Homological Algebra Seminar Week 4

Will Ballard after the talk of Claudio Pfammatter and Virgile Constantin

1 Long Exact Sequences

Theorem 1.1. Let A be an abelian category, and suppose that

$$0 \longrightarrow A_{\bullet} \xrightarrow{f_{\bullet}} B_{\bullet} \xrightarrow{g_{\bullet}} C_{\bullet} \longrightarrow 0$$

is a short exact sequence in Ch(A). Then there is a collection of natural¹ maps $\{\partial_n: H_n(C) \to H_{n-1}(A)\}_{n \in \mathbb{Z}}$, which we call connecting homomorphisms, such that

$$\cdots \xrightarrow{\tilde{g}_{n+1}} H_{n+1}(C) \xrightarrow{\partial_{n+1}} H_n(A) \xrightarrow{\tilde{f}_n} H_n(B) \xrightarrow{\tilde{g}_n} H_n(C) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{\tilde{f}_{n-1}} \cdots$$

is an exact sequence in A, where for each $n \in \mathbb{Z}$, \tilde{f}_n (respectively, \tilde{g}_n) is the image of the chain map f_{\bullet} (respectively, g_{\bullet}) under the functor $H_n : \operatorname{Ch}(A) \to A$.

Before proving this theorem, we state the *Snake Lemma*, which will help in our construction of the connecting homomorphisms $\partial_n: H_n(C) \to H_{n-1}(A)$.

Lemma 1.2 (The Snake Lemma). Let A = R-mod for some ring R, and suppose that we have a commutative diagram in A of the form

$$A' \xrightarrow{p_1} B' \xrightarrow{p_2} C' \longrightarrow 0$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h$$

$$0 \longrightarrow A \xrightarrow{i_1} B \xrightarrow{i_2} C$$

Then, if the rows of this diagram are exact, there is an exact sequence

$$\ker(f) \xrightarrow{p_1} \ker(g) \xrightarrow{p_2} \ker(h) \xrightarrow{\partial} \operatorname{coker}(f) \xrightarrow{\tilde{\iota}_1} \operatorname{coker}(g) \xrightarrow{\tilde{\iota}_2} \operatorname{coker}(h) \ ,$$

where for $a \in A$, $\tilde{\iota}_1$ maps a + f(A') to $i_1(a) + g(B')$, and for $b \in B$, $\tilde{\iota}_2$ maps b + g(B') to $i_2(b) + h(C')$. Also, we can compute $\partial(c')$ for any $c' \in \ker(h)$. First, we find $b' \in B'$ such that $p_2(b') = c'$, then we find the unique $a \in A$ such that i(a) = g(b'). Then ∂ satisfies

$$\partial(c') = a + f(A'). \tag{1}$$

 $^{^{1}}$ The sense in which the connecting homomorphisms are natural is explained in Remark 1.6.

Proof. Please see Exercise 1 of this week's exercise sheet.

Proof of Theorem 1.1. By the Freyd-Mitchell embedding Theorem, it suffices to consider the case when A = R-mod for some ring R. Fix an integer n, and consider the commutative diagram

$$0 \longrightarrow A_n \stackrel{f}{\longrightarrow} B_n \stackrel{g}{\longrightarrow} C_n \longrightarrow 0$$

$$\downarrow_{d^A} \qquad \downarrow_{d^B} \qquad \downarrow_{d^C} \qquad ,$$

$$0 \longrightarrow A_{n-1} \stackrel{f}{\longrightarrow} B_{n-1} \stackrel{g}{\longrightarrow} C_{n-1} \longrightarrow 0$$

the rows of which are exact by Week 3, Exercise 1. Note that each f_n is injective and each g_n is surjective. Hence we obtain via the Snake Lemma an exact sequence

$$Z_n(A) \xrightarrow{f} Z_n(B) \xrightarrow{g} Z_n(C) \longrightarrow A_{n-1}/dA_n \xrightarrow{\tilde{f}} B_{n-1}/dB_n \xrightarrow{\tilde{g}} C_{n-1}/dC_n$$

where the morphism $\tilde{f}: A_{n-1}/dA_n \to B_{n-1}/dB_n$ satisfies

$$\tilde{f}(a+dA_n) = f_{n-1}(a) + dB_n$$

for all $a \in A_{n-1}$. The morphism $\tilde{g}: B_{n-1}/dB_n \to C_{n-1}/dC_n$ satisfies an analogous definition and is surjective because g_{n-1} is surjective. Since $n \in \mathbb{Z}$ was arbitrary, we may construct a new commutative diagram

