearized Belief Propagation Algorithm (t, p, Q, q, G):

1. Set ε(0)
v,v′ = qv,v′ − p for all (v, v′) ∈ E(G).

2. For each 0 < t′ < t, and each v ∈ G, set

ε
(t′)
v,v′ =

∑
v′′:(v′,v′′)∈E(G),v′′ 6=v

PQε
(t′−1)
v′,v′′ /d.

3. For each (v, v′) ∈ E(G), set

q(t)
v = p+

∑
v′:(v,v′)∈E(G)

PQε
(t−1)
v,v′ /d.

4. Return q(t).

It is time to bring up an issue that was swept under the rug until
now, i.e., the effect of non-edges. If one has access to a good initial guess
and operates a short depth, then the non-edges have negligible effects
and the above algorithm can be used. However, in the current context
where we will run the iteration at large depth, the non-edges need to
be factored in. The fundamental problem is that the absence of an edge
between v and v′ provides slight evidence that these vertices are in
different communities, and this algorithm fails to take that into account.
Generally, as long as our current estimates of vertices communities
assign the right number of vertices to each community, each vertex’s
nonneigbors are balanced between the communities, so the nonedges
provide negligible amounts of evidence. However, if they are not taken
into account, then any bias of the estimates towards one community
can grow over time, and one may end up classifying all vertices in the
community that was initially more represented.

Re-deriving BP by taking into account the non-edges in Bayes’ rule
and writing down the proper linearization leads to the following algo-
rithm.

Linearized Belief Propagation Algorithm (t, p, Q, q, G):
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1. Set ε(0)
v,v′ = qv,v′ − p for all (v, v′) ∈ E(G).

2. Set ε(0)
v = qv − p for all v ∈ G.

3. For each 0 < t′ < t:

(a) For each (v, v′) ∈ E(G), set

ε
(t′)
v,v′ =

∑
v′′:(v′,v′′)∈E(G),v′′ 6=v

PQε
(t′−1)
v′,v′′ /d

−
∑

v′′:(v′,v′′) 6∈E(G),v′′ 6=v′
PQε

(t′−1)
v′′ /n.

(b) For each v ∈ G, set

ε(t
′)

v =
∑

v′:(v,v′)∈E(G)
PQε

(t′−1)
v,v′ /d

−
∑

v′:(v,v′)6∈E(G),v′ 6=v
PQε

(t′−1)
v′ /n.

4. For each v ∈ G, set

q(t)
v = p+

∑
v′:(v,v′)∈E(G)

PQε
(t−1)
v,v′ /d−

∑
v′:(v,v′) 6∈E(G),v′ 6=v

PQε
(t−1)
v′ /n.

5. Return q(t).

We will now discuss a spectral implementation of this algorithm,
as the above resembles a power iteration method on a linear operator.
Define the graph’s nonbacktracking walk and adjusted nonbacktracking
matrix as follows.

Definition 5.4. Given a graph (V,E), the graph’s nonbacktracking walk
matrix, B, is a matrix of dimension |E2| × |E2|, where E2 is the set
of directed edges on E (with |E2| = 2|E|), such that for two directed
edges e = (i, j), f = (k, l),

Be,f = 1(l = i, k 6= j). (5.37)

In other words, B maps a directed edge to the sum of all directed edges
starting at its end, except for the reversal edge.
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Definition 5.5. Given a graph G, and d > 0, the graph’s adjusted
nonbacktracking walk matrix, B̂ is the (|E2|+ n)× (|E2|+ n) matrix
such that for all w in the vector space with a dimension for each directed
edge and each vertex, we have that B̂w = w′, where w′ is defined such
that

w′v,v′ =
∑

v′′:(v′,v′′)∈E(G),v′′ 6=v
wv′,v′′/d−

∑
v′′:(v′,v′′) 6∈E(G),v′′ 6=v′

wv′′/n

for all (v, v′) ∈ E(G) and

w′v =
∑

v′:(v,v′)∈E(G)
wv,v′/d−

∑
v′:(v,v′) 6∈E(G),v′ 6=v

wv′/n

for all v ∈ G.

These definitions allows us to state the following fact:

Theorem 5.11. When the Linearized Belief Propagation Algorithm is
run, for every 0 < t′ < t, we have that

ε(t
′) =

(
B̂ ⊗ PQ

)t′
ε(0).

This follows from the definition of B̂ and the fact that the prop-
agation step of the Linearized Belief Propagation Algorithm gives
ε(t
′) =

(
B̂ ⊗ PQ

)
ε(t
′−1) for all 0 < t′ < t.

In other words, the Linearized Belief Propagation Algorithm is
essentially a power iteration algorithm that finds the eigenvector of
B̂⊗PQ with the largest eigenvalue. B̂⊗PQ has an eigenbasis consisting
of tensor products of eigenvectors of B̂ and eigenvectors of PQ, with
eigenvalues equal to the products of the corresponding eigenvalues
of B̂ and PQ. As such, this suggests that for large t′, ε(t′) would be
approximately equal to a tensor product of eigenvectors of B̂ and PQ
with maximum corresponding eigenvalues. For the sake of concreteness,
assume that w and ρ are eigenvectors of B̂ and PQ such that ε(t′) ≈ w⊗ρ.
That corresponds to estimating that

P [Xv = i|G = g] ≈ pi + wvρi

for each vertex v and community i. If these estimates are any good, they
must estimate that there are approximately pin vertices in community



5.3. Achieving the threshold 87

i for each i. In other words, it must be the case that the sum over all
vertices of the estimated probabilities that they are in community i is
approximately pin. That means that either ρ is small, in which case
these estimates are trivial, or

∑
v∈Gwv ≈ 0. Now, let the eigenvalue

corresponding to w be λ. If
∑
v∈Gwv ≈ 0, then for each (v, v′) ∈ E(G),

we have that

λwv,v′ ≈
∑

v′′:(v′,v′′)∈E(G),v′′ 6=v
wv′,v′′/d

=
∑

v′′:(v′,v′′)∈E(G)
B(v′,v′′),(v,v′)wv′,v′′/d

So, the restriction of w to the space spanned by vectors corresponding
to directed edges will be approximately an eigenvector of B with an
eigenvalue of approximately λ/d. Conversely, any eigenvector of B that
is balanced in the sense that its entries add up to approximately 0
should correspond to an eigenvector of B̂. So, we could try to determine
what communities vertices were in by finding some of the balanced
eigenvectors of B with the largest eignvalues, adding together the entries
corresponding to edges ending at each vertex, and thresholding.The
eigenvector of B with the largest eigenvalue will have solely nonnegative
entries, so it will not be balanced. However, it is reasonable to expect
that its next few eigenvectors would be relatively well balanced.

This approach has a couple of advantages over the full BP algorithm.
First of all, one does not need to know anything about the graph’s
parameters to find the top few eigenvectors of B, so this algorithm works
on a graph drawn from an SBM with unknown parameters. Secondly,
the approximation of the top few eigenvectors of B will tend to be
simpler than the analysis of the BP algorithm. Note that balanced
eigenvectors of B will be approximately eigenvectors of B − λ1

n 1, where
λ1 is the largest eigenvalue of B and 1 is the matrix thats entries are all
1. Therefore, we could also look for the main eigenvectors of B − λ1

n 1
instead of looking for the main balanced eigenvectors of B. We give
next two variants of the resulting algorithm for the case of the SSBM.6

6Note that the symmetry breaking is used to derived the algorithm but we can
now apply it equally well to the symmetric SBM.
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Nonbacktracking eigenvector extraction algorithm [108, 42].
Input: A graph G and a parameter τ ∈ R.
(1) Construct the nonbacktracking matrix B of the graph G.
(2) Extract the eigenvector ξ2 corresponding to the second largest eigen-
value of B.
(3) Assign vertex v to the first community if

∑
e:e2=v ξ2(e) > τ/

√
|V (G)|

and to the second community otherwise.

Theorem 5.12. [42] If (a− b)2 > 2(a+ b), then there exists τ ∈ R such
that previous algorithm solves weak recovery in SSBM(n, 2, a/n, b/n).

Extracting the second eigenvector of the nonbacktracking matrix
directly may not be the most efficient way to proceed, especially as the
graph gets denser. A power iteration method is a natural implemen-
tation, which requires additional proofs as done in [20]. Below is the
message-passing implementation.

Approximate Belief Propagation (ABP) algorithm. [19, 20]
Inputs: A graph G and a parameter m ∈ Z+.
(1) For each adjacent v and v′ in G, randomly draw y

(1)
v,v′ from a Gaussian

distribution with mean 0 and variance 1. Assign y(t)
v,v′ to value of 0 for

t < 1.
(2) For each 1 < t ≤ m, set for all adjacent v and v′

z
(t−1)
v,v′ = y

(t−1)
v,v′ −

1
2|E(G)|

∑
(v′′,v′′′)∈E(G)

y
(t−1)
v′′,v′′′ ,

y
(t)
v,v′ =

∑
v′′:(v′,v′′)∈E(G),v′′ 6=v

z
(t−1)
v′,v′′ .

(3) Set for all v ∈ G, y′v =
∑
v′:(v′,v)∈E(G) y

(m)
v,v′ . Return ({v : y′v > 0}, {v :

y′v ≤ 0}).

In [20], an extension of the above algorithm that prohibits backtrack
of higher order (i.e, avoiding short loops rather than just self-loops) is
shown to achieve the threshold for weak recovery in the SBM when
m = 2 log(n)/ log(SNR) + ω(1). The idea of prohibiting short loops is
further discussed in the next section.
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5.3.2 Algorithms robustness and graph powering

The quick intuition on why the nonbacktracking matrix is more amenable
to community detection than the adjacency matrix can be seen by taking
powers of these matrices. In the case of the adjacency matrix, powers
are counting walks from a vertex to another, and these get amplified
around high-degree vertices since the walk can come in and out in
many ways. This creates large eigenvalues with eigenvectors localized
around high-degree vertices. This phenomenon is well documented in
the literature; see Figure 5.3 for a illustration of a real output of the
spectral algorithm on a SBM with two symmetric communities (above
the KS threshold).

Figure 5.3: The communities obtained with the spectral algorithm on the adjacency
matrix in a sparse symmetric SBM above the KS threshold (n = 100000, a = 2.2, b =
0.06): one community corresponds to the neighborhood of a high-degree vertex, and
all other vertices are put in the second community.

Instead, by construction of the nonbacktracking matrix, taking pow-
ers forces a directed edge to leave to another directed edge that does not
backtrack, preventing such amplifications around high-degree vertices.
So nonbacktracking gives a way to mitigate the degree-variations and
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to avoid localized eigenvectors (recall discussion in Section 3). Note
also that one cannot simply remove the high-degree vertices in order to
achieve the threshold; one would have to remove too many of them and
the graph would lose the information about the communities. This is
one of the reasons why the weak recovery regime is interesting.

This robustness property of the nonbacktracking matrix is reflected
in its spectrum, which has largest magnitude eigenvalue λ1 (which is real
positive), and second largest magnitude eigenvalue λ2 which appears
before

√
λ1 above the KS threshold:√

λ1 < |λ2| < λ1. (5.38)

Then weak recovery can be solved by using the eigenvector corresponding
to λ2; see the previous section. Figure 5.4 provides an illustration for
the SBM with two symmetric communities.

Nonbacktracking matrix spectrum

a � b

2

a + b

2
0

a � b

2

a + b

2
0

Adjacency matrix spectrum

Figure 5.4: Illustration of the spectrum of the adjacency and nonbacktracking
matrices for the SBM with two symmetric communities above the KS threshold.

However the robustness of the NB matrix may not be as strong as
desired. It happens that in the SBM, being pushed away from a high-
degree vertex makes it unlikely for the walk to go back to a high-degree
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vertex. Therefore, avoiding direct backtracks suffices. Unfortunately, in
many real data graphs, loops are much more frequent than they are in
the SBM. Consider for example the geometric block model with two
Gaussians discussed in Section 9; in such a model, being pushed away
from a high degree vertex likely brings the walk back to another neighbor
of that same high degree vertex, and prohibiting direct backtracks does
not help much. In fact, this issue is also present for BP itself (rather
than linearized BP), which is originally designed7 for locally tree-like
models as motived in Section 3.4, although BP has the advantage over
ABP to pass probability messages that cannot grow out of proportions
(being bounded to [0, 1]).

