
Random graphs

Emmanuel Abbé

1 Erdős-Rényi model

Notation: for a positive integer n, we define [n] := {1, 2, . . . , n}.

Definition 1. A graph g is defined by a pair (V (g), E(g)), where V (g) = [n] for a positive
integer n, and E(g) ⊆

(
V (g)

2

)
, where

(
V (g)

2

)
=
{

(i, j) : i, j ∈ V (g), i < j
}

.

An n-graph is a graph on the vertex set V = [n].

Definition 2 (Erdős-Rényi model). We define the following two variants of the Erdős-
Rényi model for random graphs:

1. Uniform model: For m ∈ {0, . . . ,
(
n
2

)
}, define G(n,m) as the random graph ensemble

such that when G ∼ G(n,m),

P(G = g) =

0 if |E(g)| 6= m
1

((
n
2)
m )

otherwise.

I.e., the graph is drawn uniformly at random among all graphs having exactly m
edges.

2. Binomial model: For p ∈ [0, 1], define G(n, p) as the random graph ensemble such
that when G ∼ G(n, p),

P(G = g) = p|E(g)|(1− p)(
n
2)−|E(g)|.

I.e., the edges in the graphs are drawn i.i.d. with probability p.

Remark 1. In the Binomial model with G ∼ G(n, p), we have:

E(|E(G)|) =

(
n

2

)
p

and

V(|E(G)|) =

(
n

2

)
p(1− p)

Remark 2. For the regimes and purpose of this note, the uniform and binomial models are
essentially equivalent (when taking m = b

(
n
2

)
pc), due to standard concentration arguments.

We will mainly use the Binomial model.
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2 Graph properties

Definition 3. A graph property is a collection of graphs on the same vertex set.

For example, the property that “the graph contains a triangle” is the union of all
graphs on a given vertex set that contain a triangle.

Definition 4. For two graphs g and g′,

g ⊆ g′ ⇐⇒ V (g) = V (g′), E(g) ⊆ E(g′).

Definition 5. For a graph property A:

• A is symmetric if it does not depend on the labelling of the vertices, i.e., if a graph
has the property and if the vertices are relabelled with a one-to-one map, then the
new graph also has the property.

• A is increasing if
g ∈ A, g ⊆ g′ ⇒ g′ ∈ A.

• A is decreasing if
g′ ∈ A, g ⊆ g′ ⇒ g ∈ A.

• A is monotone if it is either increasing or decreasing.

Example 1.

• “containing an edge between vertex 1 and 2” → not symmetric,

• “containing a triangle” → symmetric & increasing,

• “being connected” → symmetric & increasing,

• “containing an isolated vertex” → symmetric & decreasing.

Remark 3. From now on, we assume that a graph property is by default symmetric.

Note that a graph g with |V (g)| = [n] can be identified as a boolean vector of length(
n
2

)
, where each component encodes the presence or absence of an edge on a given pair of

vertices. In turn, a graph property A can be represented by a boolean indicator function:

1A : {0, 1}(
n
2) → {0, 1} (1)

x 7→ 1A(x) =

{
1 if x ∈ A
0 otherwise.

(2)

Definition 6. A Boolean function f : {0, 1}N → {0, 1} is increasing if

x ≤ y =⇒ f(x) ≤ f(y)

where x ≤ y if xi ≤ yi for all i ∈ [N ].
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Fact 1. A is an increasing graph property if and only if 1A is increasing.

Definition 7. For p ∈ [0, 1], let µp denote the probability measure on the set of n-graphs
resulting form the ensemble G(n, p), i.e.,

µp(g) = p|E(g)|(1− p)(
n
2)−|E(g)|.

Lemma 1. If A is an increasing property, then [0, 1] 3 p 7→ µp(A) is increasing and
continuous.

Proof. To show continuity, let G ∼ G(n, p), and note that

µp(A) =
∑
g∈A

µp(g)

=

(n2)∑
m=0

∑
g∈A:|E(g)|=m

pm(1− p)(
n
2)−m

=

(n2)∑
m=0

|Am|pm(1− p)(
n
2)−m

where |Am| is the number of graphs having property A with |E(g)| = m. The above is a
polynomial in p which implies continuity.