$$A_{n}/dA_{n+1} \xrightarrow{\tilde{f}} B_{n}/dB_{n+1} \xrightarrow{\tilde{g}} C_{n}/dC_{n+1} \longrightarrow 0$$

$$\downarrow^{d_{*}^{A}} \qquad \downarrow^{d_{*}^{B}} \qquad \downarrow^{d_{*}^{C}}$$

$$0 \longrightarrow Z_{n-1}(A) \xrightarrow{f} Z_{n-1}(B) \xrightarrow{g} Z_{n-1}(C)$$

$$(2)$$

with exact rows. The morphism $d_*^A: A_n/dA_{n+1} \to Z_{n-1}(A)$ satisfies

$$d_*^A(a + dA_{n+1}) = d_n^A(a)$$

for all $a \in A_n$, and the morphisms d_*^B, d_*^C satisfy analogous relations. To see why the left square in (2) commutes, let $a \in A_n$ and observe that

$$d_*^B \circ \tilde{f}(a + dA_{n+1}) = d_*^B(f_n(a) + dB_{n+1})$$

$$= d_n^B(f_n(a))$$

$$\stackrel{!}{=} f_{n-1}(d_n^A(a))$$

$$= f_{n-1} \circ d_*^A(a + dA_{n+1}),$$

as needed, where the marked equality holds because f_{\bullet} is a chain map from A_{\bullet} to B_{\bullet} . An identical argument shows that the right square commutes. Note that the kernel of the morphism $d_*^A: A_n/dA_{n+1} \to Z_{n-1}(A)$ is

$$\ker(d_*^A) = \{ a + dA_{n+1} : a \in A_n, \ d_n^A(a) = 0 \}$$
$$= Z_n(A)/dA_{n+1}$$
$$= H_n(A),$$

and its cokernel is

$$\operatorname{coker}(d_*^A) = Z_{n-1}(A)/\operatorname{im}(d_*^A)$$

$$= Z_{n-1}(A)/\{d_n^A(a) : a \in A_n\}$$

$$= Z_{n-1}/dA_n$$

$$= H_{n-1}(A).$$

Hence, a second application of the Snake Lemma to (2) yields a connecting homomorphism $\partial_n: H_n(C) \to H_{n-1}(A)$ such that the sequence

$$H_n(A) \xrightarrow{\tilde{f}_n} H_n(B) \xrightarrow{\tilde{g}_n} H_n(C) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{\tilde{f}_{n-1}} H_{n-1}(B) \xrightarrow{\tilde{g}_{n-1}} H_{n-1}(C).$$

is exact. We note that $\tilde{f}_k = H_k(f_{\bullet})$ and $\tilde{g}_k = H_k(g_{\bullet})$ for $k \in \{n, n-1\}$. Since this sequence is exact for all $n \in \mathbb{Z}$, we may paste them together to obtain the desired long exact sequence.

Remark 1.3. Before continuing, we note that in the above proof we can actually calculate the image of $[c] \in H_n(C)$ under ∂_n using Equation (1). Let $c \in Z_n(C)$. Let $b \in B_n$ be such that \tilde{g}_n maps $[b] \in B_n/dB_{n+1}$ to [c], i.e., $[g_n(b)] = [c]$ in C_n/dC_{n+1} . Then there is $a \in Z_{n-1}(A)$ such that

$$f_{n-1}(a) = d_*^B([b]) = d_n^B(b).$$

It follows that the connecting homomorphism $\partial_n: H_n(C) \to H_{n-1}(A)$ satisfies $\partial_n([c]) = [a]$.

In our statement of Theorem 1.1, we mentioned that the connecting homomorphisms $\{\partial_n: H_n(C) \to H_{n-1}(A)\}_{n \in \mathbb{Z}}$ are natural. We now give the precise meaning of this statement. To do so, we introduce two new categories.

Remark 1.4. Let C be an abelian category. Then there is category S(Ch(C)) whose objects are the short exact sequences of chain complexes in S. A morphism in S(Ch(C)) from $0 \to A \to B \to C \to 0$ to $0 \to A' \to B' \to C' \to 0$ is a commutative diagram of the shape

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0.$$

The category $\mathcal{L}(\mathcal{C})$ of long exact sequences in \mathcal{C} is defined analogously.