Figure 5.5: A graph drawn from the mixture-GBM(n, 2, T, S) defined in Section
9, where n/2 points are sampled i.i.d. from an isotropic Gaussian in dimension 2
centered at (0, 0) and n/2 points are sampled i.i.d. from an isotropic Gaussian in
dimension 2 centered at (S, 0), and any points at distance less than T are connected
(here n = 10000, S = 2 and T = 10/

√
n). The spectral algorithm on the NB matrix

gives the right plot, which puts a small fraction of densely connected vertices (a
tangle) in a community, and all other vertices in the second community. The right
plot is the desired community output, which graph powering produces.

A natural attempt to improve on this is to then extend the notion
of nonbacktracking beyond direct backtracks, prohibiting any repeat
of a vertex within r steps of the walk (rather than just 2 steps). In
fact, this idea was already used in [20] for the SBM, as the increased
robustness also helped with simplifying the proofs (even though it is

7Although it also works in some loopy context [131]; in addition to the AMP
framework that applies to the cases of denser graphs
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likely unnecessary for the final result to hold). We now formally define
the r-NB matrix of a graph:

Definition 5.6. [The r-nonbacktracking (r-NB) matrix.] Let G = (V,E)
be a simple graph and let ~Er be the set of directed paths of length
r− 1 obtained on E. The r-nonbacktracking matrix B(r) is a | ~Er|× | ~Er|
matrix indexed by the elements of ~Er such that, for two sequences
of r − 1 direct edges e = (e1, . . . , er−1), f = (f1, . . . , fr−1) that form
directed paths in ~Er,

B
(r)
e,f =

r−1∏
i=1

1(fi+1 = ei)1((f1)1 6= (er−1)2), (5.39)

i.e., entry (e, f) of B(r) is 1 if e extends f by one edge without creating
a loop, and 0 otherwise.

Figure 5.6: Two paths of length 3 that contribute to an entry of 1 in B(4).

Remark 5.1. Note that B(2) = B is the classical nonbacktracking matrix
from Definition 5.4. As for r = 2, we have that ((B(r))k−1)e,f counts
the number of r-nonbacktracking walks of length k from f to e.

While one gains further robustness by using r-NB with larger r,
this may still require r to be impractically large in cases where a large
number of cliques and tangles are present in the graph (such as in the
two-Gaussian geometric block model mentioned before). We now discuss
three alternatives to further increase such robustness.

(1) SDPs. While the SDP in Section 3.2 was motivated as a relaxation
of the min-bisection estimator that is optimal for exact recovery but not
necessarily for weak recovery, one may still use SDPs for weak recovery
as well. In fact, the SDP benefits from a key feature; recall that the
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SDPs discussed in Section 3.2 takes the form:

X̂SDP (g) = argmax X�0
Xii=1,∀i∈[n]

tr(BX). (5.40)

for a matrix B which is a centered version of the adjacency matrix. The
key feature is that the constraint

Xii = 1

on the matrix X does not make the above optimization hard, as opposed
to the original min-bisection problem that requires

x2
i = 1

on the vector x, which makes min-bisection an NP-hard integral opti-
mization problem. The advantage is that Xii = 1 prohibits the entries
of X to grow out of proportion (X needs to be also PSD), and the SDP
is less sensitive to producing localized eigenvector.

Several works have investigated SDPs for SBMs [1, 13, 5, 159, 141],
with a precise picture obtained for weak recovery in [85, 126, 99]. We
now mention a result from [126] that shows that SDPs allow to approach
the threshold for weak recovery in the two-community SSBM arbitrarily
close when the expected degrees diverge.

Theorem 5.13. [126] There exists δ(a, b) satisfying δ(a, b)→ 0 as (a+
b) → ∞, such that if (a−b)2

2(a+b) > 1 + δ(a, b), then the SDP solves weak
recovery in SSBM(n, 2, a/n, b/n).

So for large degrees, SDPs are both performing well and allowing
for further robustness compared to NB spectral methods. For example,
[77, 125] shows that SDPs are robust to certain monotone adversary,
that can add edges within clusters and remove edges across clusters.
Such adversary could instead create trouble to NB spectral, e.g., by
adding a clique within a community to create a localized eigenvector of
large eigenvalue.

On the flip side, SDPs have two issues: (1) they do not perform
as well in very sparse regimes; take for instance the example covered
in Section 3.2 showing that the SDP fails to find the clusters when
they are disjoint and which can generalize to more subtle cases where
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the sparsest cut is at the periphery of the clusters rather than in their
middle; (2) most importantly, SDPs are not practical on large graphs.
One may use various tricks to initialize or accelerate SDPs, but these
instead make the analysis more challenging.

(2) Laplacian and Normalized Laplacian. In contrast to SDPs,
spectral methods afford much better complexity attributes. A possible
way to improve their robustness to degree variations would be to simply
normalize the matrix by taking into account degree variations, such as

L := D −A, (5.41)
Lnorm := I −D−1/2AD−1/2 ⇔ D−1/2AD−1/2. (5.42)

These can also be viewed as relaxations of min-cuts where one does
not constrain the number of vertices to be strictly balanced in each
community, but where one weighs in the volume of the communities in
terms of the number of vertices or degrees:

normcut1 := |∂(S)|
|S||Sc|

|V | = |∂(S)|
|S|

+ |∂(S)|
|Sc|

(5.43)

normcut2 := |∂(S)|
d(S)d(Sc)d(V ) = |∂(S)|

d(S) + |∂(S)|
d(Sc) (5.44)

where d(S) =
∑
v∈S degree(v), V = [n].

One can now look for a {0, 1}-valued vector, i.e., the indicator vector
on a subset S, that minimizes these normalized cuts. This is still an
NP-hard problem, but its spectral relaxation obtained by removing the
integral constraints leads to the smallest eigenvector of the matrices
in (5.41) and (5.42) (ignoring the 0 eigenvalue), which now have some
balanceness properties embedded.

In fact these afford better robustness to high-degree vertices. How-
ever, they tend to overdo the degree correction and can have trouble
with low-degree regions of the graph in models such as the SBM. At-
tached are two examples of SBMs that are above the weak recovery
threshold, but where these two normalized spectral methods produce
communities that are peripheral, i.e., cutting a small tail of the graph
that has a sparse normalized cut — see Figure 5.7.

In fact, we conjecture that neither of these two operators achieve the
weak recovery threshold in general. But, more importantly, one should
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Figure 5.7: The communities obtained with the spectral algorithm on the Laplacian
matrix in a sparse symmetric SBM above the KS threshold (n = 100000, a = 2.2, b =
0.06): one community corresponds to a “tail” of the graph (i.e., a small region
connected by a single edge to the giant component), and all other vertices are put in
the second community. The same outcome takes place for the normalized Laplacian.

be reminded of the principled approach pursued here: The normalized
Laplacians are motivated by combinatorial benchmarks, i.e., normal-
ized cuts, which do not have a clear connection to the Bayes optimal
estimator.

(3) Graph powering. We conclude with a recent proposal to bridge
the advantage of spectral methods with robustness attributes, while
keeping a Bayes-inspired construction. The method is developed in [14]
and relies on the following operator.

Definition 5.7 (Graph powering). We give two equivalent definitions:

• Given a graph G and a positive integer r, define the r-th graph
power of G as the graph G(r) with the same vertex set as G and
where two vertices are connected if there exists a path of length
≤ r between them in G.
Note: G(r) contains the edges of G and adds edges between any two
vertices at distance ≤ r in G. Note also that one can equivalently
ask for a walk of length ≤ r, rather than a path.
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• If A denotes the adjacency matrix of G with 1 on the diagonal (i.e.,
put self-loops to every vertex of G), then the adjacency matrix
A(r) of G(r) is defined by

A(r) = 1(Ar ≥ 1). (5.45)

Note: Ar has the same spectrum as A (up to rescaling), but the
action of the non-linearity 1(· ≥ 1) gives a key modification to
the spectrum.

Definition 5.8 (Deep cuts). For a graph G, a r-deepcut in G corresponds
to a cut in G(r), i.e.,

∂r(S) = {u ∈ S, v ∈ Sc : (A(r))u,v = 1}, S ⊆ V (G). (5.46)

We now discuss two key attributes of graph powering:

• Deep cuts as Bayes-like cuts. The cut-based algorithms discussed
previously for A, L or Lnorm can be viewed as relaxations of the
MAP estimator, i.e., min-bisection. As said multiple times, this is
not the right objective for weak recovery. Let us again illustrate
the distinction on a toy example, illustrated in Figure 5.8.

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Figure 5.8: In the left graph, assumed to come from SSBM(n, 2, 3/n, 2/n), the
root vertex is labelled community 1 from the ML estimator given the leaf labels,
which corresponds to the min-cut around that vertex. In contrast, the Bayes optimal
estimator puts the root vertex in community 2, as the belief of its right descendent
towards community 2 is much stronger than the belief of its two left descendents
towards community 1. This corresponds in fact to the min-deep-cut obtained from
the right graph, where 2-deep edges are added by a graph-power.

Imagine that a graph drawn from SSBM(n, 2, 3/n, 2/n) contained
the following induced subgraph. v0 is adjacent to v1, v2, and v3. v1



5.3. Achieving the threshold 97

and v2 are each adjacent to two outside vertices that are known
to be in community 1, and v3 is adjacent to a large number of
vertices that are known to be in community 2. v1 and v2 are more
likely to be in community 1 than they are to be in community
2, and v3 is more likely to be in community 2 than it is to be in
community 1. So, the single most likely scenario is that v0, v1, and
v2 are in community 1 while v3 is in community 2. In particular,
this puts v0 in the community that produces the sparsest cut (1
edge in the cut vs 2 edges in the other case). However, v3 is almost
certain to be in community 2, while if we disregard any evidence
provided by their adjacency to v0, we would conclude that v1 and
v2 are each only about 69% likely to be in community 1. As a
result, v0 is actually slightly more likely to be in community 2
than it is to be in community 1.

The reason why powering and deepcuts matter is that it helps
getting feedback from vertices that are further away, producing a
form of combinatorial likelihood that is measured by the number
of vertices that are not just directly connected to a vertex, but
also neighbors at a deeper depth. The deepcuts are thus more
“Bayes-like” and less “MAP-like,” as seen in the previous example
where vertex 1 is now assigned to community 2 using 2-deepcuts
rather than community 1 using standard cuts (i.e., 1-deepcuts).

• Powering to homogenize the graph. Powering further helps mitigate
the degree variations, and more generally density variations in
the graph, both with respect to high and low densities. Since the
degree of all vertices is raised with powering, both high and low
density regions do not contrast as much under powering. Large
degree vertices (as in Figure 5.3) do not stick out as much and
tails (as in Figure 5.7) are thickened, and the more macroscopic
properties of the graph can prevail.

Of course, powering is useful only if the power r is not too low or not
too large. If it is too low, say r = 2, powering may not help. If it is
too large, say r ≥ diameter(G), then powering turns any graph to a
complete graph, which destroys all the useful information. However,
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powering with r below the diameter and larger than log log(n), such as
r = b

√
log(n)c, allows to regularize the SBM graph to achieve the weak

recovery threshold with the vanilla spectral algorithm.
The key property is captured by the following pictorial representation

of the spectrum of A(r) (say for r = b
√

log(n)c):

a � b

2

a + b

2

a + b

2

0

(r)

( )( )
r + O(1)r + O(1)

( )
r/2(1 + o(1))

a + b

2( )
r/2 + O(1)

graph-powered adjacency matrix A 

Figure 5.9: Illustration of the spectrum of the adjacency matrix of the powered
graph for a two community symmetric SBM above the KS threshold. The power must
be below half the diameter and larger than Ω(log log(n)), such as r = (log log(n))2 or
r = ε logn, ε small enough. The bulk is delimited by the eigenvalues of random vectors,
while the localized eigenvectors on high-degree vertices mark the next transition
(note that the previous two regions may not appear separated as in the figure on a
real plot), followed by the isolated eigenvalue containing the community information,
and at last the Perron-Frobenius eigenvalue close to the average degree. A similar
picture takes place for the operator of [122], which does not use the non-linearity of
graph-powering, and which is more sensitive to tangles as for the NB operator in
Figure 5.5.