Now, let G ∼ G(n, p) and G̃ ∼ G(n, q) where q > p. Let G′ ∼ G(n, p′) with p′ = q−p
1−p

such that
G ∪G′ ∼ G(n, p+ p′ − pp′) = G(n, q).

Then, by the increasing assumption,

µq(A) = P(G̃ ∈ A) = P(G ∪G′ ∈ A) ≥ P(G ∈ A) = µp(A).

This technique is an instance of “two round exposure” or “coupling”.

3 Thresholds

We denote by {An}n≥1 a sequence of graph properties on V = [n].

Definition 8. {p̂n}n≥1 is a threshold for the sequence of increasing graph properties
{An}n≥1 if

• µpn(An)→ 0 when pn � p̂n,

• µpn(An)→ 1 when p̂n � pn.

Flip the limit in the definition for decreasing properties. Recall the notations:
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• an � bn ⇔ an = o(bn)

• an � bn ⇔ an = Θ(bn)

• an ∼ bn if an/bn → 1.

Remark 4. A threshold, if it exists, is unique up to constants. We will still often talk
about “the” threshold. We often talk about a threshold for a graph property An without
specifying the “sequence”, and even drop the subscripts when adequate, e.g., saying that p̂
is a threshold.

Definition 9. Let ε ∈ (0, 1) and An be monotone graph property, then from Lemma 1
there exists a unique pn(ε) such that µpn(ε)(An) = ε.

Theorem 1 (Bollobás-Thomason). If An is a monotone property, then it has a threshold.
In particular, pn(1/2) is a threshold.

To prove this theorem we need the following lemma.

Lemma 2. p̂ is a threshold for a monotone property if and only if for all ε ∈ (0, 1),
p̂ = Θ(p(ε)).

Proof. Assume without loss of generality that the property is increasing.
Suppose p̂ is a threshold, so assume that, for some ε, we have p̂ 6= Θ(p(ε)). Then, after

passing possibly to a subsequence, we either have p̂nk/p(ε)→ 0 or p̂nk/p(ε)→∞.
In the first case, we have p̂ � p(ε), hence µpnk (ε)(Ank) → 1. In the second case, we

have p̂� p(ε), hence µpnk (ε)(Ank)→ 0. In either case, this contradicts µp(ε)(An) = ε.
Conversely, let p = pn such that p� p̂ = Θ(p(ε)). We claim that µp(An)→ 0. Suppose

instead that µp(An) ≥ a = µp(a)(An) > 0 on a subsequence, hence p ≥ p(a) on that
subsequence, and by assumption p(a)� p(ε). Choosing ε < a yields a contradiction. The
other case is done similarly.

Proof of Theorem 1. Assume without loss of generality that the property is increasing. We
show that p(1/2) = Θ(p(ε)) for all ε ∈ (0, 1). Let ε ∈ (0, 1) and m > log ε

log(1−ε) .

Now, take {G1, G2, . . . , Gm}
iid∼ G(n, p(ε)). Define G̃ =

⋃
1≤i≤mGi, and note that

G̃ ∼ G(n, p′) where p′ = 1− (1− p(ε))m ≤ mp(ε). Define G′ ∼ G(n,mp(ε)). We have by
the increasing property that

P (∪1≤i≤mGi ∈ An) ≤ P(G′ ∈ An) (3)

and

P (∀i, Gi /∈ An) = P(G1 /∈ An)m = (1− ε)m. (4)

Choose m sufficiently large such that (1− ε)m < ε, say m ≥ log ε
log(1−ε) . Thus,

1− ε ≤ P(∪mi=1Gi ∈ An). (5)

Thus, we have p(1 − ε) ≤ m(p(ε)). Assume ε < 1/2, then by monotonicity we have
p(ε) ≥ p(1− ε)/m ≥ p(1/2)/m. On the other hand, p(ε) ≤ p(1/2) by monotonicity. Since
m depends only on ε, it holds that p(ε) = Θ(p(1/2)). The case ε > 1/2 is similar.
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4 Sharp thresholds

Definition 10 (Threshold width). For a monotone property An and ε ∈ (0, 1), define
δn(ε) = pn(1− ε)− pn(ε), where pn is defined in Definition 9.

