Homological Algebra Seminar Week 9

Dév Raj Joe Vorburger after the talk of Alexandre Pons and
Deborah Righi

0.1 Notions of convergence of spectral sequences

The main goal of this lecture is to extend the notion of convergence of a spectral
sequence to the unbounded case. We first state the following example which will
be relevant in the second half of these notes.

Example 0.1. Let E be a 1st quadrant spectral sequence, i.e. Ef =0 when-
ever p or ¢ is negative. Suppose that E = Hp,q. Then the filtration on H,
is

O0=FH,C.---C F,H,, = H,.

The morphisms (on the E" page) whose codomain is on the z-axis, or whose
domain is on the y-axis must be the 0 map, as a direct consequence of being
a first quadrant spectral sequence. In particular this implies £}, C Ej, and
E§, — Eg,- And so in particular we have for the E*-page Ej C E, and
E§, — EGy-

By definition of convergence, this implies we have maps H, — Egj C E%, and
El, — E§, C Hy,. These morphisms are called edge homomorphisms. Because
historically spectral sequences first appeared in the case of fiber sequences of
topological spaces we call the Ef, fiber terms and we call the Ej, base terms.

The terminology of fiber and base terms will be retroactively motivated in the
next section. We now introduce our first notion of convergence.

Definition 0.2. We say that a spectral sequence E weakly converges to H, if
we are given H,, € Ob(A) each having a filtration

---CcF,_ H,CF,H,C---CH,
such that for all integer p, q there are isomorphisms 3, : Epg — FyHpyq/Fp 1Hpy g

In order to introduce our second, better, notion of convergence, we introduce
the following terminology on filtrations.

Definition 0.3. Let H € Ob(.A) with a filtration
-CF,_ HCF,HC---CH.

We call this filtration ezhaustive if \J, F, H = H, Hausdorff if (), F,H = 0 and
complete if H = &nH/FpH



With this in hand, we are able to state the following notion of convergence.

Definition 0.4. We say E approaches (or abuts to) H, if it weakly converges
to H, with filtrations

- CF,H,CF,H,C---CH,
that are exhaustive and Hausdorff.

Remark 0.5. If E¥ weakly converges to H,, one can observe that it must abut
to Up F,H,/ ﬂp F,H,.

The final notion of convergence is the following.

Definition 0.6. We say that E converges to H, if E abuts to H,, F is regular
and the filtrations of H, are complete.

We introduced the three notions of convergence from weakest to strongest, luck-
ily for nice enough spectral sequences we have results such as the following,
which allows us to promote weaker notions of convergence.

Lemma 0.7. Let E be a spectral sequence that is bounded below. Then E
approaches H, if and only if E converges to H,.

Proof. (<) This is immediate as the definition of convergence includes “ap-
proaches to H,”.

(=) Bounded below implies regularity by a lemma from the previous week. For
all n there exists s such that £ = 0 for all p < s and such that p+q =n
by definition of bounded below. This implies that the same holds at the E°°-
page which by definition of approaching implies that F,H,,/F,_1H, = 0. This
in turn implies that for all p < s we have that F,H, = ﬂp F,H,, which is
equal to 0 because the filtration is Hausdorff by assumption. This implies that
H, = @HH/FPH,“ i.e. that the filtration is regular. This concludes the
proof. U

Even when a spectral sequence converges, it need not give complete information.
Thus, it can be useful to have other methods to relate the information on the
pages of the spectral sequence with the abutment. In line with categorical
thinking, a first attempt at this is the following definition.

Definition 0.8. Let E, E’ be two spectral sequences that converge to H,, H.
respectively with isomorphisms B, : Epy — FpHpig /Fp—1Hpyq and isomor-
phisms 3, : B2 — F,H,, /F, 1H), .

We call a morphism h : H, — H. compatible with a morphism f: E — E’ if h
preserves the filtration (i.e. h(F,H,) C F,H) ) such that the following diagram

commutes

o Pra
B — Fplpiq/Fp1Hpig

f:;l Jﬁ
B !