Note also that a similar picture to Figure 5.9 holds in the SBM when
taking a different operator, namely W where Wij counts the number
of paths of length r between i and j, as shown by Massoulié in the
first proof of the KS threshold achievability [122]. The key difference is
that the operator W suffers from the same issues as discussed above
for the nonbacktracking operator: it allows us to mitigate high-degree
vertices, but not denser regions such as tangles. In particular, planting
a moderately small clique in a community of the SBM or taking the
mixture GBM as in Figure 5.5 can drive the spectral algorithm on W
to produce localized eigenvector, while the powering operator is more
robust due to the non-linearity 1(· ≥ 1) that flattens out the entries of
large magnitude.

Note also that one could look for a non-linearity function that is
‘optimal’ (say for the agreement) rather than 1(· ≥ 1); however this
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is likely to be model dependent, while the previous choice seems to
be natural and generic. A downside of powering approaches is that
they densify the graph, so one would ideally combine graph powering
with degree normalizations to reduce the number of powers (since
powering raises the density of the graph, normalization may no longer
have the issues mentioned previously with tails) or some form of graph
sparsification (such as [152]). Note that powering and sparsifying do not
cancel each other: powering adds edges to “complete the graph” where
edges should be present, while sparsifying prunes down the graph by
adding weights on representative edges. Finally, one may also peel out
leaves (with a few recursions) and paths to further reduce the powering
order.



6
Partial recovery for two communities

In this section, we discuss various results for partial recovery.

6.1 Almost Exact Recovery

Almost exact recovery, also called weak consistency in the statistics
literature, or strong recovery, has been investigated in various papers
such as [164, 1, 80, 73, 147, 68].

Theorem 6.1. Almost exact recovery is solvable in SSBM(n, 2, an/n,
bn/n) (and efficiently so) if and only if

(an − bn)2

2(an + bn) = ω(1). (6.1)

Note that the constant 2 above is not necessary but it makes the
connection to the SNR of previous section more explicit. This result
appeared in several papers; a first appearance is in [164] where it results
from the case of non-adaptive random samples, and it is also shown in
[73, 68].

We point out two approaches to obtain this result:

• Boosting weak recovery with graph-splitting. One can use graph-
splitting repeatedly to turn the results of the previous section on

100
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weak recovery into Theorem 6.1. However this requires having
an algorithm to solve weak recovery first, which represents more
work than needed to obtain Theorem 6.1. We mention nonetheless
how one can take a shortcut assuming such an algorithm.
The idea is to graph-split G into k subgraphs with equal split-
probabilities into G1, . . . , Gk with k = b

√
log(n)c. Note that each

Gi is marginally an SBM with parameters an = a
√

log(n), bn =
b
√

log(n), so largely above the KS threshold. Now apply the
algorithm that solves weak recovery in each of these graphs, to
obtain a collection of k clusterings X̂1, . . . , X̂k. One can now boost
the accuracy by doing a vote for each pair of vertices over these
different clusterings. E.g., take vertices 1 and 2, and define

V1,2 =
k∑
i=1

1(X̂i(1) = X̂i(2)), (6.2)

which counts how many times vertices 1 and 2 have been classified
as being in the same community over the k trials. If these graphs
were independently drawn, since P(X̂i(1) = X̂i(2)) = 1/2 +ε from
the weak recovery algorithm, and as V1,2 concentrates towards its
mean, one can decide with probability 1− o(1) whether 1 and 2
are in the same community or not. The conclusion stays the same
with graph-splitting as one has an approximate independence.
The reason is that the graphs are in a sparse enough regime.
In particular, the probability that vertex 1 and 2 would receive
multiple edges from k truly independent such SBMs is only 1−
(1−p+)2−2(1−p+)p+ = O(p+) = O(

√
log(n)/n), where p+ is the

probability of placing an edge given by p+ = (a+ b)
√

log(n)/(2n).

• Sphere comparison. While previous argument cuts shorter if one
has a weak recovery algorithm, one can also obtain almost exact
recovery directly. One possibility is to count the common neighbors
at large enough depth between each pair of vertices. This uses
“two poles” for comparison rather than a “single pole” as used
in previous section for weak recovery (where we decided for each
vertex by looking at the neighbors at large depths, rather than
comparing two neighborhoods). We found that it is simpler to use
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a single pole when having to work at very large depth as needed
for the sparse regime of weak recovery, whereas if one has the
advantage of having diverging degrees, and thus the possibility
of working at shorter depth, then using two poles allows for
simplifications. The name “sphere comparision” used in [68] refers
to the fact that one compares the “spheres” of two vertices, i.e.,
the neighbors at a given depth from each vertex. This goes for
example with the general intuition that the social spheres of two
like-minded people should be more similar. In particular, the count
of common neighbors is a natural benchmark of comparison.

The depth at which spheres need to be compared needs to be above
half the graph diameter, so that spheres can overlap. However, in
contrast to the constant degree regime, diverging degrees allow us
to compare spheres at depths below the diameter, circumventing
the use of walks. In [68], graph splitting is also used to inject
independence in the comparisons of the sphere, as the direct count
of common neighbors is a challenging quantity to analyze due to
dependencies. Instead, [68] graph-splits the original graph into a
work-graph and a bridge-graph, counting how many edges from
the bridge-graph connect two spheres in the work-graph. We next
provide more formal statements about this approach.

Definition 6.1. For any vertex v, let Nr[G](v) be the set of all vertices
with shortest path in G to v of length r. We often drop the subscript G
if the graph in question is the original SBM.

For an arbitrary vertex v and reasonably small r, there will typically
be about dr vertices in Nr(v) (recall d = (a+ b)/2), and about (a−b2 )r
more of them will be in v’s community than in each other community.
Of course, this only holds when r < logn/ log d because there are
not enough vertices in the graph otherwise. The obvious way to try
to determine whether or not two vertices v and v′ are in the same
community is to guess that they are in the same community if |Nr(v)∩
Nr(v′)| > d2r/n and different communities otherwise. Unfortunately,
whether or not a vertex is in Nr(v) is not independent of whether or
not it is in Nr(v′), which compromises this plan. This is why we use
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the graph-splitting step: Randomly assign every edge in G to some set
E with a fixed probability c and then count the number of edges in E
that connect Nr[G\E] and Nr′[G\E]:

Definition 6.2. For any v, v′ ∈ G, r, r′ ∈ Z, and subset of G’s edges
E, let Nr,r′[E](v · v′) be the number of pairs (v1, v2) such that v1 ∈
Nr[G\E](v), v2 ∈ Nr′[G\E](v′), and (v1, v2) ∈ E.

Figure 6.1: Sphere comparison: The algorithm takes a graph-splitting of the graph
with a constant probability, and decides whether two vertices are in the same
community or not based on the number of crossing edges (in the first graph of the
graph-split) between the two neighborhoods’ spheres at a given depth of each vertices
(in the second graph of the graph-split). A careful (unbalanced) choice of r, r′ allows
us to reduce the complexity of the algorithm, but in general, r = r′ = 3

4 logn/ log d
suffices for the algorithm to succeed (where d is the average degree).

Figure 6.1 provides an illustration of the statistics used. Further,
[18] develops an invariant statistics that does not require the knowledge
of the model parameters in order to compare the spheres:

Definition 6.3. Let G be a graph and let E be the edge set obtained
by sampling each edge with probability c (i.e., the graph-split). For two
vertices v, v′ in G, define the sign-invariant statistics as

Ir,r′[E](v · v′) := Nr+2,r′[E](v · v′) ·Nr,r′[E](v · v′)−N2
r+1,r′[E](v · v

′).
(6.3)
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The key property is that this statistics Ir,r′[E] with high probability
scales as
c2(1− c)2r+2r′+2

n2 ·
(
d− a− b

2

)2
· dr+r′+1

(
a− b

2

)r+r′+1
(2δXv ,Xv′ − 1).

(6.4)

In particular, for r+r′ odd, Ir,r′[E](v ·v′) will tend to be positive if v and
v′ are in the same community and negative otherwise, irrespective of the
specific values of a, b. That suggests the following agnostic algorithm
for partial recovery:

Agnostic-sphere-comparison. Input: an n-vertex graph and a parameter
τ ≤ 0. Let d be the average degree of the graph:

1. Set r = r′ = 3
4 logn/ log d and put each of the graph’s edges in E

with probability c = 1/10.

2. Among distinct vertices u1, u2 such that Ir,r′[E](u1 · u2) ≤ τ , pick
two of maximal sum-degree, and assign each of these to a different
community. Assign each vertex u /∈ {u1, u2} to the community
i ∈ {1, 2} maximizing Ir,r′[E](u · ui).

A variant of this algorithm (that applies to the general SBM) is
shown in [18] to solve almost exact recovery efficiently under the condi-
tions of Theorem 6.1. We conclude this section by noting that one can
also study more specific almost exact recovery requirements, allowing
for a specified number of misclassified vertices s(n). This is investigated
in [165] when s(n) is moderately small (at most logarithmic), with an
extension of Theorem 6.1 that applies to this more general setting. The
case where s(n) is linear, i.e., a constant fraction of errors, is more
challenging and is discussed in the next sections.

6.2 Partial recovery at finite SNR

Recall that partial recovery refers to the case that a fraction of misclas-
sified vertices is constant, whereas the previous section investigates the
case that a fraction of misclassified vertices is vanishing.
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In the symmetric SSBM(n, 2, a/n, b/n), the regime for partial recov-
ery takes place when the following notion of SNR is finite:

SNR := (a− b)2

2(a+ b) = O(1). (6.5)

This takes place under two circumstances:

I. If a, b are constant, i.e., the constant degree regime,

II. If a, b are functions of n that diverge such that the numerator and
denominator in SNR scale proportionally.

Our main goal is to identify the optimal tradeoff between SNR and the
fraction of misclassified vertices, or between SNR and the MMSE or
the mutual information of the reconstruction. The latter has particular
application to the compression of graphs [7, 26]. We first mention some
bounds.

Upper bounds on the fraction of incorrectly recovered vertices
were demonstrated, among others, in [68, 147, 138, 80], taking form
C exp(−cSNR) when SNR is large. A bound that applies to the general
SBM with arbitrary connectivity matrix W = Q/n is also provided in
[68]. In [147], a spectral algorithm is shown to reach an upper-bound of
C exp{−SNR/2} for the two-community symmetric case and in a suit-
able asymptotic sense. An upper bound of the form C exp(−SNR/4.1)—
again for a spectral algorithm—was obtained earlier in [138]. Further,
[80] also establishes minimax optimal rate of C exp{−SNR/2} in the
case of large SNR and for certain types of SBMs, further handling a
growing number of communities (to the expense of looser bounds).

The optimal fraction of nodes that can be recovered was obtained in
[72] for two symmetric communities when the degrees are constant but
the SNR is sufficiently large, connecting to the broadcasting problem
on tree problem [156]. This result is further discussed below. It remains
open to establish such a result at arbitrary finite SNR.

We next describe a result that gives the optimal tradeoff between the
SNR and the MMSE (or the mutual information) for the two-symmetric
SBM in the second regime, where SNR is finite (and arbitrary) but
where degrees diverge. After that, we discuss results for constant degrees
but large enough SNR.
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6.3 Mutual Information-SNR tradeoff

In this section, we study the finite SNR regime with diverging degrees
and show that the SBM is essentially equivalent to a spiked Wigner
model (i.e., a low-rank matrix perturbed by a Wigner random matrix),
where the spiked signal has a block structure (rather than a sparse
structure as in sparse PCA [35, 64]). To compare the two models, we
use the mutual information.

In this section we use pn, qn in lieu of qin, qout, i.e., the inner- and
outer-cluster probabilities. For (X,G) ∼ SSBM(n, 2, pn, qn), the mutual
information of the SBM is I(X;G), where

I(X;G) = H(G)−H(G|X) = H(X)−H(X|G),

and H denotes the entropy. We next introduce the normalized MMSE
of the SBM:

MMSEn(SNR) ≡ 1
n(n− 1)E

{∥∥XXT − E{XXT|G}
∥∥2
F

}
(6.6)

= min
x̂12:Gn→R

E
{[
X1X2 − x̂12(G)

]2} (6.7)

where ‖ · ‖F denotes the Frobenius norm.
To state the result that provides a single-letter characterization of

the per-vertex MMSE (or mutual information), we need to introduce the
effective Gaussian scalar channel. Namely, define the Gaussian channel

Y0 = Y0(γ) = √γ X0 + Z0, (6.8)

where X0 ∼ Unif({+1,−1}) independent of Z0 ∼ N(0, 1). We denote by
mmse(γ) and I(γ) the corresponding minimum mean square error and
mutual information:

I(γ) = E log
{dpY |X(Y0(γ)|X0)

dpY (Y0(γ))
}
, (6.9)

mmse(γ) = E
{

(X0 − E {X0|Y0(γ)})2
}
. (6.10)

Note that these quantities can be written explicitly as Gaussian integrals
of elementary functions:

I(γ) = γ − E log cosh
(
γ +√γ Z0

)
, (6.11)

mmse(γ) = 1− E
{

tanh(γ +√γ Z0)2} . (6.12)
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We are now in position to state the result.