Remark 5. For any threshold p̂, we have δ(ε) = O(p̂) by Theorem 1. However, its possible
that δ(ε)/p(ε)→ 0.

Definition 11.

• p̂ is a coarse threshold if there exists an ε ∈ (0, 1) such that δ(ε) = Θ(p̂),

• p̂ is a sharp threshold if for all ε ∈ (0, 1), δ(ε) = o(p̂).

Remark 6. The following statements are equivalent:

• p̂ is sharp

• p(1− ε)/p(ε)→ 1 for all ε ∈ (0, 1)

• the threshold is unique up to ∼

• For all δ > 0, µp(An)→

{
0 if p ≤ p̂(1− δ)
1 if p ≥ p̂(1 + δ)

What can we say about the sharpness of general monotone property thresholds?
Friedgut-Kalai first proved that δ(ε) = O( log(1/ε)

log(n) ), later improved by Bourgain-Kalai to

δ(ε) = O( 1
log2−ν(n)

), ν > 0. An exponent of 2 is conjectured to hold. Note that these

bounds are interesting only for large thresholds, i.e., larger than the bounds themselves
(since we already know that δ(ε) = O(p̂)). Friedgut’s work also shows that a monotone
property is coarse if it cannot be approximated by a “local property” (in a sense made
formal), such as subgraph containment as discussed next.

5 Subgraph containment

We use the following notation throughout the section:

• X ∼ R+ denotes a r.v. X that takes values in R+.
Similarly, X ∼ Z+ denotes a r.v. X that takes values in Z+.

• Poi(c) denotes a Poisson distribution with mean c.

• Xn
(d)−−→ X means that Xn tends in distribution to X.
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5.1 Single edge

Example 2 (Emptiness). As an example, consider the emptiness property, which is that
the graph has no edges. Let M be the number of edges in a random graph G ∼ G(n, p) and
N =

(
n
2

)
. We have

M =
∑
i<j

1((i, j) ∈ E(G)) ∼ Binom(N, p) (6)

We have

P(M = 0) = (1− p)N (7)

If pc = c/N , then, we have P(M = 0) ∼ e−c. One can show that pc = Θ(1/n2) is a threshold
for all c > 0, hence a coarse threshold. Further, Binom(

(
n
2

)
, pc) tends in distribution to

Poisson(c). We will see that this is typical of properties which can be expressed by containing
a finite subgraph.

5.2 First and Second Moment Method

This is a typical strategy used in proofs regarding thresholds. A few results:

Theorem 2. (Markov Inequality) If X takes values in R+, then for any a ∈ R+ \ {0},

P(X ≥ a) ≤ E(X)

a

Proof.
E[X] ≥ E[X1(X ≥ a)] ≥ E[a1(X ≥ a)] = aP(X ≥ a).

Lemma 3. Let Z ∼ R+. Then, the following bounds hold:

(a) P(Z ≥ 1) ≤ E(Z)

(b) P(Z = 0) ≤ Var(Z)
E(Z2)

≤ Var(Z)
[E(Z)]2

Proof. (a) Follows directly from the Markov Inequality with a = 1.

(b) One can proceed with Markov to get the weaker bound: P(Z = 0) = P(Z − E(Z) =

−E(Z)) ≤ P(|Z − E(Z)| ≥ E(Z)) ≤ Var(Z)
[E(Z)]2

.

One can proceed Cauchy-Schwartz to get the stronger bound: EZ = E[Z1(Z > 0)] ≤
(EZ2)1/2(P(Z > 0))1/2.

Note that both bounds are equivalent and vanish if one shows that EZ2 ∼ (EZ)2.
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5.3 Triangles

We can write the triangle containment property as:

An = {∃ i < j < k ∈ [n] such that Eij = Ejk = Eik = 1}

An is an increasing property, so there exists a threshold.