100 raq ! !
qu FPHp+q/FP*1Hp+q



The above definition is used in the following theorem to assist in spectral se-
quence computations.

Theorem 0.9. (Comparison theorem) Let E,E’' converge to H,, H. respec-
tively, and h : H, — H. be a morphism which is compatible with f : E — E'.
If for all p,q there is an v such that f,, : B}, — Ez'fq is an isomorphism, then
the map h : H, — H. is an isomorphism.

Proof. By the mapping lemma f7 is an isomorphism. Weak convergence and
compatibility of h and f yields (via a simple application of the third isomorphism
theorem) that for all s,p we have a commutative diagram

0—— Fp—lHn/Ean — FpHn/E9H7L EIC))?n_p 0

| | s

0 — F, 1 H)/FH, — F,H, /FH, —— E> _ —— 0.
Fixing s, we get by induction on p and by the 5 lemma that F,H,/FsH, =
F,H) /F;H) for all p. By exhaustivity, this implies that we have an isomoprhism
H,/FH, = H! /F;H/  we conclude taking inverse limits (with respect to s) by
completeness of the filtration. O

Remark 0.10. A spectral sequence E may converge to two different limits, so
H, can be difficult to reconstruct from this data.

Example 0.11. Let E be a first quadrant spectral sequence such that Epy =
Z/2Z,%p,q > 0. Then without further information, we do not know whether
Hy is Z/8Z or (Z/27)®3. The comparison theorem can help us in situations
such as these.

0.2 The Lerray-Serre spectral sequence

The goal of this section is to define the Lerray-Serre spectral sequence and show
how it can be useful for computing homology groups of spaces.

Definition 0.12. Let Z be a pointed topological space and I = [0, 1] the unit
interval. We say that a morphism f : X — Y of pointed topological spaces
satisfies the homotopy lifting property for Z if given a commutative diagram

7 —9% 4 X

Lo 1

ZXIT>Y

there always exists G : Z x I — X such that

zZ—2 5 X

[

ZXIT>Y



commutes.

Definition 0.13. We call a sequence of composable maps F = F = B in the
category of pointed topological spaces a Serre fibration if ¢ is the inclusion of
7-(xp), the fiber of 7 over the base point of B, into E and 7 satisfies the
homotopy lifting property for all CW-complexes.

Example 0.14. For B a pointed topological spaces we have a Serre fibration
OB % B! =% B, where B! is the space of maps I — B starting at the base
point of B, with the compact open topology and ev; : Bf — B is the map given
by evaluating at 1. We omit the proof that B! — B satisfies the appropriate
homotopy lifting property.

With the appropriate topological and homological language, we can now state
the following theorem of Serre.

Theorem 0.15. (Serre Spectral Sequence) Let F < E =5 B be a Serre fibration.
Assume further that B is simply connected. Then there is a first quadrant

spectml sequence
Er%,q = HP<B7HQ<F)) = Hp+q(E)~

Remark 0.16. The edge map H,(F) — Eg;, C Hy(FE) is the map H,(¢) and
if we also assume that F' is connected, the other edge map H,(E) — EJ%(B)
is Hy(m).

There are many application in homology computations of the above result, we
present here a specific one

Proposition 0.17. With the assumptions of the theorem and further assuming
that F is connected, if there exist ny > 1 and no > 2 such that, for any abelian
group A

HZ(F,A) =0,V0 <i < mnq,

H;(B,A) =0,Y0 < j < no,

then there is a long exact sequence
Hn1+nz—1(F) — Hn1+n2—1(E) — Hn1+nz—1(B) — Hn1+n2—2(F) —

Proof. We look at the Leray-Serre Spectral sequence in this case. On the y-
axis we have E§, = Ho(B,H,(F)) = H,(F) and similarly on the z-axis we
have E2%) = H,(B, Ho(F)) = H,(B) where the isomorphisms follow from the
fact that Ho(F) = Z and Hy(B) = Z which are the homological incarnation
of the connectivity assumptions on B and F. The vanishing assumptions on
the homology of F' and B (with arbitrary coefficients) imply, by the universal
coefficient theorem, that Ef,q = 0 for p < ny or ¢ < ny and one of them non-
zZero.