Theorem 6.2. [162] For any λ > 0, let γ∗ = γ∗(λ) be the largest
non-negative solution of the equation

γ = λ
(
1−mmse(γ)

)
(6.13)

and

Ψ(γ, λ) = λ

4 + γ2

4λ −
γ

2 + I(γ) . (6.14)

Let (X,G) ∼ SSBM(n, 2, pn, qn) and define1 SNR := n (pn−qn)2/(2(pn+
qn)(1− (pn + qn)/2)). Assume that, as n→∞, (i) SNR → λ and (ii)
n(pn + qn)/2(1− (pn + qn)/2)→∞. Then,

lim
n→∞

MMSEn(SNR) = 1− γ∗(λ)2

λ2 (6.15)

lim
n→∞

1
n
I(X;G) = Ψ(γ∗(λ), λ) . (6.16)

Further, this implies limn→∞MMSEn(SNR) = 1 for λ ≤ 1 (i.e.,
weak recovery unsolvable) and limn→∞MMSEn(SNR) < 1 for λ > 1
(i.e., weak recovery solvable).

Corollary 6.3. [162] When pn = a/n, qn = b/n, where a, b are bounded
as n diverges, there exists an absolute constant C such that

lim sup
n→∞

∣∣∣ 1
n
I(X;G)−Ψ(γ∗(λ), λ)

∣∣∣ ≤ Cλ3/2
√
a+ b

. (6.17)

Here λ, ψ(γ, λ) and γ∗(λ) are as in Theorem 6.2.

A few remarks about the previous theorem and corollary:

• Theorem 6.2 shows that the normalized MMSE (or mutual in-
formation) is non-trivial if and only if λ > 1. This extends the
results on weak recovery [122, 130] discussed in Section 7.2 for
the regime of finite SNR with diverging degrees, completing weak
recovery in the SSBM with two communities and any choice of
parameters;

1Note that this is asymptotically the same notion of SNR as defined earlier when
pn, qn vanish.
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• Theorem 6.2 also gives upper and lower bounds for the optimal
agreement. Let

Overlapn(SNR) = 1
n

sup
ŝ:Gn→{+1,−1}n

E
{
|〈X, ŝ(G)〉|

}
.

Then,

1−MMSEn(SNR) +O(n−1) ≤ Overlapn(SNR) (6.18)

≤
√

1−MMSEn(SNR) +O(n−1/2). (6.19)

• In [129], tight expressions similar to those obtained in Theorem 6.2
for the MMSE are obtained for the optimal expected agreement
with additional scaling requirements. Namely, it is shown that
for SSBM(n, 2, a/n, b/n) with a = b + µ

√
b and b = o(logn),

the least fraction of misclassified vertices is in expectation given
by Q(

√
v∗) where v∗ is the unique fixed point of the equation

v = µ2

4 E tanh(v + v
√
Z), Z is normal distributed, and Q is the

Q-function for the normal distribution. Similar expressions were
also derived in [166] for the overlap metric, and [114] for the
MMSE.

• Note that Theorem 6.2 requires merely diverging degrees (arbi-
trarily slowly), in contrast to general results from random matrix
theory such as [28] that would require poly-logarithmic degrees to
extract communities from the spiked Wigner model point of view.
We refer to [144, 142, 31] and references therein for generalizations
of the spiked Wigner model discussed here with more general
input signals.

6.4 Proof technique and connections to spiked Wigner models

Theorem 6.2 gives an exact expression for the normalized MMSE and
mutual information in terms of an effective Gaussian noise channel. The
Gaussian distribution emerges due to a universality result established
in the proof: in the regime of the theorem, the SBM model is equivalent
to a spiked Wigner model given by

Y =
√
λ/nXXt + Z
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Figure 6.2: Asymptotic mutual information per vertex of the symmetric stochastic
block model with two communities, as a function of the signal-to-noise ratio λ. The
dashed lines are simple upper bounds: limn→∞ I(X;G)/n ≤ λ/4 and I(X;G)/n ≤
log 2.

where Z is a Wigner random matrix (i.e., symmetric with i.i.d. Normal
entries), and where we recall that λ corresponds to the limit of SNR.

The formal statement of the equivalence is as follows:

Theorem 6.4 (Equivalence of SBM and a spiked Wigner model). Let
I(X;G) be the mutual information of SSBM(n, 2, pn, qn) with SNR → λ

and n(pn + qn)/2(1 − (pn + qn)/2) → ∞, and I(X;Y ) be the mutual
information for spiked Wigner model Y =

√
λ/nXXt + Z. Then, there

is a constant C independent of n such that

1
n

∣∣I(X;G)− I(X;Y )
∣∣

≤ C
(

λ3/2√
n(pn + qn)/2(1− (pn + qn)/2)

+ |SNR − λ|
)
. (6.20)

To obtain the limiting expression for the normalized mutual infor-
mation in Theorem 6.2, first notice that for Y (λ) =

√
λ/nXXt + Z,

1
n
I(X;Y (0)) = 0 1

n
I(X;Y (∞)) = log(2).
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Next, (i) use the fundamental theorem of calculus to express these
boundary conditions as an integral of the derivative of the mutual
information, (ii) use the I-MMSE identity [88] to express this derivative
in terms of the MMSE, (iii) upper-bound the MMSE using a specific
estimator obtained from the AMP algorithm [66] (or any algorithm
performing optimally in this regime), (iv) evaluate the asymptotic
performance of the AMP estimate using the density evolution technique
[33, 64], and (v) note that the obtained bound matches the original
value of log(2) in the limit of n tending to infinty:

log(2) (i)= 1
n

∫ ∞
0

∂

∂λ
I(XXt;Y (λ)) dλ (6.21)

(ii)= 1
4n2

∫ ∞
0

MMSE(XXt|Y (λ)) dλ (6.22)

(iii)
≤ 1

4n2

∫ ∞
0

E(XXt − x̂AMP,λ(∞)x̂tAMP,λ(∞))2 dλ (6.23)

(iv)= Ψ(γ∗(∞),∞)−Ψ(γ∗(0), 0) + on(1) (6.24)
(v)= log(2) + on(1). (6.25)

This implies that (iii) is in fact an equality asymptotically, and using
monotonicity and continuity properties of the integrand, the identity
must hold for all SNRs as stated in the theorem. The only caveat not
discussed here is the fact that AMP needs an initialization that is not
fully symmetric to converge to the right solution, which causes the
insertion in the proof of a noisy genie on the true labels X at the
channel output to break the symmetry for AMP. The genie is then
removed by taking noise parameters that are arbitrarily large.

6.5 Partial recovery for constant degrees

Obtaining the expression for the optimal agreement at finite and arbi-
trary SNR when the degrees are constant remains an open problem (see
also Sections 6.1 and 10). The problem is settled for high enough SNR
in [72], with the following expression relying on reconstruction error for
the broadcasting on trees problem.
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Define the optimal agreement fraction as

PGn(a, b) := 1
2 + sup

f
E| 1
n

∑
v

1(f(v,Gn) = Xv)−
1
2 |. (6.26)

Note that the above expression takes into account the symmetry of the
problem and can also been interpreted both as a normalized agreement
and probability. Let PG(a, b) := lim supg PGn(a, b). Define now the
counterpart for the broadcasting problem on tree: Back to the notation of
Section 5.1, define T (t) as the Galton-Watson tree with Poisson((a+b)/2)
offspring, flip probability b/(a+ b) and depth t, and define the optimal
inference probability of the root as

PT (a, b) := 1
2 + lim

t→∞
E|E(X(0)|X(t))− 1/2|. (6.27)

The reduction from [130] discussed in Section 5.1 allows to deduce that
PG(a, b) ≤ PT (a, b), and this is shown to be an equality for large enough
SNR:

Theorem 6.5. [72] There exists C large enough such that if SNR > C

then PG(a, b) = PT (a, b), and this normalized agreement is efficiently
achievable.

The theorem in [72] has a weaker requirement of SNR > C log(a+b),
but later developments on weak recovery imply for free the version stated
above. Note that PT (a, b) gives an implicit expression for the optimal
fraction, though it admits a variational representation due to [124]. The
efficient algorithm is a variant of belief propagation.

In [63], it is conjectured that BP gives the optimal agreement at all
SNR. However, as discussed in Section 3.4, BP is hard to analyze in the
context of loopy graphs with a random initialization. Another strategy
is to proceed with a two-round procedure, which is used to establish the
above results in [72] for two communities. The idea is to use a simpler
algorithm to obtain a non-trivial reconstruction when SNR > 1, see
Section 7.2, and then to improve the accuracy using full BP at shorter
depth. To show that the accuracy achieved is optimal, one also has to
show that a noisy version of the reconstruction on tree problem [98],
where leaves do not have exact labels but noisy labels, leads to the
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same probability of error at the root. This is expected to take place
for two communities at all SNR above the KS threshold, and it was
shown in [72] for the case of large enough SNR. This type of claim is
not expected to hold for general k. For more than two communities, one
needs to first convert the output of the algorithm discussed in Section
5.3.1, which gives two sets that correlated with their communities, into
a nontrivial assignment of a belief to each vertex; this is discussed in
[20]. Then one can use these beliefs as starting probabilities for a belief
propagation algorithm of depth log(n)/3 log(λ1), which now runs on a
tree-like graph.



7
The general SBM

In this section we discuss results for the general SBM, where communities
can take arbitrary relative sizes and where connectivity rates among
communities are arbitrary.

7.1 Exact recovery and CH-divergence

We provide the fundamental limit for exact recovery in the general SBM,
in the regime of the phase transition where W scales like log(n)Q/n for
a matrix Q with positive entries.

Theorem 7.1. [68] Exact recovery in SBM(n, p, log(n)Q/n) is solvable
and efficiently so if

I+(p,Q) := min
1≤i<j≤k

D+((diag(p)Q)i‖(diag(p)Q)j) > 1

and is not solvable if I+(p,Q) < 1, where D+ is defined by

D+(µ‖ν) := max
t∈[0,1]

∑
x

ν(x)ft(µ(x)/ν(x)), ft(y) := 1− t+ ty − yt.

(7.1)

Remark 7.1. Regarding the behavior at the threshold: If all the entries
of Q are non-zero, then exact recovery is solvable (and efficiently so)

113
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if and only if I+(p,Q) ≥ 1. In general, exact recovery is solvable at
the threshold, i.e., when I+(p,Q) = 1, if and only if any two columns
of diag(p)Q have a component that is non-zero and different in both
columns.

Remark 7.2. In the symmetric case SSBM(n, k, a log(n)/n, b log(n)/n),
the CH-divergence is maximized at the value of t = 1/2, and it reduces
in this case to the Hellinger divergence between any two columns of Q;
the theorem’s inequality becomes

1
k

(
√
a−
√
b)2 > 1,

matching the expression obtained in Theorem 4.1 for two symmetric
communities.

We now discuss some properties of the functional D+ governing the
fundamental limit for exact recovery in Theorem 7.1. For t ∈ [0, 1], let

Dt(µ‖ν) :=
∑
x

ν(x)ft(µ(x)/ν(x)), ft(y) = 1− t+ ty − yt, (7.2)

and note that D+ = maxt∈[0,1]Dt. Since the function ft satisfies

• ft(1) = 0

• ft is convex on R+,

the functional Dt is a so-called f -divergence [95], like the KL-divergence
(f(y) = y log y), the Hellinger divergence, or the Chernoff divergence.
Such functionals have a list of common properties described in [95].
For example, if two distributions are perturbed by additive noise (i.e.,
convolving with a distribution), then the divergence always increases,
or if some of the elements of the distributions’ support are merged,
then the divergence always decreases. Each of these properties can
be interpreted in terms of community detection (e.g., it is easier to
recovery merged communities, etc.). Since Dt collapses to the Hellinger
divergence when t = 1/2 and since it matches the Chernoff divergence
for probability measures, we call Dt (and D+) the Chernoff-Hellinger
(CH) divergence in [68].
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Theorem 7.1 thus gives a new operational meaning to an f -divergence,
showing that the fundamental limit for data clustering in SBMs is gov-
erned by the CH-divergence, similarly to the fundamental limit for
data transmission in DMCs being governed by the KL-divergence. If
the columns of diag(p)Q are “different” enough, where difference is
measured in CH-divergence, then one can separate the communities.
This is analogous to the channel coding theorem that says that when
the output’s distributions are “different” enough, where difference is
measured in KL-divergence, then one can separate the codewords.