Let Zn = # of triangles in G ∼ G(n, p). Let T denote a triplet of vertices. Denote
by 14(T ) := 1{G contains a triangle with vertices T}. We have:

Zn =
∑

T∈([n]3 )

14(T ).

Since the expected value function is additive, E(Zn) =
(
n
3

)
· p3. Hence, if p� 1

n , we have
E(Zn)→ 0 and by Lemma 3(a), P(Zn ≥ 1)→ 0. So we have a lower bound for our threshold.

To show that the upper bound is also 1
n , we use Lemma 3(b):

Var(Zn) =
∑

S,T∈([n]3 )

cov(14(S),14(T )).

We must analyze three cases:

• |S ∩ T | ≤ 1, i.e. S and T share at most 1 vertex. Then, cov(14(S),14(T )) = 0.

• |S ∩T | = 2. We have two triangles sharing an edge. There are ≤ c
(
n
4

)
ways to choose

S and T , where c is a constant. Then, cov(14(S),14(T )) ≤ p5.

• |S ∩ T | = 3. There are
(
n
3

)
such cases. Then, cov(14(S),14(T )) ≤ p3.

Combining these cases, we have Var(Zn) ≤ c
(
n
4

)
·p5 +c′

(
n
3

)
·p3. Recall that E(Zn) =

(
n
3

)
·p3.

Hence, if p� 1
n , we have Var(Zn)

[E(Zn)]2
→ 0. By Lemma 3(b), we have P(Zn = 0)→ 0.

Theorem 3. The property {triangle containment} has a threshold at 1
n .

The message here is that for finite subgraphs, the first and second moment method
seems to give the threshold. However, there are additional subtleties that we need to worry
about, as discussed in Section 5.5. We first investigate what happens at the threshold.

5.4 Triangles at the threshold

We first introduce the moments method to estimate the limiting distribution of counts.

Recall: Xn
(d)−−→ X means P(Xn ≤ x) → P(X ≤ x) ∀x that are continuity points of the

function u 7→ P(X ≤ u). If Xn ∼ Z, then Xn
(d)−−→ X iff P(Xn = k)→ P(X = k) ∀ k ∈ Z.
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Theorem 4. Let X be a r.v. whose distribution is determined by its moments. If for all

k ≥ 1, E(Xk
n)→ E(Xk) and all moments are finite, then Xn

(d)−−→ X.

Above, Xk = X · X · . . . · X (choosing with replacement). An equivalent version of
the theorem (see below) concerns (X)k = X(X − 1) . . . [X − (k − 1)] (choosing without
replacement).

Theorem 5. Let X be a r.v. whose distribution is determined by its moments. If for all

k ≥ 1, E(Xn)k → E(X)k and all moments are finite, then Xn
(d)−−→ X.

Thm. 4 and 5 are equivalent since the polynomials Xk and (X)k generate each other.

Remark 7. If Z ∼ Poi(λ), then E(Z)k = λk.

Lemma 4. Let Iα be indicator functions and A be a finite set. If S =
∑

α∈A Iα, then
Sk =

∑
α1,...,αk

Iα1 · . . . · Iαk and (S)k =
∑

α1,...,αk distinct and ordered Iα1 · . . . · Iαk
Proof. Assume the result to be true for (S)k (it trivially holds for k = 0). We have

(S)k(S − k) =
∑

α1,...αk distinct and ordered

Iα1 · . . . · Iαk · (S − k)

=
∑

α1,...αk d&o and αk+1 free

Iα1 · . . . · Iαk+1
− k

∑
α1,...αk d&o

Iα1 · . . . · Iαk .

Since αk+1 is free, it may either be distinct from α1, . . . αk, in which case it contributes to a
(k + 1)-tuple of the d&o index set, or αk+1 equals one of the α1, . . . αk, with k possibilities
for that, which are all cancelled out by the term k

∑
α1,...αk d&o Iα1 · . . . · Iαk .