We get vanishing of the corresponding terms of the E°° page. In particular,
this implies that the filtration quotients of Fj,H}, are trivial for 1 < k < ny +
ny — 1, as under these conditions, when k = p+¢q, p < ng or ¢ < n; and at



least one of p and ¢ is non zero, thus F,H,y/Fp 1Hpq = Ege = 0. This in
particular implies that in this range we have isomorphism FyHy(FE) = Eg5, and
EpSy =2 Hi(E)/ESS,, which follow from definition of convergence. This gives the
following short exact sequence

0 — Eg% — Hip(E) — Ep5y — 0.

Looking at the kth page, we have a differential E,’j’o — E{ikfl, by turning the
page and recalling that we are working with a first quadrant spectral sequence
we see that this map fits in the following exact sequence

k+1 k k k41
0— Ek)0 — Ek,o — EO,k—l — EO’,C?1 — 0.

For first quadrant spectral sequences, one can notice that E’;Jrol = by and
Egjil & E§%—1 because all the differentials that can modify these groups live
on earlier pages. Similarly, one can notice that Hy(B) = E,io ~ E,’j_o and
Hy_1(F) = Eak_l = (’ik_l by using that qu =0 for p < ny or ¢ < nq and
one of them non-zero. This allows to rewrite the above exact sequence as

0 — Epo — Hy(B) = Hp—1(F) = Egy,_1 — 0.
We can splice this exact sequence with the following short exact sequence
0— Egy — Hy(E) — Epy — 0
in order to obtain the desired long exact sequence
Hyy oy 1 (F) —= Hyyony 1 (E) —= Hpyiny1(B) —— Hpyyny—a(F) —— -+~

O

Remark 0.18. We can of course extend the above long exact sequence “naively”
by 0 — ker(Hp, yny—1(F) 2% Hp,iny,—1(F)). Tt would be nice to have a more
direct understanding of how to extend the above long exact sequence. Inspecting
the spectral sequence once more, we see that a potential obstruction comes from
the image of EJl, in Hy, yn,—1(F). By the universal coefficient theorem, we
have in general

E2, = H,(B, Hy(F)) = Hy(B) ® Hy(F) & Tor{(H,_1(B), Hy(F)).

In particular, due to vanishing assumptions, in the context of interest to us
the first obstruction to a long exact sequence in homology should be related to
Hy, (B, Hy, (F)) = Hp,(B) © Hy, (F).



Remark 0.19. We resume the example of the path space fibration QB — B! —
B. Recall that B is simply connected, so that, ignoring differentials and only
making explicit the terms we are interested in, the Fy page will look like

H3(2B) EY, E3, E3, Ef,
H,(QB) Hy(B, H,(2B)) Hy(B, Hi(QB)) E3, Ef
Z Efy Hy(B) H;3(B) Hy(B)

We know that this spectral sequence converges to the homology of a contractible
space. This in particular means that Ho(B, H1(£2B)) has to vanish after turning
to the F5 page, in particular we have an exact sequence

The cokernel of the last map is E3, and we see, due to lack of space for further
differentials, that it must be killed upon turning to the 4th page, so that it
must be isomorphic to Ej,. However, by the universal coefficient theorem and
because B is simply connected we have Hy(B,H;(QB)) = 0, so that E3, &
E32, = H3(B). This gives us an exact sequence

Because the term Ho(B, H1(2B)) is a bit awkward we would like to make it
a bit clearer. We first do this via an application of the universal coefficient
theorem. Before writing out what this yields, we notice that a combination of
the Hurewicz isomorphism and the isomorphism 7;(2X) 2 m; 41 (X) gives us

H(QX) 27 (QX)% 2 1y(B) = Hy(B).
Now an application of the universal coefficient theorem gives
HQ(B7H1(QB)) = HQ(BaHQ(B))

>~ Hy(B) ® Hy(B) ® Tor’(H,(B), Hy(B)) = Hy(B) ® Hy(B).

Putting all of this together gives us an exact sequence