7.1.1 Converse

Let (X,G) ∼ SBM(n, p,W ). Recall that to solve exact recovery, we need
to find the partition of the vertices, but not necessarily the actual labels.
Equivalently, the goal is to find the community partition Ω = Ω(X)
as defined in Section 2. Recall also that the optimal estimator (see
Section 4) is the MAP estimator Ω̂map(·) that maximizes the posterior
distribution

P{Ω = s|G = g}, (7.3)

or equivalently

∑
x∈[k]n:Ω(x)=s

P{G = g|X = x}
k∏
i=1

p
|Ωi(x)|
i , (7.4)

and any such maximizer can be chosen arbitrarily. If MAP fails in
solving exact recovery, no other algorithm can succeed.

We proceed similarly to the symmetric case to obtain the impos-
sibility part of Theorem 7.1, i.e., we reduce the problem to a genie
hypothesis test for recovering a single vertex given the other vertices.
However, we now work in the Bernoulli community prior model, for
slight conveniences.

Imagine that in addition to observing G, a genie provides the ob-
servation of X∼u = {Xv : v ∈ [n] \ {u}}. Define now X̂v = Xv for
v ∈ [n] \ {u} and

X̂u,map(g, x∼u) = arg max
i∈[k]

P{Xu = i|G = g,X∼u = x∼u}, (7.5)
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where ties can be broken arbitrarily if they occur (we assume that an
error is declared in case of ties to simplify the analysis). If we fail at
recovering a single component when all others are revealed, we must
fail at solving exact recovery all at once, thus

P{Ω̂map(G) 6= Ω} ≥ P{∃u ∈ [n] : X̂u,map(G,X∼u) 6= Xu}. (7.6)

This lower bound may appear to be loose at first, as recovering the
entire communities from the graph G seems much more difficult than
classifying each vertex by having all others revealed (we call the latter
component-MAP). As shown for the two symmetric case in Section 4,
the obtained bound is, however, tight.

Let Eu := {X̂u,map(G,X∼u) 6= Xu}. If the events Eu were indepen-
dent, we could write P{∪uEu} = 1− P{∩uEcu} = 1− (1− P{E1})n ≥
1 − e−nP{E1} and if P{E1} = ω(1/n), this would drive P{∪uEu}, and
thus Pe, to 1. The events Eu are not independent, but their dependen-
cies are weak enough that previous reasoning still applies, and Pe is
driven to 1 when P{E1} = ω(1/n). In Section 4, we used the second
moment method to obtain this statement, showing that the events are
asymptotically independent, which we also pursue below. In [68], a
variant of this method is used to obtain the conclusion.

Recall that for the second moment method, one defines

Z =
∑
u∈[n]

1(X̂u,map(G,X∼u) 6= Xu),

which counts the number of components where component-MAP fails.
Note that the right hand side of (7.6) corresponds to P{Z ≥ 1} as
desired. Our goal is to show that VarZ

(EZ)2 stays strictly below 1 in the
limit, or equivalently, EZ2

(EZ)2 stays strictly below 2 in the limit. In fact,
the latter tends to 1 in the converse of Theorem 7.1.

Note that Z =
∑
u∈[n] Zu where Zu := 1(X̂u,map(G,X∼u) 6= Xu)

are binary random variables with EZu = EZv for all u, v. Hence, EZ2

(EZ)2

tends to 1 if
1

nP{Z1 = 1} + P{Z2 = 1|Z1 = 1}
P{Z1 = 1} = 1 + o(1) (7.7)

which takes place if nP{Z1 = 1} = ω(1) and P{Z2=1|Z1=1}
P{Z2=1} = 1 + o(1).
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The location of the threshold is then dictated by requirement that
nP{Z1 = 1} diverges, and this where the CH-divergence threshold
emerges from a moderate deviation analysis. We next summarize what
we obtained with the above reasoning, and then specialized to the
regime of Theorem 7.1.

Theorem 7.2. Let (X,G) ∼ SBM(n, p,W ), Eu := 1(X̂u,map(G,X∼u) 6=
Xu), u ∈ [n]. If the events E1 and E2 are asymptotically independent,
then exact recovery is not solvable if

P{X̂u,map(G,X∼u) 6= Xu} = ω(1/n). (7.8)

The next lemma gives the behavior of P{Z1 = 1} in the logarithmic
degree regime.

Lemma 7.3. [68] Consider the hypothesis test where H = i has prior
probability pi for i ∈ [k], and where observable Y is distributed
Bin(np,Wi) under hypothesis H = i. This is called degree-profiling
in [68], and is illustrated in Figure 7.1. Then the probability of error
Pe(p,W ) of MAP decoding for this test satisfies 1

k−1Over(n, p,W ) ≤
Pe(p,W ) ≤ Over(n, p,W ) where

Over(n, p,W ) =∑
i<j

∑
z∈Zk+

min(P{Bin(np,Wi) = z}pi,P{Bin(np,Wj) = z}pj),

and for a symmetric Q ∈ Rk×k+ ,

Over(n, p, log(n)Q/n) = n−I+(p,Q)−O(log log(n)/ logn), (7.9)

where I+(p,Q) = mini<j D+((diag(p)Q)i, (diag(p)Q)j).

Corollary 7.4. Let (X,G) ∼ SBM(n, p,W ) where p is constant and
W = Q logn

n . Then

P{X̂u,map(G,X∼u) 6= Xu} = n−I+(p,Q)+o(1). (7.10)

A robust extension of this Lemma is proved in [68] that allows for a
slight perturbation of the binomial distributions.
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.⇠ P(log(n)(PQ)1) dv

.⇠ P(log(n)(PQ)2)

Hypothesis 2 Hypothesis 3
dv

.⇠ P(log(n)(PQ)3)

Figure 7.1: The genie-aided hypothesis test (degree-profiling) to classify a vertex
given the labels of all other vertices consists in a multi-hypotheses test with mul-
tivariate Poisson distributions of means corresponding to the different community
profiles. The probability of error of that test scales as n−I+(p,Q) where I+(p,Q) is
given by the CH-divergence D+ between the community profiles as in Lemma 7.3.

7.1.2 Achievability

Two-round algorithms have proved to be powerful in the context of exact
recovery. The general idea consists in using a first algorithm to obtain
a good but not necessarily exact clustering, solving a joint assignment
of all vertices, and then to switch to a local algorithm that “cleans up”
the good clustering into an exact one by reclassifying each vertex. This
approach has a few advantages:

• If the clustering of the first round is accurate enough, the second
round becomes approximately the genie-aided hypothesis test
discussed in previous section, and the approach is built in to
achieve the threshold;

• if the clustering of the first round is efficient, then the overall
method is efficient since the second round only performs com-
putations for each single node separately and has thus linear
complexity.

Some difficulties need to be overome for this program to be carried out:

• One needs to obtain a good clustering in the first round, which is
typically non-trivial;

• One needs to be able to analyze the probability of success of
the second round, as the graph is no longer independent of the
obtained clusters.
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To resolve the latter point, we rely in [13] on the technique which we
call “graph-splitting” and which takes again advantage of the sparsity
of the graph.

Definition 7.1 (Graph-splitting). Let G be an n-vertex graph and γ ∈
[0, 1]. The graph-splitting of G with split-probability γ produces two
random graphs G1, G2 on the same vertex set as G. The graph G1 is
obtained by sampling each edge of G independently with probability
γ, and G2 = G \G1 (i.e., G2 contains the edges from G that have not
been subsampled in G1).

Graph splitting is convenient in part due to the following fact.

Lemma 7.5. Let (X,G) ∼ SBM(n, p, lognQ/n), (G1, G2) be a graph
splitting of G with split-probability γ, and (X, G̃2) ∼ SBM(n, p, (1 −
γ) lognQ/n) with G̃2 independent of G1. Let X̂ = X̂(G1) be valued
in [k]n such that P{A(X, X̂) ≥ 1 − o(n)} = 1 − o(1). For any v ∈ [n],
d ∈ Zk+,

P{Dv(X̂,G2) = d} ≤ (1 + o(1))P{Dv(X̂, G̃2) = d}+ n−ω(1), (7.11)

where Dv(X̂,G2) is the degree profile of vertex v, i.e., the k-dimensional
vector counting the number of neighbors of vertex v in each community
using the clustered graph (X̂,G2).

The meaning of this lemma is as follows. We can consider G1 and G2
to be approximately independent, and export the output of an algorithm
run on G1 to the graph G2 without worrying about dependencies to pro-
ceed with component-MAP. Further, if γ is to chosen as γ = τ(n)/ log(n)
where τ(n) = o(log(n)), then G1 is distributed as SBM(n, p, τ(n)Q/n)
and G2 remains approximately as SBM(n, p, lognQ/n). This means
that from our original SBM graph, we produce essentially ‘for free’ a
preliminary graph G1 with τ(n) expected degrees that can be used to
get a preliminary clustering, and we can then improve that clustering
on the graph G2 which has still logarithmic expected degree.

Our goal is to obtain on G1 a clustering that is almost exact, i.e.,
with only a vanishing fraction of misclassified vertices. If this can be
achieved for some τ(n) that is o(log(n)), then a robust version of the
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genie-aided hypothesis test described in Section 7.1.1 can be run to
re-classify each node successfully when I+(p,Q) > 1. Luckily, as we
shall see in Section 6.1, almost exact recovery can be solved with the
mere requirement that τ(n) = ω(1) (i.e., τ(n) diverges). In particular,
setting τ(n) = log log(n) does the job. We next describe more formally
the previous reasoning.

Theorem 7.6. If almost exact recovery is solvable in SBM(n, p, ω(1)Q/n),
then exact recovery is solvable in SBM(n, p, log(n)Q/n) if

I+(p,Q) > 1. (7.12)

To see this, let (X,G) ∼ SBM(n, p, τ(n)Q/n), and (G1, G2) be a
graph splitting of G with split-probability γ = log logn/ logn. Let
(X, G̃2) ∼ SBM(n, p, (1− γ)τ(n)Q/n) with G̃2 independent of G1 (note
that the same X appears twice). Let X̂ = X̂(G1) be valued in [k]n such
that P{A(X, X̂) ≥ 1 − o(1)} = 1 − o(1); note that such an X̂ exists
from the theorem’s hypothesis. Since A(X, X̂) = 1 − o(1) with high
probability, (G2, X̂) are functions of G and using a union bound, we
have

P{Ω̂map(G) 6= Ω} (7.13)
≤ P{Ω̂map(G) 6= Ω|A(X, X̂) = 1− o(1)}+ o(1) (7.14)
≤ P{Ω̂map(G2, X̂) 6= Ω|A(X, X̂) = 1− o(1)}+ o(1) (7.15)
≤ nP{X1,map(G2, X̂∼1) 6= X1|A(X, X̂) = 1− o(1)}+ o(1). (7.16)

We next replace G2 by G̃2. Note that G̃2 has already the same marginal
as G2, the only issue is that G2 is not independent from G1 since the
two graphs are disjoint, and since X̂ is derived from G2, some depen-
dencies are carried along with G1. However, G̃2 and G2 are ‘essentially
independent’ as stated in Lemma 7.5, because the probability that G̃2
samples an edge that is already present in G1 is O(log2 n/n2), and the
expected degrees in each graph is O(logn). This takes us to

P{Ω̂map(G) 6= Ω} ≤ (7.17)
nP{X1,map(G̃2, X̂∼1) 6= X1|A(X, X̂) = 1− o(1)}(1 + o(1)) + o(1).