Theorem 6. Let Zn = # of triangles in G ∼ G(n, cn), then

Zn ∼ Poi(
c3

6
).

Proof. (Outline)

E(Zn)k =
∑

T1,...,Tk distinct and ordered triplets

P(E(T1) ∈ G, . . . , E(Tk) ∈ G)

= E′k + E′′k , where E′k is over disjoint triplets, and E′′k is the rest of the sum

E′k =

(
n

3

)
· p3 ·

(
n− 3

3

)
· p3 · . . . ·

(
n− 3(k − 1)

3

)
· p3

∼
[

(np)3

6

]k
=

(
c3

6

)k
, as desired for Poi

(
c3

6

)
.

Note two triplets are distinct if they are not the exact same triplet, and they disjoint if
they do not intersect. It remains to show that E′′k = o(1), which takes place since the
probability of overlaps vanishes fast enough. (Note the distinction between distinct triplets
and disjoint triangles on these: one can have two distinct triplets that share one vertex,
and one can have to disjoint triangles on these despite the common vertex).
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5.5 Balanced subgraphs

Consider a finite graph H. We attempt to find the threshold for the property of containing
H. Let vH , eH be the number of vertices and the number of edges in H, respectively. Let
Zn = # copies of H in G(n, p). Below cH is a constant corresponding to the number of
automorphism of H (see below).

E(Zn) =

(
n

vH

)
· peH · cH � nvH · peH

We can see above that indeed, if p� ( 1
n)vH/eH , then E(Z)→ 0. Hence p = ( 1

n)vH/eH is a
lower bound for the threshold.

Consider the following example, with graph H to the left and G ⊆ H to the right.

In this example, if p� n−
5
6 , we do not contain H as a subgraph with high probability.

Question: If p� n−
5
6 , do we contain H with high probability?

Answer: No. Choose n−
5
6 � p � n−

4
5 . (Ex: p = n−

9
11 ), then E(Zn) → ∞. However,

consider G ⊂ H pictured to the right of H. Let Z̃n = # of copies of G. Then, E(Z̃n) �
n4p5 → 0 by our choice of p. There is no G w.h.p., so we cannot have H w.h.p.!
The catch: G ⊂ H, but G is denser.

Definition 12. For a graph H, define m(H) = max{ |E(H′)|
|V (H′)|} over all H ′ 6= ∅ contained

in H (ignoring isolated vertices). A graph H is balanced if m(H) = |E(H)|
|V (H)| and strictly

balanced if only H achieves this ratio. Let Aut(H) be the number of automorphisms of H,
i.e., the number of ways to relabel the vertices of the graph without changing the edge set.

Theorem 7. The property of containing a finite graph H in G(n, p) has a threshold at
p = n−1/m(H). Further, if p = cn−1/m(H) for some c > 0 and H is strictly balanced and
connected, then ZH → Poi(cE(H)/Aut(H)) in distribution.

The proof of this theorem is similar to the triangle case, taking into account that

1. m(H) matters because in order to contain a copy of H, the graph must contain a
copy of its densest subgraph. Also, if H contains a subgraph that is denser than
it, there is an elevated chance of two copies of H overlapping in order to share that
subgraph.

2. Assuming that H is connected and contains no subgraph denser than itself, we have
that

Ek ∼
(
C(H)

(
n

V (H)

)
pE(H)

)k
∼

(
nV (H)pE(H)

Aut(H)

)k
allowing us to establish the Poisson law.
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Above C(H) = V (H)!/Aut(H) is the number of different ways to place the graph H on the
V (H) selected vertices. Recall that A : V (H)→ V (H) is an automorphism if (i, j) ∈ E(H)
implies that (A(i), A(j)) ∈ E(H). For example, for a square H = C4, we have C(H) = 3
different ways to draw the square (that are not isomorphic), and for each way, there are
Aut(H) = 8 equivalent labelings of the vertices (starting with the label 1 in each of the 4
possible vertices and assigning the other sequence of labels on the right or on left side of 1).

More generally, for any k > 2, m(Ck) = 1 and Aut(Ck) = 2k.

