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1 Long Exact Sequences

Theorem 1.1. Let A be an abelian category, and suppose that

0 A, Ly B, =, 0

is a short exact sequence in Ch(A). Then there is a collection of natural' maps
{On : Ho(C) — Hy—1(A) }nez, which we call connecting homomorphisms, such
that

i

I H 0 (C) 2 H(A) I Hy(B) 2 HL(C) 2 H, o (a) S

!

is an ezact sequence in A, where for each n € Z, fy, (respectively, gp) is the
image of the chain map fo (respectively, go ) under the functor Hy, : Ch(A) — A.

Before proving this theorem, we state the Snake Lemma, which will help in our
construction of the connecting homomorphisms 9,, : H,(C) — H,_1(A).

Lemma 1.2 (The Snake Lemma). Let A = R-mod for some ring R, and
suppose that we have a commutative diagram in A of the form

p1 B/ p2 C/ O

RN

il B 12 C

0

Then, if the rows of this diagram are exact, there is an exact sequence
ker(f) 2 ker(g) 2> ker(h) -2 coker(f) N coker(g) 2, coker(h) ,

where for a € A, 11 maps a+ f(A’) to i1(a) + g(B’), and for b € B, iy maps
b+g(B') toiz(b)+h(C"). Also, we can compute O(c') for any ¢’ € ker(h). First,
we find b € B’ such that pa(V') = ¢, then we find the unique a € A such that
i(a) = g(b'). Then O satisfies

o(c) =a+ f(A). (1)

IThe sense in which the connecting homomorphisms are natural is explained in Remark
1.6.




Proof. Please see Exercise 1 of this week’s exercise sheet. O

Proof of Theorem 1.1. By the Freyd-Mitchell embedding Theorem, it suffices to
consider the case when A = R-mod for some ring R. Fix an integer n, and
consider the commutative diagram

0 A, —L B, % 0, 0
ool e
0—— A, 1 — B, , Chs 0

the rows of which are exact by Week 3, Exercise 1. Note that each f,, is injective
and each g, is surjective. Hence we obtain via the Snake Lemma an exact
sequence

Zo(A) L Z2,(B) L Z,(C) — An_1/dA, L5 Bu_y/dB, 2 Cp_y/dC, |

where the morphism f : Ap—1/dA,, — Bp_1/dB,, satisfies

fla+dA,) = fn_1(a) +dB,

for all @ € A,—1. The morphism § : B,_1/dB, — C,_1/dC,, satisfies an
analogous definition and is surjective because g,_1 is surjective. Since n € Z
was arbitrary, we may construct a new commutative diagram

Ap/dAn1 —L By /dBniy —2 Cp/dCrsr — 0

ldf ldf ldf (2)

0 —— Zn1(A) —L— Z, 1(B) —2— Z,_1(C)

with exact rows. The morphism d2 : A, /dA, 11 — Z,_1(A) satisfies

da+dAni1) = dji(a)
B dC

* 9 Dk

for all a € A, and the morphisms d satisfy analogous relations. To see
why the left square in (2) commutes, let a € A,, and observe that

d? o fla+dA, 1) = d2(fu(a) + dBpyi1)
= dZ(fa(a))
= fuo1(d2(a))
= fu10dda+dA, 1),

as needed, where the marked equality holds because f, is a chain map from A,
to Be. An identical argument shows that the right square commutes. Note that
the kernel of the morphism d2 : A, /dA, 1 — Z,_1(A) is
ker(d?) = {a +dAn41:a € A,, d?(a) =0}
— Zu(A)/dAnin



and its cokernel is
coker(d?) = Z,_1(A)/im(d?)
= Zn-1(A)/{d}}(a) s a € Ay}
=Zn_1/dA,
— H, 1(A).