(7.18)
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We can now replace X̂∼1 with X∼1 to the expense that we may blow up
this the probability by a factor no(1) since A(X, X̂) = 1− o(1), again
using the fact that expected degrees are logarithmic. Thus we have

P{Ω̂map(G) 6= Ω} ≤ (7.19)
n1+o(1)P{X1,map(G̃2, X∼1) 6= X1|A(X, X̂) = 1− o(1)}+ o(1) (7.20)

and the conditioning on A(X, X̂) = 1− o(1) can now be removed due
to independence, so that

P{Ω̂map(G) 6= Ω} ≤ n1+o(1)P{X1,map(G̃2, X∼1) 6= X1}+ o(1). (7.21)

The last step consists in closing the loop and replacing G̃2 by G, since
1 − γ = 1 − o(1), which uses the same type of argument as for the
replacement of G2 by G̃2, with a blow up that is at most no(1). As a
result,

P{Ω̂map(G) 6= Ω} ≤ n1+o(1)P{X1,map(G,X∼1) 6= X1}+ o(1), (7.22)

and if

P{X1,map(G,X∼1) 6= X1} = n−1−ε (7.23)

for ε > 0, then P{Ω̂map(G) 6= Ω} is vanishing as stated in the theorem.
Therefore, in view of Theorem 7.6, the achievability part of Theorem

7.1 reduces to the following result.

Theorem 7.7. [68] Almost exact recovery is efficiently solvable in
SBM(n, p, ω(1)Q/n).

This follows from Theorem 7.10 discussed below, based on the
Sphere-comparison algorithm discussed in Section 6.

In conclusion, in the regime of Theorem 7.1, exact recovery can be
shown by using graph-splitting and combining almost exact recovery
with degrees that grow sub-logarithmically and an additional clean-up
phase. The behavior of the component-MAP error (i.e., the probability
of misclassifying a single node when others have been revealed) pings
down the behavior of the threshold: if this probability is ω(1/n), exact
recovery is not possible, and if it is o(1/n), exact recovery is possible.
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Decoding for the latter is then resolved by obtaining the exponent of
the component-MAP error, which brings in the CH-divergence.

Local to global amplification. The previous two sections give a
lower bound and an upper bound on the probability that MAP fails
at recovering the entire clusters, in terms of the probability that MAP
fails at recovering a single vertex when others are revealed. Denoting by
Pglobal and Plocal these two probabilities of error, we essentially1 have

1− 1
nPlocal

+ o(1) ≤ Pglobal ≤ nPlocal + o(1). (7.24)

This implies that Pglobal has a threshold phenomena as Plocal varies:

Pglobal →

0 if Plocal � 1/n,
1 if Plocal � 1/n.

(7.25)

Moreover, deriving this relies mainly on the regime of the model, rather
than the specific structure of the SBM. In particular, it mainly relies on
the exchangeability of the model (i.e., vertex labels have no relevance)
and the fact that the vertex degrees do not grow rapidly. This suggests
that this ‘local to global’ phenomenon takes place in a more general
class of models. The expression of the threshold for exact recovery in
SBM(n, p, lognQ/n) as a function of the parameters p,Q is instead
specific to the model, and relies on the CH-divergence in the case of
the SBM, but the moderate/large deviation analysis of Plocal for other
models may reveal a different functional or f -divergence.

The local to global approach also has an important implication at the
computational level. The achievability proof described in the previous
section directly gives an algorithm: use graph-splitting to produce
two graphs; solve almost exact recovery on the first graph and locally
improve the obtained clusters with the second graph. Since the second
round is efficient by construction (it corresponds to n parallel local
computations), it is sufficient to solve almost exact recovery efficiently (in
the regime of diverging degrees) to obtain for free an efficient algorithm

1The upper bound discussed in Section 7.1.2 gives n1+o(1)Plocal + o(1), but the
analysis can be tighten to yield a factor n instead of n1+o(1).
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for exact recovery down to the threshold. Thus this gives a computational
reduction. In fact, the process can be iterated to further reduce almost
exact recovery to a weaker recovery requirements, until a ‘bottle-neck’
recovery problem is attained.

7.2 Weak recovery and generalized KS threshold

We recall the conjecture stated in [63]:

Conjecture 1. [63, 130] Let (X,G) be drawn from SSBM(n, k, a/n, b/n),
i.e., the symmetric SBM with k communities, probability a/n inside
the communities and b/n across. Define SNR = (a−b)2

k(a+(k−1)b) . Then,

(i) For any k ≥ 2, it is possible to solve weak recovery efficiently if
and only if SNR > 1 (the Kesten-Stigum (KS) threshold);

(ii) If2 k ≥ 4, it is possible to solve weak recovery information-
theoretically (i.e., not necessarily in polynomial time in n) for
some SNR strictly below 1.3

It was also shown in [42] that for SBMs with communities that are
balanced and for parameters that satisfy a certain asymmetry condition,
i.e., the requirement that µk is a simple eigenvalue in Theorem 5 of [42],
the KS threshold can be achieved efficiently. The conditions of [42] do
not cover Conjecture 1 for k ≥ 3. In [17, 20], the two positive parts of
the above conjecture are proved, with an extended result applying to
the general SBM. We next discuss these various results.

Given parameters p and Q in the general model SBM(n, p,Q/n), let
P be the diagonal matrix such that Pi,i = pi for each i ∈ [k]. Also, let
λ1, ..., λh be the distinct eigenvalues of PQ in order of nonincreasing
magnitude.

Definition 7.2. Define the signal-to-noise ratio of SBM(n, p,Q/n) by

SNR = λ2
2/λ1.

2The conjecture states that k = 5 is necessary when imposing the constraint that
a > b, but k = 4 is enough in general.

3[63] made in fact a more precise conjecture, stating that below the KS threshold,
there is a second transition for information-theoretic methods when k ≥ 4, whereas
there is a single threshold (for both efficient or non-efficient algorithms) when k = 3.
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In the k community symmetric case where vertices in the same
community are connected with probability a/n and vertices in differ-
ent communities are connected with probability b/n, we have SNR =
(a−bk )2/(a+(k−1)b

k ) = (a− b)2/(k(a+ (k− 1)b)), which matches the quan-
tity in Conjecture 1 and in all previous sections concerned with two
communities.

Theorem 7.8. [42] Let G ∼ SBM(n, p,Q/n) such that p = ( 1
k , . . . ,

1
k )

and such that PQ has an eigenvector with corresponding eigenvalue
in (
√
λ1, λ1) of single multiplicity. If SNR > 1, then weak recovery is

efficiently solvable.

Theorem 7.9. [17, 20] Let G ∼ SBM(n, p,Q/n) for p,Q arbitrary. If
SNR > 1, then weak recovery is efficiently solvable.

Theorem 7.9 implies the achievability part of Conjecture 1 part (i).

The algorithm used in [42] is a spectral algorithm using the second
eigenvector of the NB matrix discussed in Section 5.3.1. The algorithm
used in [20] is an approximate acyclic belief propagation (ABP) algo-
rithm, which corresponds to a power iteration method to extract the
second eigenvector of the r-NB matrix.

Remark 7.3. Also note that it is important to use the notion of weak
recovery defined in Section 2.4, where the agreement is normalized by
the sizes of the communities. Without this normalization, using naively
“beating a random guess” or the definition of [63], the conjecture that
weak recovery is efficiently solvable if and only if SNR > 1 is not true
in general; a counter-example is given in [20] where the max-detection
criteria of [63] is not solvable when SNR > 1.

We conjecture that Theorem 7.9 is tight, i.e., if SNR < 1, then
efficient weak recovery is not solvable. However, establishing formally
such a converse argument seems out of reach at the moment: as we
shall see in the next section, except for a few possible cases with low
values of k (e.g., symmetric SBMs with k = 2, 3), it is possible to detect
information-theoretically when SNR < 1, and thus one cannot get a
converse for efficient algorithms by considering all algorithms.
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7.3 Partial recovery

The Sphere-comparison algorithm discussed in Section 6.1 gives the
following result:

Theorem 7.10. [69] For any k ∈ Z, p ∈ (0, 1)k and Q with no two
rows equal, there exist ε(c) = O(1/ log(c)) such that for all sufficiently
large c, Sphere-comparison detects communities in SBM(n, p, cQ/n)
with accuracy 1− e−Ω(c) and complexity On(n1+ε(c)).

Tight expressions for partial recovery in the general SBM and at a
finite SNR is open. We note the exception of a result obtained recently
in [58], which requires the assortative regime. We also refer to [80, 147].



8
The information-computation gap

In this section we discuss SBM regimes where weak recovery can be
solved information-theoretically. As stated in Conjecture 1 and proved
in Theorem 7.9, the information-computation gap—defined as the gap
between the KS and IT thresholds—takes place when the number of
communities k is larger than 4. We provide an information-theoretic
(IT) bound for SSBM(n, k, a/n, b/n) that confirms this, showing further
that the gap can grow fast with the number of communities.

The information-theoretic bound described below is obtained by
using a non-efficient algorithm that samples uniformly at random a
clustering that is typical, i.e., that has the right proportions of edges
inside and across the clusters. We describe below how this gives a
tight expression in various regimes. Note that to capture the exact
information-theoretic threshold in all regimes, one would have to rely
on tighter estimates on the posterior distribution of the clusters given
the graph. A possibility is to estimate the limit of the normalized
mutual information between the clusters and the graph, i.e., 1

nI(X;G),
as done in [162] for the regime of finite SNR with diverging degrees1—

1Similar results were also obtained recently in a more general context in [51,
113].
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see Section 6.3. Recent results also obtained the expression for the
finite degree regime in the disassortative case [58]. Another possibility
is to estimate the limiting total variation or KL-divergence between
the graph distribution in the SBM vs. Erdős-Rényi model of matching
expected degree. The limiting total variation is positive if and only if an
hypothesis test can distinguish between the two models with a chance
better than half. The easy implication of this is that if the total variation
is vanishing, the weak recovery is not solvable (otherwise we would
detect virtual clusters in the Erdős-Rényi model). This used in [30] to
obtain a lower-bound on the information-theoretic threshold, using a
contiguity argument, see further details at the end of this section.

8.1 Crossing KS: typicality

To obtain our information-theoretic upper-bound, we rely on the fol-
lowing sampling algorithm:

Typicality Sampling Algorithm. Given an n-vertex graph G and
δ > 0, the algorithm draws X̂typ(G) uniformly at random in

Tδ(G) = {x ∈ Balanced(n, k) :
k∑
i=1
|{Gu,v : (u, v) ∈

(
[n]
2

)
s.t. xu = i, xv = i}| ≥ an

2k (1− δ),

∑
i,j∈[k],i<j

|{Gu,v : (u, v) ∈
(

[n]
2

)
s.t. xu = i, xv = j}| ≤ bn(k − 1)

2k (1 + δ)},

where the above assumes that a ≥ b; flip the above two inequalities in
the case a < b.

We present below a bound that we claim is tight at the extremal
regimes of a and b (see discussions below). Note that for b = 0,
SSBM(n, k, a/n, 0) is simply a patching of disjoint Erdős-Rényi random
graphs, and thus the information-theoretic threshold corresponds to
the giant component threshold, i.e., a > k, achieved by separating the
giants. This breaks down for b positive, but we expect that the bound
derived below remains tight in the scaling of small b. For a = 0, the
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problem corresponds to planted coloring, which is already challenging
[25]. The bound obtained below gives that, in this case, weak recovery
is information-theoretically solvable if b > ck log k + ok(1), c ∈ [1, 2].
This scaling is further shown to be tight in [30], which also provides
a simple upper-bound that scales as k log k for a = 0. Overall, the
bound below shows that the KS threshold gives a much more restrictive
regime than what is possible information-theoretically, as the latter
reads b > k(k − 1) for a = 0.

Theorem 8.1. Let d := a+(k−1)b
k , assume d > 1, and let τ = τd be the

unique solution in (0, 1) of τe−τ = de−d, i.e., τ =
∑+∞
j=1

jj−1

j! (de−d)j .
The Typicality Sampling Algorithm solves weak recovery2 communities
in SSBM(n, k, a/n, b/n) if

a log a+ (k − 1)b log b
k

− a+ (k − 1)b
k

log a+ (k − 1)b
k

(8.1)

>
1− τ

1− τk/(a+ (k − 1)b)2 log(k) (8.2)

∧ (2 log(k)− 2 log(2)e−a/k(1− (1− e−b/k)k−1)). (8.3)

This bound strictly improves on the KS threshold for k ≥ 4. See
[20] for a numerical example.

Corollary 8.2. Conjecture 1 part (ii) holds.