Containing a finite subgraph has thus always a coarse threshold that is of the form n−d

where d ∈ Q. Friedgut 1999 shows that a type of “converse” statement also holds; if the
threshold is coarse, then it must be local in some sense and it must be a rational power of
n.

6 Connectivity

A graph is connected if there is a path between any pair of vertices.

Theorem 8. Let G ∼ G(n, p) with p = c log(n)
n ,

• If c < 1 then G is not connected w.h.p.

• If c > 1 then G is connected w.h.p.

i.e., log(n)
n is a sharp threshold for connectivity

We will first prove a weaker statement which will imply the first part of the above
theorem.

Lemma 5. Let G ∼ G(n, p) with p = c log(n)
n ,

• If c < 1 then G has an isolated vertex w.h.p.,
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• If c > 1 then G does not have an isolated vertex w.h.p.,

i.e., log(n)/n is a sharp threshold for containing an isolated vertex.

Proof. We use the first and second moment method. Let

Ziso =
∑
v∈[n]

1(v is iso)

i.e., Ziso counts the number of isolated vertices. Note that the probability that a given
vertex is isolated is

E[1(v is iso)] = (1− p)n−1

hence
E[Ziso] = n(1− p)n−1

and

P(Ziso ≥ 1) ≤ E[Ziso]

≤ n(1− p)n−1

∼ ne−c log(n)

= n · n−c

If c > 1 we then have that P(Ziso ≥ 1)→ 0 proving the second part of the lemma. For the
first part,

P(Ziso = 0) ≤ Var(Ziso)

E[Ziso]2

Note that

Var(Ziso) = Var
∑
v

1(v is iso))

=
∑

v,w∈[n]

Covar(1(v is iso),1(w is iso))

=
∑
v

Var1(v is iso)) +
∑
v 6=w

Covar(1(v is iso),1(w is iso))

The following two equalities follow from elementary calculations∑
v

Var1(v is iso)) = n((1− p)n−1 − (1− p)2n−2) = n(1− p)n−1(1− (1− p)n−1)

= n(1− p)n−1(1− o(1)) = o(E[Ziso]
2)

∑
v 6=w∈[n]

Covar(1(v is iso),1(w is iso)) = n(n− 1)((1− p)n−1(1− p)n−2 − (1− p)2n−2)

= n(n− 1)(1− p)2n−3(1− (1− p))
∼ (n(1− p)n−1)2p

= o(E[Ziso]
2)
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Hence
P(Ziso = 0) = o(1)

if c < 1.

Note that Lemma 5 directly implies the first part of Theorem 8. To prove the second
part we bound the probability of any subset of size up to n/2 to be disconnected. Note
that for a fixed subset of size k, the probability that it is disconnected is (1 − p)k(n−k).
Therefore a union bound gives

P(∃S : |S| = k, S is isolated) ≤
(
n

k

)
(1− p)k(n−k)

and again by a union bound

P(∃S : |S| ≤ n/2, S is isolated) ≤
n/2∑
k=1

(
n

k

)
(1− p)k(n−k).

It is not hard to verify that the above summation goes to 0 if c > 1. The first term at
k = 1 is

n(1− p)n = n · n−c → 0

and the last term is

≤ 2n(1− p)n2/4 = 2n(1− c log(n)

n
)n

2/4 ∼ 2ne−
cn log(n)

4

which falls exponentially fast.

7 Giant Component

A giant component in a graph drawn from G(n, p) is a connected component of linear size
(in n).

Definition 13. For a given n and p, let LCC(G(n, p)) denote the size of the largest
connected component of a graph drawn from G(n, p) and 2LCC(G(n, p)) denote the size of
its second largest connected component.

The above does not rule out having multiple largest components.

Theorem 9. Let G ∼ G(n, p) with p = c
n ,

1. If c < 1 then LCC(G) ≤ 2.1
(1−c)2 log n w.h.p.

2. If c > 1, then

(a) LCC(G) ≥ (1 + o(1))βn w.h.p., where β is the unique solution in (0, 1) to
e−βc = 1− β,

(b) 2LCC(G) ≤ 16c
(1−c)2 log n w.h.p..
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In particular, 1/n is a sharp threshold for containing a giant.