Hence, a second application of the Snake Lemma to (2) yields a connecting
homomorphism 9, : H,(C) — H,_1(A) such that the sequence

Ho(A) I Hy(B) &5 HL(C) 25 Hyoy(A)25 Hy 1 (B) 5 Hy_ 1 (O).

is exact. We note that fr = Hy(fs) and §r = Hy(ge) for k € {n,n — 1}. Since
this sequence is exact for all n € Z, we may paste them together to obtain the
desired long exact sequence. O

Remark 1.3. Before continuing, we note that in the above proof we can actually
calculate the image of [c] € Hy,(C) under 0y, using Equation (1). Let c € Z,,(C).
Let b € B,, be such that §, maps [b] € B,,/dB,41 to [d], i.e., [gn(b)] = [c] in
Cy,/dCry1. Then there is a € Z,—1(A) such that

fa-1(a) = d7([B]) = d; (b).

It follows that the connecting homomorphism 0y, : H,(C) — H,_1(A) satisfies

In([c]) = [a].

In our statement of Theorem 1.1, we mentioned that the connecting homomor-
phisms {0,, : H,(C) — H,_1(A)}nez are natural. We now give the precise
meaning of this statement. To do so, we introduce two new categories.

Remark 1.4. Let C be an abelian category. Then there is category S(Ch(C))
whose objects are the short exact sequences of chain complezes inS. A morphism
in S(Ch(C)) from0 - A - B —-C - 0to0 - A - B - C'" - 0isa
commutative diagram of the shape

0 A B c 0
Ll
0 A B’ c’ 0.

The category L(C) of long exact sequences in C is defined analogously.

Proposition 1.5. Let C be an abelian category. Then we may define a functor
from S(Ch(C)) to L(C) by mapping a short exact sequence of chain complexes
in C

0 A1, c 0




to the long exact sequence in C

t

() S (A I H(B) B Ha(C) 2 Hy o (A) S

|

and by mapping a morphism in S(Ch(C))

0 At B¢ 0
la lﬂ lw (3)
0 A v B v 0

to the following morphism in L(C)

<2 Ho(4) D Ho(B) L Ha(C) 2 Hyoa(4) L -

JB b l& (4)

ol

Proof. The only non-trivial part of this statement is that the diagram in (4)
defines a morphism in £(C). This holds if each square in the ladder diagram
commutes. Bn fn = UpQn and Ypgn = f)an follow immediately from the com-
mutativity of the diagram in (3) and the functoriality of H,. Hence it suffices

to show that

H,(C) =2 H, 1 (A)

fm l&nfl (5)

Ho(C') —2 H,_ (A

commutes. Let [c] be an arbitrary element of H,(C), where ¢ € Z,(C). By
Remark (1.3), if b € B,, is such that §,[b] = [¢], and a € Z,,_1(A) is such that
fn_1(a) = dB(b), then 9,[c] = [a]. We want to find the image of 7,[c] € H,(C")
under d},. Note that 8, (b) € B}, is such that

Tn[Ba(5)] = TnBn[b] = Fndn[b] = Anld],
and a,—1(a) € Z,_1(A’) is such that
tn—1(0n-1(0)) = Bu-1(fa-1(a)) = Bu-1(d7 () = d (Ba(b)).
Thus 8/, maps Jn[c] to [an_1(a)] = @n_1]a] = @n_10n[d, i-e.,
8}, Anle] = @n—10nd],

as needed. Hence we have mapped each morphism in S(Ch(C)) to a well-defined
morphism in £(C). It is immediately seen that this mapping preserves identity
morphisms and compositions. We thus have a functor from S(Ch(C)) to L(C).

O



Remark 1.6. For each integer k, define functors Ly, Ry from S(Ch(C)) to C
such that
Lk(O—>A—>B—>C’—>O) = Hi(A),

and

R%O%A%B%C’%O)sz(C).

Then the commutativity of the diagram in (5) shows that for each integer n,
we may define a natural transformation 0, : R, = L,_1 by assigning to
each short exact sequence 0 — A — B — C — 0 of chain complexes in C the
connecting homomorphism H, (C) — H,_1(A). It is for this reason that we say
the connecting homomorphisms in Theorem 1.1 are natural.

We now give a two brief examples to demonstrate the usefulness of long exact
sequences in algebraic topology.