Note that (8.3) simplifies to

1
2 log k

(
a log a+ (k − 1)b log b

k
− d log d

)
>

1− τ
1− τ/d =: f(τ, d), (8.4)

and since f(τ, d) < 1 when d > 1 (which is needed for the presence of
the giant), weak recovery is already solvable in SBM(n, k, a, b) if

1
2 log k

(
a log a+ (k − 1)b log b

k
− d log d

)
> 1. (8.5)

The above bound corresponds to the regime where there is no bad
clustering that is typical with high probability. The analog of this
bound in the unbalanced case already provides examples to crossing KS

2Setting δ > 0 small enough gives the existence of ε > 0 for weak recovery.
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for two communities, such as for p = (1/10, 9/10) and Q = (0, 81; 81, 72).
However, the above bound is not tight in the extreme regime of b = 0,
since it reads a > 2k as opposed to a > k, and it only crosses the KS
threshold at k = 5. Before explaining how to obtain tight interpolations,
we provide further insight on the bound of Theorem 8.1.

Defining ak(b) as the unique solution of

1
2 log k

(
a log a+ (k − 1)b log b

k
− d log d

)
(8.6)

= min
(
f(τ, d), 1− e−a/k(1− (1− e−b/k)k−1) log(2)

log(k)

)
(8.7)

and simplifying the bound in Theorem 8.1 gives the following.

Corollary 8.3. Weak recovery is solvable

in SBM(n, k, 0, b) if b >
2k log k

(k − 1) log k
k−1

f(τ, b(k − 1)/k), (8.8)

in SBM(n, k, a, b) if a > ak(b), where ak(0) = k. (8.9)

Remark 8.1. Note that (8.9) approaches the optimal bound given by
the presence of the giant at b = 0, and we further conjecture that ak(b)
gives the correct first order approximation of the information-theoretic
bound for small b.

Remark 8.2. Note that the k-colorability threshold for Erdős-Rényi
graphs grows as 2k log k [21]. This may be used to obtain an information-
theoretic bound, which would however be looser than the one obtained
above.

It is possible to see that this gives also the correct scaling in k for
a = 0, i.e., that for b < (1 − ε)k log(k) + ok(1), ε > 0, weak recovery
is information-theoretically impossible. To see this, consider v ∈ G,
b = (1 − ε)k log(k), and assume that we know the communities of
all vertices more than r = log(log(n)) edges away from v. For each
vertex r edges away from v, there will be approximately kε communities
that it has no neighbors in. Then vertices r − 1 edges away from v

have approximately kε log(k) neighbors that are potentially in each
community, with approximately log(k) fewer neighbors suspected of
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being in its community than in the average other community. At that
point, the noise has mostly drowned out the signal and our confidence
that we know anything about the vertices’ communities continues to
degrade with each successive step towards v.

A different approach is developed in [30] to prove that the scaling
in k is in fact optimal, obtaining both upper and lower bounds on the
information-theoretic threshold that match in the regime of large k
when (a− b)/d = O(1). In terms of the expected degree, the threshold
reads as follows.

Theorem 8.4. [30, 32] When (a − b)/d = O(1), the critical value of
d satisfies d = Θ

(
d2k log k
(a−b)2

)
, i.e., the critical SNR satisfies SNR =

Θ(log(k)/k).

The upper-bound in [30] corresponds essentially to (8.5), the regime
in which the first moment bound is vanishing. The lower-bound is based
on a contiguity argument and second moment estimates from [21]. The
idea is to compare the distribution of graphs drawn from the SBM, i.e.,

µSBM(g) :=
∑
x∈[k]n

P{G = g|X = x}P{X = x} (8.10)

with the distribution of graphs drawn from the Erdős-Rényi model with
matching expected degree, call it µER. If one can show that

‖µSBM − µER‖1 → 0, (8.11)

then upon observing a graph drawn from either of the two models, say
with probability half for each, it is impossible to decide from which
ensemble the graph is drawn with high probability. Thus it is not
possible to solve weak recovery (otherwise one would detect clusters
in the Erdős-Rényi model). A sufficient condition to imply (8.11) is to
show that µSBM E µER, i.e., for any sequence of event En such that
µER(En)→ 0, it must be that µSBM → 0. In particular, µSBM and µER
are called contiguous if µSBM E µER and µER E µSBM, but only the
first of these conditions is needed here. Further, this is implied from
Cauchy-Schwarz if the ratio function

ρ(G) := µSBM(G)/µER(G)
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has a bounded second moment, i.e.,

EG∼ERρ
2(G) = O(1),

which is shown in [30]; see [127] for more details.

8.2 Nature of the gap

The nature of such gap phenomena can be seen from different perspec-
tives. One interpretation comes from the behavior of belief propagation.
See also [127] for further discussions.

Above the Kesten-Stigum threshold, the uniform fixed point is un-
stable and BP does not get attracted to it and reaches a non-trivial
solution on most initializations. In particular, the ABP algorithm dis-
cussed in Section 5.3.1, which starts with a random initialization with
order

√
n vertices towards the true partition (due to the Central Limit

Theorem), is enough to make linearized BP reach a non-trivial fixed
point. Below the information-theoretic threshold, the non-trivial fixed
points are no longer present, and BP settles in a solution that represents
a noisy clustering, i.e., one that would also take place in the Erős-Rényi
model due to the noise fluctuations in the model. In the gap region,
non-trivial fixed points are still present, but the trivial fixed points are
locally stable and attract most initializations. One could try multiple
initializations until a non-trivial fixed point is reached, using for ex-
ample the graph-splitting technique discussed in Section 5.2.2 to test
such solutions. However, it is believed that an exponential number of
initializations is needed to reach a good solution.

This connects to the “energy landscape” of the possible clusterings:
in this gap region, the non-trivial fixed points have a very small basin
of attraction, and they can only attract an exponentially small fraction
of initializations. To connect to the results from Section 7.1, the success
of the two-round procedure can also be related to the energy landscape,
i.e., the objective function of MAP in this case. Above the CH threshold,
an almost exact solution having n− o(n) correctly labeled vertices can
be converted to an exact solution by the degree-profiling hypothesis
test. This is essentially saying that BP at depth 1, i.e., computing
the likelihood of a vertex based on its direct neighbors, allows us
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to reach the global maximum of the likelihood function with such a
strong initialization. In other words, the BP view, or more precisely
understanding the question of how accurate our initial beliefs need to
be in order to amplify these to non-trivial levels based on neighbors at
a given depth, is related to the landscape of the objective function.

The gap phenomenon also admits a local manifestation in the context
of ABP, having to do with the approximation discussed in Section 5.3.1,
where the non-linear terms behave differently from k = 3 to k = 4 due
to the loss of a diminishing return property. Better understanding such
gap phenomena is an active research area.

8.3 Proof technique for crossing KS

We explain in this section how to obtain the bound in Theorem 8.1. A
first problem is to estimate the likelihood that a bad clustering, i.e., one
that has an overlap close to 1/k with the true clustering, belongs to the
typical set. As clusters sampled from the TS algorithm are balanced, a
bad clustering must split each cluster roughly into k balanced subgroups
that belong to each community, see Figure 8.1. Thus it is unlikely to
keep the right proportions of edges inside and across the clusters, but
depending on the exponent of this rare event, and since there are
exponentially many bad clusterings, there may exist one bad clustering
that looks typical.

As illustrated in Figure 8.1, the number of edges that are contained
in the clusters of a bad clustering is roughly distributed as the sum of
two Binomial random variables,

Ein
·∼ Bin

(
n2

2k2 ,
a

n

)
+ Bin

(
(k − 1)n2

2k2 ,
b

n

)
,

where we use ·∼ to emphasize that this is an approximation that ignores
the fact that the clustering is not perfect bad and perfectly balanced.
Note that the expectation of the above distribution is n

2k
a+(k−1)b

k . In con-
trast, the true clustering would have a distribution given by Bin(n2

2k ,
a
n),

which would give an expectation of an
2k . In turn, the number of edges

that are crossing the clusters of a bad clustering is roughly distributed
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Figure 8.1: A bad clustering roughly splits each community equally among the
k communities. Each pair of nodes connects with probability a/n among vertices
of same communities (i.e., same color groups, plain line connections), and b/n
across communities (i.e., different color groups, dashed line connections). Only some
connections are displayed in the figure to ease the visualization.

as

Eout
·∼ Bin

(
n2(k − 1)

2k2 ,
a

n

)
+ Bin

(
n2(k − 1)2

2k2 ,
b

n

)
,

which has an expectation of n(k−1)
2k

a+(k−1)b
k . In contrast, the true clus-

tering would have the above replaced by Bin(n
2(k−1)

2k , bn), and an expec-
tation of bn(k−1)

2k .
Thus, we need to estimate the rare event that the Binomial sum

deviates from its expectation. While there is a large list of bounds
on Binomial tail events, the number of trials here is quadratic in n

and the success bias decays linearly in n, which require particular
care to ensure tight bounds. We derive these in [17], obtaining that
P{xbad ∈ Tδ(G)|xbad ∈ Bε} behaves as

exp
(
−n
k
A

)
when ε, δ are arbitrarily small, where A := a+b(k−1)

2 log k
a+(k−1)b +

a
2 log a+ b(k−1)

2 log b. One can then use the fact that |Tδ(G)| ≥ 1 with
high probability, since the planted clustering is typical with high proba-
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bility, and using a union bound and the fact that there are at most kn
bad clusterings:

P{X̂(G) ∈ Bε} = EG
|Tδ(G) ∩Bε|
|Tδ(G)| (8.12)

≤ EG|Tδ(G) ∩Bε|+ o(1) (8.13)
≤ kn · P{xbad ∈ Tδ(G)|xbad ∈ Bε}+ o(1).

Checking when the above upper-bound vanishes already gives a
regime that crosses the KS threshold when k ≥ 5 for symmetric com-
munities, when k ≥ 2 for asymmetric communities (deriving the version
of the bound for asymmetric communities), and scales properly in k
when a = 0. However, it does not interpolate the correct behavior of
the information-theoretic bound in the extreme regime of b = 0 and
does not cross at k = 4. In fact, for b = 0, the union bound requires
a > 2k to imply no bad typical clustering with high probability, whereas
as soon as a > k, an algorithm that simply separates the two giants
in SBM(n, k, a, 0) and assigns communities uniformly at random for
the other vertices solves weak recovery. Thus when a ∈ (k, 2k], the
union bound is loose. To remediate this, we next take into account the
topology of the SBM graph to tighten our bound on |Tδ(G)|.

Since the algorithm samples a typical clustering, we only need the
number of bad and typical clusterings to be small compared to the
total number of typical clusterings, in expectation. Namely, we can
get a tighter bound on the probability of error of the TS algorithm by
obtaining a tighter bound on the typical set size than simply 1, i.e.,
estimating (8.12) without relying on the loose bound from (8.13). We
proceed here with three levels of refinements to bound the typical set
size. In each level, we construct a random labelling of the vertices that
remains typical, and then use entropic estimates to count the number
of such typical labellings.

First we exploit the large fraction of nodes that are in tree-like
components outside of the giant, and the labels are distributed on such
trees as in the broadcasting on trees problem 5.1. Specifically, for a
uniformly drawn root node X, each edge in the tree acts as a k-ary
symmetric channel. Thus, labelling the nodes in the trees according
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to the above distribution and freezing the giant to the correct labels
leads to a typical clustering with high probability. The resulting bound
matches the giant component bound at b = 0, but is unlikely to scale
properly for small b. To improve on this, we next take into account the
vertices in the giant that belong to planted trees, and follow the same
program as above, except that the root node (in the giant) is now frozen
to the correct label rather than being uniformly drawn. This gives a
bound that we claim is tight at the first order approximation when b is
small. Finally, we also take into account vertices that are not saturated,
i.e., whose neighbors do not cover all communities and who can thus be
swapped without affecting typicality. The final bound allows to cross at
k = 4.