Remark 8. The 2.1 can be made 2 + ε for any ε > 0. In 2(a), the largest component is
indeed unique.

A quick intuition for previous theorem is that the number of neighbors of a vertex has
distribution Bin(n− 1, cn), whose expectation tends to c. Thus depending on whether c
is lesser or greater than 1, neighborhoods tend to either expand or die out. This can be
described more precisely with Galton-Watson trees.

7.1 Galton-Watson process

Let µ be a probability distribution on Z+.

Definition 14. GW (µ) is the random process {Zk}k≥0 defined by:

• Z0 = 1,

• Zk =
∑Zk−1

i=1 X
(k)
i , where X

(k)
i are i.i.d. under µ, k ≥ 1.

Z0 = 1

Z1 = 4

Z2 = 10

Remark 9. For any k, E[Zk] = EZk−1
E[Zk|Zk−1] = E(E(µ)Zk−1) = E(µ)k. Thus the

expected number of descendants at generation k is vanishing if E(µ) < 1 and diverging if
E(µ) > 1.

Definition 15. Let Z =
∑

i≥0 Zi (total number of descendants) and zµ = P(Z <∞) (the
extinction probability).

Note that for any k, if Zk = 0, then Zn = 0 for all n ≥ k. Thus the events {Zk = 0}
are increasing and

zµ = P(Z <∞) = P(∃k ≥ 1 : Zk = 0) = lim
k→∞

P(Zk = 0). (8)

Since P(Zk = 0) is increasing in k, the limit exists in (0, 1).
Note that if µ(0) = 0, then zµ = 0.

Theorem 10. Assume µ(0) > 0 and E[µ] <∞, Var(µ) <∞.

1. If E(µ) ≤ 1, then zµ = 1.
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2. If E(µ) > 1, then zµ is the unique solution in (0, 1) to φµ(z) = z, where φµ(z) = E[zX ],
X ∼ µ (probability generating function).

Remark 10 (Properties of the Generating Function). φµ(z) has the following properties:

(A) φµ(z) is strictly increasing and convex for 0 ≤ z ≤ 1;
(B) φµ(z) is continuous for 0 ≤ z ≤ 1;
(C) φµ(1) = 1;
(D) E(µ) = φ′µ(1).

Proof. 1. We have

P(Zk ≥ 1) ≤ E[Zk] = E(µ)k. (9)

Therefore, if E(µ) < 1, limk→∞ P(Zk ≥ 1) = 0 and limk→∞ P(Zk = 0) = zµ = 1. The case
E(µ) = 1 is covered by the next part.

2. Denote φZk(z) = E[zZk ] and note that P(Zk = 0) = φZk(0). We have

E[zZk ] = EE[zZk |Zk−1] (10)

φZk(z) = φZk−1
(φµ(z)) = (φµ ◦ . . . ◦ φµ)(z) = φµ(φZk−1

(z)). (11)

Thus, using (8) and the continuity of φ at 0, we obtain

φµ(zµ) = φµ( lim
k→∞

φZk(0)) (12)

= lim
k→∞

φµ(φZk(0)) (13)

= lim
k→∞

φZk+1
(0) = zµ. (14)

Notice that 1 is always a fixed point of φµ. From the properties of φµ it follows that if
E(µ) > 1, there exists a unique fixed point in (0, 1) (see Figure 1).

Let z0 > 0 be a fixed point of φµ. Since φZk is increasing, we have

φZk(0) ≤ φZk(z0) = z0. (15)

Taking the limit for k →∞, we obtain zµ ≤ z0, hence zµ is the smallest fixed point of φµ.
If E(µ) = 1, there exists a unique fixed point at z = 1, which clears the case left open

in part 1.