Example 1.7. If X is a topological space, the singular complex S(X) is the
chain complex C,(X), where for n > 0, C,,(X) is the free abelian group with all
singular n-simplices on X as its basis. Elements of C,,(X) are called n-chains
on X, and H,(X) is defined to be the nth homology group of S(X). If A is a
subspace of X, then there is a short exact sequence

0—S(A4A) = SX)— S(X,A) =0, (6)

where S(X, A) is the quotient chain complex S(X)/S(A). Let H,(X,A) be
the nth homology group of S(X, A). Each element of H, (X, A) is represented
a relative n-cycle: an n-chain on X whose boundary, i.e., its image under the
differential C,,(X) — C,,—1(X), actually lies in C,,_1(A). Via Theorem 1.1, we
obtain from (6) a long exact sequence

oo Ho(X) — Ho(X,A) S Hy 1 (A) = Hyy(X) = - (7)

It turns out that the connecting homomorphism 0 takes a relative cycle repre-
senting a class of H, (X, A) to the class in H,_1(A) represented by its boundary.

Example 1.8. Suppose that A, B are subspaces of a topological space X such
that X = int(A) U int(B). Then there is a short exact sequence of chain com-
plexes

0—SANB)— SA)@®S(B)— S(X)—0,

which is sent by the functor in Proposition 1.5 to the long exact sequence
-+—> H,(ANB)—> H,(A)® H,(B) » H,(X) > H,_1(ANB) — ---.

This long exact sequence is known as the Mayer-Vietoris sequence.



2 Chain Homotopies

Definition 2.1. A chain complex C, is called split if there are morphisms
{$n : Cr, = Cpi1}, called splitting maps, such that d,,11 = dpy18ndp1 for
every integer n. A chain complex C, is split ezact if it is split and acyclic.

Example 2.2. We show that every chain complex C4 of vector spaces over a
field & is split. For each integer n, pick B], < C,, such that C,, = Z,, ® B],. Note
that

B, ~C,/Z, ~im(d,) = Bn_1. (8)

Let 1, : Z, ® B, — Z, and 7, : Z, ® B, — B), be projections. Then
the isomorphism C,/Z, — Bj, is the the map taking [c] € C,/Z, to 7 (c).
Also, the isomorphism C,,/Z,, — B,_1 maps [c¢| € C,,/Z, to d,(c). Similarly,
since B, = im(d,41) is a subspace of Z,, we may pick H), < Z, such that
Z, = B, ® H/,. Note that

H. = 7,/B, = H,. (9)

Let p,, : Bp®H] — By, and p), : B,®H], — H], be the projections corresponding
to this decomposition. Now we define the splitting map s, : C,, = C, 41 to be
the composition

Cn ﬂ) Zn % Bn ﬂ) B;H-l g Cn—i—l,
where ¢, is from the same family of isomorphisms as in (8). What is the
composition d,,+18,d,+17 For an element « € C),11, we have d,41(z) € B, C
Z,, thus

dn+1 Sn (d7z+1 (x)) = dn+1Qn (d7L+1 (x))
= dpt1(m41(2))
= dp i1 (Tn41(2)) + dnt1 (T4 (%)
= dn+1 (I)a
thus dy,115ndp+1 = dpy1. Hence C is a split chain complex. Next, we determine

the conditions under which C' is not only split, but split exact. Note that for
x € C,, we have p,m,(z) = dy+1(y) for some y € Cy, 11, thus

dn+1$n($) = dn+1‘]n(dn+1(y))
= d7L+1 (y)

= pnTn(2)

thus d, 418, is projection C,, — B,. Similarly, one may show that s,_1d, is
projection C,, — BJ,. Since we have the decomposition C,, = B, & H/, & H,, it
follows from (9) that both the kernel and cokernel of the chain map ds + sd :
Ce — C, are the trivial homology complex H,o(C), that is, the complex with
zero differentials whose nth object is H,,(C). One may argue from here that C,
is exact if and only if ds 4 sd is the identity chain map.



Remark 2.3. Given chain complexes Cy and D,, and any collection of mor-
phisms {s,, : Cpy, = Dpi1tnez, let fn: Cp — Dy, be the morphism

fn = dfﬂsn + sn,1dg.