Figure 8.2: Illustration of the topology of SBM(n, k, a, b) for k = 2. A giant
component covering the two communities takes place when d = a+(k−1)b

k
> 1; a

linear fraction of vertices belong to isolated trees (including isolated vertices), and a
linear fraction of vertices in the giant are on planted trees. The following is used to
estimate the size of the typical set in [20]. For isolated trees, sample a bit uniformly
at random for a vertex (green vertices) and propagate the bit according to the
symmetric channel with flip probability b/(a + (k − 1)b) (plain edges do not flip
whereas dashed edges flip). For planted trees, do the same but freeze the root bit to
its true value.
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Other block models

There are various extensions of the basic SBM discussed in previous
section. The variations increase yearly, and we mention here a few basic
variants:

• Labelled SBMs: allowing for edges to carry a label, which can
model intensities of similarity functions between vertices; see for
example [92, 160, 102, 165]; see also [8] for a reduction from labelled
edges to unlabelled edges for certain recovery requirements;

• Degree-corrected SBMs: allowing for a degree parameter for
each vertex that scales the edge probabilities in order to make
expected degrees match the observed degrees; see for example [27]
and [87, 86] for sharp results on such models;

• Overlapping SBMs: allowing for the communities to overlap,
such as in the mixed-membership SBM [23], where each vertex
has a profile of community memberships or a continuous label—
see also [146, 135, 29, 140, 139, 84, 68]; also [8] for reductions
to non-overlapping community models in some cases and recent
results that sharp for MMSBM in [94];

136
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• Metric and geometric SBMs: allowing for labels at the vertices
that leave in metric spaces, e.g., a grid, a Euclidean space or a
sphere, and where connectivity depends on the distance between
the vertices’ labels as further discussed below; see [16, 9, 79, 14];

Definition 9.1 (Geometric block models). We define here two geometric
block models with two communities, the sphere-GBM and the mixture-
GBM. For each model, Xn = (X1, . . . , Xn) has i.i.d. Bernoulli(1/2)
components, which represents the abstract community labels for each
vertex. We next add a geometric label for each vertex, and draw the
graph depending on both the abstract and geometric labels:

• In the sphere-GBM(n, d, τ, a, b), Un = (U1, . . . , Un) has i.i.d. com-
ponents drawn uniformly at random on a sphere of dimension d;
the graph G = ([n], E) is drawn with edges independent condi-
tionally on Xn, Un, such that for 1 ≤ i < j ≤ n,

P{Eij = 1|Xn = xn, Un = un}

=


a if ‖ui − uj‖ ≤ τ and xi = xj

b if ‖ui − uj‖ ≤ τ and xi 6= xj

0 if ‖ui − uj‖ > τ

(9.1)

and P{Eij = 0|Xn = xn, Un = un} = 1 − P{Eij = 1|Xn =
xn, Un = un}. One can have a variant with a special symbol ?
that indicates if ‖ui − uj‖ > τ .

• In the mixture-GBM(n, d, s, τ), Un = (U1, . . . , Un) has indepen-
dent components conditionally onXn with Ui drawn fromN (0d, Id)
if Xi = 0 and from N ((s, 0d−1), Id) if Xi = 1 (two isotropic Gaus-
sians in dimension d at distance s); the graph G = ([n], E) is
drawn with edges independent conditionally on Un, such that for
1 ≤ i < j ≤ n,

P{Eij = 1|Un = un} =

1 if ‖ui − uj‖ ≤ τ
0 if ‖ui − uj‖ > τ

(9.2)

and P{Eij = 0|Un = un} = 1− P{Eij = 1|Un = un}.
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In dimension d, we want τ to be at least of order n−1/d with a large
enough constant in order for the graphs to have giant components, and
(log(n)/n)1/d with a large enough constant for connectivity.

Previous models have a much larger number of short loops than
the SBM does, which captures a feature of various real world graphs
having transitive attributes (“friends of friends are more likely to be
friends”). On the flip side, these models do not have ‘abstract edges’
as in the SBM, which can also occur frequently in applications given
the “small-world phenomenon”. This says that real graphs often have
relatively low diameter (about 6 in the case of Milgram’s experiment),
which does not take place in purely geometric block models. Therefore,
a natural candidate is to superpose an SBM and a GBM to form an
hybrid block model (HBM), see for example [14]. The many loops of
the GBM can be challenging for some of the algorithms discussed in
this monograph, in particular for basic spectral methods and even belief
propagation; we discussed in Section 5.3.2 how graph powering provides
a more robust alternative in such cases.

Another variant that circumvents the discussions about non-edges is
to consider a censored block model (CBM), defined as follows (see
[92, 11]).

Definition 9.2 (Binary symmetric CBM). LetG = ([n], E) be a graph and
ε ∈ [0, 1]. Let Xn = (X1, . . . , Xn) with i.i.d. Bernoulli(1/2) components.
Let Y be a random vector of dimension

(n
2
)
taking values in {0, 1, ?}

such that

P{Yij = 1|Xi = Xj , Eij = 1} = P{Yij = 0|Xi 6= Xj , Eij = 1} = ε

(9.3)
P{Yij = ?|Eij = 0} = 1. (9.4)

The case of an Erdős-Rényi graph is discussed in [11, 12, 138, 6, 54,
53] and the case of a grid in [16]. For a random geometric graph on
a sphere, it is closely related to the above sphere-GBM. Inserting the
? symbol simplifies a few aspects compared to SBMs, such as Lemma
5.8, which is needed in the weak recovery converse of the SBM. In
this sense, the CBM is a more convenient model than the SBM from a
mathematical viewpoint, while behaving similarly to the SBM (when
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G is an Erdős-Rényi graph of degree (a + b)/2 and ε = b/(a + b) for
the two community symmetric case). The CBM can also be viewed
as a synchronization model over the binary field, and more general
synchronization models have been studied in [144, 143], with a complete
description both at the fundamental and algorithmic level (generalizing
in particular the results from Section 6.3).

Note all previously mentioned models are different forms of latent
variable models. Focusing on the graphical nature, on can also consider
the more general inhomogenous random graphs [40], which attach
to each vertex a label in a set that is not necessarily finite, and where
edges are drawn independently from a given kernel conditionally on
these labels. This gives in fact a way to model mixed-membership, and
is also related to graphons, which corresponds to the case where each
vertex has a continuous label.

It may be worth saying a few words about the theory of graphons
and its implications for us. Lovász and co-authors introduced graphons
[111, 46, 116] in the study of large graphs (also related to Szemerédi’s
Regularity Lemma [75]), showing that1 a convergent sequence of graphs
admits a limit object, the graphon, that preserves many local and
global properties of the sequence. Graphons can be represented by
a measurable function w : [0, 1]2 → [0, 1], which can be viewed as a
continuous extension of the connectivity matrixW used throughout this
paper. Most relevant to us is that any network model that is invariant
under node labelings, such as most models of practical interest, can
be described by an edge distribution that is conditionally independent
on hidden node labels, via such a measurable map w. This gives a de
Finetti’s theorem for label-invariant models [61, 24, 65], but does not
require the topological theory behind it. Thus the theory of graphons
may give a broader meaning to the study of block models, which
are precisely building blocks to graphons, but for the sole purpose of
studying exchangeable network models, inhomogeneous random graphs
give enough degrees of freedom.

Further, many problems in machine learning and networks are also
concerned with interactions of items that go beyond the pairwise setting.

1Initially in dense regimes and more recently for sparse regimes [44].
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For example, citation or metabolic networks rely on interactions among
k-tuples of vertices. These can be captured by extending previous models
to hypergraphs.2

2Recent results for community detection in hypergraphs were obtained in [106].
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Concluding remarks and open problems

One may cast the SBM and the previously discussed variants into
a comprehensive class of conditional random fields [96] or graphical
channels [67], where edge labels depend on vertex labels.

Definition 10.1. Let V = [n] and G = (V,E(G)) be a hypergraph with
N = |E(G)|. Let X and Y be two finite sets called, respectively, the
input and output alphabets, and Q(·|·) be a channel from X k to Y called
the kernel. To each vertex in V , assign a vertex-variable in X , and to
each edge in E(G), assign an edge-variable in Y. Let yI denote the
edge-variable attached to edge I, and x[I] denote the k node-variables
adjacent to I. We define a graphical channel with graph G and kernel
Q as the channel P (·|·) given by

Quantities that are key to understanding how much information can
be carried in such graphical channels are:

141
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how “rich” is the observation graph G and
how “noisy” is the connectivity kernel Q.

This survey quantifies the tradeoffs between these two quantities in the
SBM (which corresponds to a discrete X and a specific graph G and
kernel Q), in order to recover the input from the output. It shows that
depending on the recovery requirements, different phase transitions take
place: For exact recovery, the CH threshold is efficiently achievable for
any fixed number of communities. For weak recovery, the KS threshold
is efficiently achievable for any fixed number of communities, but it is
not necessarily the information-theoretic threshold, leaving a question
mark on whether the KS threshold is indeed the fundamental limit for
efficient algorithms. We also presented partial results on the optimal
tradeoffs between various measures of distortion and the SNR in the
partial recovery regime.

In the quest to achieve these thresholds, novel algorithmic ideas
emerged, similarly to the quest to achieve the capacity in channel coding,
with sphere-comparison, graph-splitting, linearized BP, nonbacktracking
operators and graph powering. This program can now be pursued in
different directions, refining the models, improving the algorithms and
expanding the realm of applications. In particular, similar tradeoffs
are expected to take place in other graphical channels, such as rank-
ing, synchronization, topic modelling, collaboration filtering, planted
embeddings and more. We list below a series of possible open problems.

• Exact recovery for sub-linear communities. The survey gives a
comprehensive treatment for exact recovery with linear-size com-
munities, i.e., when the entries of p and its dimension k do not
scale with n. If k = o(log(n)), most of the developed techniques
tend to extend. What happens for larger k? In [22, 161], some of
this is captured by looking at coarse regimes of the parameters.
It would be interesting to pursue sub-linear communities in the
lens of phase transitions and information-computation gaps.

• Partial recovery. What is the fundamental tradeoff between the
SNR and the distortion (MMSE, agreement or mutual informa-
tion) for partial recovery and arbitrary constant degrees? As a
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preliminary result, one may attempt to show that I(X;G)/n ad-
mits a limit in the constant degree regime. This is proved in [67]
for two symmetric disassortative communities, but the assorta-
tive case remains open. A recent result from [58] further gives
the expression for the limit in the disassortative case, but the
assortative case remains open.

• The information-computation gap:

– Related to the last point; can we locate the exact information-
theoretic threshold for weak recovery when k ≥ 3? Recent
results and precise conjectures were recently obtained in [51],
for the regime of finite SNR with diverging degrees discussed
in Section 6.3. Arbitrary constant degrees remain open.

– Can we strengthen the evidence that the KS threshold is the
computational threshold? In the general sparse SBM, this
corresponds to the following conjecture:

Conjecture 2. Let k ∈ Z+, p ∈ (0, 1)k be a probability
distribution, Q be a k×k symmetric matrix with nonnegative
entries. If λ2

2 < λ1, then there is no polynomial time algorithm
that can solve weak recovery (using Definition 2.4) in G

drawn from SBM(n, p,Q/n).

• Learning the general sparse SBM. Under what conditions can we
learn the parameters in SBM(n, p,Q/n) efficiently or information-
theoretically?

• Scaling laws: What is the optimal scaling/exponents of the prob-
ability of error for the various recovery requirements? How large
need the graph be, i.e., what is the scaling in n, so that the proba-
bility of error in the discussed results1 is below a given threshold?

• Beyond the SBM:

– How do previous results and open problems generalize to the
extensions of SBMs with labels, degree-corrections, overlaps

1Recent work [163] has investigated finite size information-theoretic analysis for
weak recovery.
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(see [94]), etc. In the related line of work for graphons [55, 70,
48], are there fundamental limits in learning the model or re-
covering the vertex parameters up to a given distortion? The
approach of [68] and sphere-comparison were generalized to
the case of overlapping communities in [45] with applications
to collaborative filtering. Can we establish fundamental limits
and algorithms achieving the limits for other unsupervised
machine learning problems, such as topic modelling, ranking,
Gaussian mixture clustering (see [31]), low-rank matrix recov-
ery (see [64] for sparse PCA) or general graphical channels?

– How robust are the thresholds to model perturbations or
adversaries? It was shown in [120, 125] that monotone adver-
saries can interestingly shift the threshold for weak recovery;
what is the threshold for such adversarial models or adver-
saries having a budget of edges to perturb? What are robust
algorithms (see also Section 5.3.2)? What are the exact and
weak recovery thresholds in geometric block models (see also
previous section)?

• Semi-supervised extensions: How do the fundamental limits change
in a semi-supervised setting,2 i.e., when some of the vertex labels
are revealed, exactly or probabilistically?

• Dynamical extensions: In some cases, the network may be dynam-
ical and one may observe different time instances of the network.
How does one integrate such dynamics to understand community
detection?3

2Partial results and experiments were obtained for a semi-supervised model [167].
Another setting with side-information is considered in [56] with metadata available at
the network vertices. Effects on the exact recovery threshold have also been recently
investigated in [26].

3Partial results were recently obtained in [81].
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