Remark 11. In the case of a Poisson offspring, we have

φPoi(c)(z) = ec(z−1) (16)

Galton-Watson trees play an important role for the ER model with bounded degree,
since the close neighborhood of a vertex in the graph can be approximated by a Galton-
Watson tree of offspring Poi(c). This in fact gives some insight behind the giant component
threshold: if c < 1, the neighborhoods tend to die out, whereas if c > 1, the neighborhoods

14
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Figure 1: On the left: in the subcritical (E(µ) < 1) and critical (E(µ) = 1) regime the
smallest fixed point is at z = 1. On the right: in the supercritical (E(µ) > 1) regime there
is a unique fixed point in (0, 1).

expand with probability zPoi(c). Thus a handwaving argument suggests that each vertex
reaches in expectation roughly (1− zPoi(c))n+ o(n) vertices, which gives the size of the

giant component since φPoi(c)(z) = ec(z−1). Showing that the giant appears when c > 1
based on this intuition requires a bit more work, and we refer to the book of Janson et
al. on Random Graphs. We next prove part 1 of the Theorem, revising first the Chernoff
bound.

7.2 Chernoff bound

Recall that Markov’s inequality for a positive random variable X

P(X ≥ a) ≤ E[X]

a

can be used for t ≥ 0 as

P(X ≥ E[X] + ∆) = P(etX ≥ et(E[X]+∆))

≤ E[etX ]

et(E[X]+∆)

In the case when X is drawn from Bin(n, p), we have that

E[etX ] = (1− p+ pet)n

therefore

P(X ≥ E[X] + ∆) ≤ (1− p+ pet)n

et(np+∆)

Since the above expression is for any t we can optimize over t, choosing

et =
(∆ + np)(1− p)
p(n− np−∆)
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and thus obtaining

P(X ≥ E[X] + ∆) ≤ exp(− ∆2

2(E[X] + ∆
3 )

) ≤ exp(− ∆2

2E[X] + ∆)
). (17)

7.3 Proof of Theorem 9 part 1

Take a vertex v and let Cv be its connected component. We want to upper bound the
probability of |Cv| ≥ k. To bound this we consider the process in which we grow a tree
depth by depth from v and at each intermediate leaf i we assume that the number of
descendants is an independent Binomial variable Xi ∼ Bin(n, c/n), i.e., a Galton-Watson
tree with offspring distribution Bin(n, c/n). Note that this model over counts the vertices
in Cv because there may be common descendants (i.e., loops) and because the number of
possible descendants should normally reduce with the depth. However we are over-counting
and obtain the following upperbound

P(|Cv| ≥ k) = P(number of descendent of v ≥ k − 1) ≤ P(

k∑
i=1

Xi ≥ k − 1)

where the ‘descendants’ are simply the vertices connected to v, which can be seen as

descendants in a depth first search from v. Note that X =
k∑
i=1

Xi is distributed as

X ∼ Bin(nk, c/n). Therefore we want to bound

P(X ≥ k − 1) = P(X ≥ kc+ (k − 1− kc))

and applying the Chernoff bound with ∆ = k − 1− kc and E(X) = kc, we obtain (after
simplifications using the stronger bound in (17))

P(|Cv| ≥ k) ≤ exp(−(1− c)2k

2
)

Now if k = 2.1
(1−c)2 log(n) we have that

P(∃v ∈ [n] : |Cv| ≥ k) ≤ n · n−1.05 → 0

7.4 Further intuition on the giant size

We now provide an intuitive explanation on why the giant component should have size βn
where β is the unique solution to

1− β = ψpoi(c)(1− β)

Let us say that the giant component has size βn. Then the probability that a vertex does
not belong to the giant component is 1− β. We can also write this probability as

P(v /∈ Giant) =
∑
k

P(N(v) ∩Giant = ∅||N(v)| = k)P(|N(v)| = k)

16



where N(v) stands for the set of immediate neighbours of vertex v. We have that |N(v)| is
roughly distributed as Bin(n, c/n)→ Poi(c), hence∑
k

P(N(v)∩Giant = ∅||N(v)| = k)P(|N(v)| = k) ≈
∑
k

(1−β)kP(Poi(c) = k) = ψpoi(c)(1−β)

which gives the desired fixed point.
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