Then fo : Co — Dq is in fact a chain map, since for any n € Z:
AP f, =dbadb, s, +dls,_1dS

=dPs,_1d¢

= 5,_0dS_1dS +dPs,_1dS

= (Sn72d1€—1 + d,?sn,l)dg

= fn1dS.
We give a special name to chain maps that are of this form.
Definition 2.4. A chain map f, : Co — D, is null homotopic if there are
morphisms s, : Cp, = Dy 41, n € Z, such that

fo=d2 s, + sp1df

for every integer n. The maps {s,}nez are called a chain contraction of f. If
the identity morphism C4 — C, of a chain complex C4 is null homotopic, we
say that C, is contractible.

Returning to Example 2.2, we see that a chain complex C, of vector spaces over
a field k is split exact if and only if C4 is contractible. It turns out that this is
true in the general case.

Exercise 2.5. Show that a chain complex C, is split exact if and only if it is
contractible.

Definition 2.6. Let fo,ge : Co — Do morphisms of chain complexes. Then
fe, ge are chain homotopic if their difference f— g is null homotopic. In this case,
the corresponding family of maps {s, }nez is called a chain homotopy. We may
define an equivalence relation on morphisms of chain complexes by identifying
chain maps that are chain homotopic.

The map H,(f) : H,(C) — H,(D) induced by a chain map fo : Co — D
depends only on the homotopy class of f,:

Proposition 2.7. If fo,ge : Coe — D, are homotopic maps of chain complezes,
then these maps induce the same maps Hy,(Co) — Hp(Ds) on homology.

Proof. 1t suffices to show that H, (f) is the zero map H,(C) — H,(D) for all
n €7 if f: Ce — D, is null homotopic. Let {s, }nez be a chain contraction of
f, and let [x] € H,(C), where x € Z,(C). Then

(@) = diysn(@) + sp-rdy (2) = dy 50 (2)

lies in B, (D), thus [f(x)] is the zero element of H, (D). We conclude that
H,(f) is the zero map H,(C) — H, (D). O



Remark 2.8. It can be shown that there is a homotopy category of chain com-
plexes on A, in which the objects are chain complexes on A, and the morphisms
are homotopy classes of chain morphisms. We have a special name for isomor-
phisms in this new category.

Definition 2.9. A chain map f, : Co — D, defines a chain homotopy equiva-
lence if it is an isomorphism in the homotopy category of chain complexes, i.e.,
if there is a chain map ge : De — C, such that fege is chain homotopic to the
identity on D, and g fe is chain homotopic to the identity on C. If there exists
a chain homotopy equivalence between two chain complexes, we say that they
are homotopy equivalent.

3 Mapping Cones

The notion of homotopy in Ch(.A) is closely related to the notion of homotopy
in Top. Recall that continuous maps f,g : X — Y of topological spaces are
homotopic in Top if there is a continuous map H : [0,1] x X — Y, called
a homotopy, such that H(0,z) = f(z) and H(1,z2) = g(x) for all z € X.
Equivalently, if ¢o : X — {0} x X and ¢; : X — {1} x X are the natural
inclusions, then a continuous map H : [0,1] x X — Y defines a homotopy
between f and g if Hoty = f and H o1 = ¢g. Our aim is to find a counterpart
for this definition in Ch(A). We first find a chain complex I, to act as an
interval object. We assume that A = R—mod for a ring R.

Definition 3.1. Let I, be the simplicial chain complex of an interval, consisting
of two vertices vg,v1 and one edge e = [vg,v1]. That is, Iy = R (vg,v1), 1 =
R {e), and I, = 0 otherwise. Also, we have 01[vg,v1] = v1 — vy and 9y = 0
otherwise.

In Top, the domain of the homotopy H is the product of the interval [0, 1] with
X. In Ch(A), the appropriate notion of a product is the tensor product.

Definition 3.2. Given chain complexes C,, D,, let Cy ® D4 be the chain com-
plex such that

(Co (39 Do)n - @ 01 ®Dj7
i+j=n
with the nth differential on C¢y ® D, defined as follows: if i, j are integers such
that i + j =n, and (z,y) € C; x Dj, then

dy(z®@y) = dfz @y + (~1) (z @ dy).

Remark 3.3. Suppose that Cy is a chain complexr. Then I, @ Cq is the chain
complex such that at level n:

(Ie ®Ca)p = (Io ® Cp) ® (I ® Cr—1)
= ({(v0) ® C) ® (1) ® Cp) @ ({e) ® Cp_y)
—CPeChaCt,



where CY = (v;) @ Cy, and C5_; = (e) @ Cpu_1. If x € C,y, then
dn(v; @ ) = v; @ dS z,
and if x € Cp_1, then
dp(e®@z) =1, @2 -0z —e®dS .

There are also chain maps tp,t1 : Co — I ® Co such that tp(xz) = vo ® x and
n(z)=vm @x forx € Cy.

We give a new definition of homotopy in Ch(A) that mirrors the definition of
homotopy in Top we saw earlier.

Definition 3.4. Chain maps f,,ge : Ce — D, are chain homotopic if there is
a chain map H : I, ® Cy — D, such that H oty = fo and H 011 = g,.

Proposition 3.5. Chain maps fe,ge : Co — D, are chain homotopic in the
sense of Definition 2.6 if and only if they are chain homotopic in the sense of

Definition 3.4.

Proof. If f,,ge are chain homotopic in the sense of Definition 3.4, then there is
a chain map H : I, ® Cq — D, such that H oty = f, and H o1, = g,. For
x € Cy,, we have e® x € (I ® C)pq1. Thus we may define s, : Cp, = D1 by
letting s, (z) = Hyy1(e ® x). It follows that

(d5+15n + sn—ldg)(z) = dr?+1Hn+1(e ® 1') + Hn(e ® dwc;x)

< Hndfﬁ(f(e @)+ Hy(e ®dSz)

=H,(n®@z—vQz—e®dSz)+ Hy(e®dSx)
=H, (1 ®x) — Hy(vo ® x)

= H,ou(x)— Hyou(x)

=g(x) - f(x),

where the marked equality follows because H is a chain map. Thus the maps
{sn}nez are a chain contraction of f — g, and we conclude that the chain maps
fe, ge are chain homotopic in the sense of Definition 2.6. Conversely, suppose
that {sp}nez is a chain contraction of f — g. Recall that (I ® C),, = C° &
CY @ C:_,. We define H, : (I ® C),, = D,, by requiring

H,(vo®z) = fo(z) and H,(v1 ® ) = g,(x)
for x € C,,, and
H,(e®zx)=sp_1(x)

for x € C,,_1. We leave it to the reader to show that H : I¢ ® Ce — D, is a
chain map such that H oty = f, and H o011 = ge, and thus that f,, ge are chain
homotopic in the sense of Definition 3.4. O



Given a chain map f, : Co — D,, we wish to define a new chain complex
cone(f,), called the mapping cone of f,. This construction takes inspiration
from the mapping cone C; of a continuous map f : X — Y of topological
spaces. Recall that to form Cj, we first take the cone CX of the space X (i.e.,
we take the quotient of the cylinder I x X by the equivalence relation that
collapses {1} x X to a point) . Next, we glue CX to Y by taking the quotient
of CX UY by the relation that glues {0} x X C CX to Y via (0,2) ~ f(z).
These two steps result in the mapping cone Cy. In Ch(A) we perform analogous
maneuvers. First, we quotient the cylinder I, ® Cy by (v1) ® Cs. The object at
the nth degree of this quotient is

(LeC.), Coachecs
<Ul> & Cn B C;)Ll

Lecorwogoe .

The resulting chain complex is called the cone of C, and is denoted by cone(Cl)
(cf. Definition 3.8). Next, we mimic the step of gluing CX to Y via f by
taking the quotient of cone(Cs) @ Do by a relation that identifies C2° and D,
via ¢ ~ f,(x) for x € C,. This results in a chain complex cone(f,), whose
object at the nth degree is

cone(fo)n = Cn_1 ® D,,.

The differentials for this chain complex are induced by the differential of the
cylinder I, ® Cl .

Definition 3.6. Given a chain morphism f, : Co — D,, define the mapping
cone of fq to be the chain complex cone(fo) whose object in the nth degree is
Ch_1 ® D, and whose nth differential C,,_1 & D,, — C,,_2 & D,,_1 satisfies

dn(x’y) = (_d'rc;—l(x)’ d,?(y) - fn—l('r))

- &6
N _fnfl dr? Yy

Remark 3.7. We see that cone(f,) is indeed a chain complex by noting that
the matriz representation of dpd,+1 s

—dS ., 0] [=df 0 ]_ dS_,dg 0 1_,
—fn—l d,? _fn dr?—i—l N fn—ldvc;_dr?fn dgdr?-i-l -

since fo is a chain map.

for (z,y) € Cp—1 & D,,.

Definition 3.8. Given a chain complex C,, define the cone of Cy to be the
mapping cone of the identity chain map id,C : Cq — C,. The cone of C, is
denoted by cone(Cl).

Proposition 3.9. For any chain complex Co, the cone of C is split exact.

10



Proof. We first find splitting maps {s, : cone(Cs), — cone(Ce)nt1}. Let s, :
Cn-1® C,, = C, & Cp41 be the map with matrix representation

o —id,
Sp = 0 e

Then

p g _[=dn 0 ][0 —id)][~da O
ntSn@ntl = g daq| 100 0 | |—idy diss

[0 dp][-dn O

. [ —d, 0
= side dop
- dn+17

which confirms that cone(C,) is split. To see that cone(Cl,) is acyclic, note that
for each n:

R
ker(d,,) = ker [—idn1 dn:|
(zvy) € Cn—l 2] Cn : dn—lz = 071‘ = dny}

{
={(dny,y) : y € Cp}

. [=d, 0
M id, s

= 1m(dn_,_1)

This confirms that cone(C,) is split exact. O

Remark 3.10. Proposition 3.9 is the homological realization of the fact that
the cone CX of any topological space X is contractible.

We demonstrate the value of mapping cones of chain maps in our final result,
which reduces questions about quasi-isomorphisms to the study of exact com-
plexes. We begin by recalling the definition of a quasi-isomorphism:

Definition 3.11. A chain map f, : Co4 — D, is called a quasi-isomorphism if
its image H,(fo) : Hy(Co) — H,(D,) under the homology functor H,, is an
isomorphism for every integer n.

Proposition 3.12. A chain map fe : Co — De is a quasi-isomorphism if and
only if the mapping cone complex of fo is exact.

Proof. Given a chain map f, : Co — D,, we claim that there is a short exact
sequence of chain complexes

0 — Do 2% cone(fa) 2% Cu[~1] — 0, (10)

11



where C4[—1] is the (—1)th translate of C,, the map «, satisfies o, (x) = (0, z)
for x € D, and the map S, satisfies f,(z,y) = —z for (z,y) € Cp_1 & D,.
So as long as one remembers that the nth differential for Cq[—1] is —dS (cf.
Translation 1.2.8 in Weibel’s book), it is easy to show that «,,fe are chain
maps, and that the sequence in (10) is exact. By Theorem 1.1, there is a long
exact sequence

co+ = Hy i (cones) — H,(C) 28 H, (D) = H,(cones) — Hy_1(C) — -+ ,
(11)
where we have recalled that H,(C[—1]) & H,—1(C). Let z € Z,(C) to compute
the image of [x] € H,(C) under the connecting homomorphism 9,,. By,4+1 maps
(—x,0) to z. Next, we have

conc(_x 0) _ 7dg 0 -z _ dg(:ﬂ) _ 0

el G Y d?—o—l 0 |fal)] [ful®)]’
since z € Z,(C). Lastly, we note that a,, maps f,(x) to (0, f(z)). Thus the
image of [z] under the connecting homomorphism 9, is

ulz] = [fu(@)] = fula].

In particular, the connecting homomorphism 9,, is precisely the map H,(f) :
H,(C) — Hy,(D). Since the sequence in (11) is exact, we conclude that f, :
Ce — D, is a quasi-isomorphism if and only if H,(coney) = 0 for all n, that is,
if and only if the mapping cone complex of f, is exact. O
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