Proposition 1.5. Let C be an abelian category. Then we may define a functor from S(Ch(C)) to L(C) by mapping a short exact sequence of chain complexes in C

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

to the long exact sequence in C

$$\cdots \xrightarrow{\tilde{g}_{n+1}} H_{n+1}(C) \xrightarrow{\partial_{n+1}} H_n(A) \xrightarrow{\tilde{f}_n} H_n(B) \xrightarrow{\tilde{g}_n} H_n(C) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{\tilde{f}_{n-1}} \cdots,$$

and by mapping a morphism in $\mathcal{S}(Ch(C))$

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad (3)$$

$$0 \longrightarrow A' \xrightarrow{u} B' \xrightarrow{v} C' \longrightarrow 0$$

to the following morphism in $\mathcal{L}(\mathcal{C})$

$$\cdots \xrightarrow{\partial} H_n(A) \xrightarrow{\tilde{f}} H_n(B) \xrightarrow{\tilde{g}} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{\tilde{f}} \cdots$$

$$\downarrow_{\tilde{\alpha}} \qquad \downarrow_{\tilde{\beta}} \qquad \downarrow_{\tilde{\gamma}} \qquad \downarrow_{\tilde{\alpha}} \qquad (4)$$

$$\cdots \xrightarrow{\partial'} H_n(A') \xrightarrow{\tilde{u}} H_n(B') \xrightarrow{\tilde{v}} H_n(C') \xrightarrow{\partial'} H_{n-1}(A') \xrightarrow{\tilde{g}} \cdots$$

Proof. The only non-trivial part of this statement is that the diagram in (4) defines a morphism in $\mathcal{L}(C)$. This holds if each square in the ladder diagram commutes. $\tilde{\beta}_n \tilde{f}_n = \tilde{u}_n \tilde{\alpha}_n$ and $\tilde{\gamma}_n \tilde{g}_n = \tilde{v}_n \tilde{\beta}_n$ follow immediately from the commutativity of the diagram in (3) and the functoriality of H_n . Hence it suffices to show that

$$H_n(C) \xrightarrow{\partial_n} H_{n-1}(A)$$

$$\downarrow \tilde{\gamma}_n \qquad \qquad \downarrow \tilde{\alpha}_{n-1}$$

$$H_n(C') \xrightarrow{\partial'_n} H_{n-1}(A')$$
(5)

commutes. Let [c] be an arbitrary element of $H_n(C)$, where $c \in Z_n(C)$. By Remark (1.3), if $b \in B_n$ is such that $\tilde{g}_n[b] = [c]$, and $a \in Z_{n-1}(A)$ is such that $f_{n-1}(a) = d_n^B(b)$, then $\partial_n[c] = [a]$. We want to find the image of $\tilde{\gamma}_n[c] \in H_n(C')$ under ∂'_n . Note that $\beta_n(b) \in B'_n$ is such that

$$\tilde{v}_n[\beta_n(b)] = \tilde{v}_n\tilde{\beta}_n[b] = \tilde{\gamma}_n\tilde{g}_n[b] = \tilde{\gamma}_n[c],$$

and $\alpha_{n-1}(a) \in Z_{n-1}(A')$ is such that

$$u_{n-1}(\alpha_{n-1}(a)) = \beta_{n-1}(f_{n-1}(a)) = \beta_{n-1}(d_n^B(b)) = d_n^{B'}(\beta_n(b)).$$

Thus ∂_n' maps $\tilde{\gamma}_n[c]$ to $[\alpha_{n-1}(a)] = \tilde{\alpha}_{n-1}[a] = \tilde{\alpha}_{n-1}\partial_n[c]$, i.e.,

$$\partial_n' \tilde{\gamma}_n[c] = \tilde{\alpha}_{n-1} \partial_n[c],$$

as needed. Hence we have mapped each morphism in $\mathcal{S}(\mathrm{Ch}(\mathcal{C}))$ to a well-defined morphism in $\mathcal{L}(\mathcal{C})$. It is immediately seen that this mapping preserves identity morphisms and compositions. We thus have a functor from $\mathcal{S}(\mathrm{Ch}(\mathcal{C}))$ to $\mathcal{L}(\mathcal{C})$.

Remark 1.6. For each integer k, define functors L_k , R_k from $\mathcal{S}(Ch(\mathcal{C}))$ to \mathcal{C} such that

$$L_k(0 \to A \to B \to C \to 0) = H_k(A),$$

and

$$R_k (0 \to A \to B \to C \to 0) = H_k(C).$$

Then the commutativity of the diagram in (5) shows that for each integer n, we may define a natural transformation $\partial_n: R_n \Longrightarrow L_{n-1}$ by assigning to each short exact sequence $0 \to A \to B \to C \to 0$ of chain complexes in C the connecting homomorphism $H_n(C) \to H_{n-1}(A)$. It is for this reason that we say the connecting homomorphisms in Theorem 1.1 are natural.

We now give a two brief examples to demonstrate the usefulness of long exact sequences in algebraic topology.

Example 1.7. If X is a topological space, the singular complex S(X) is the chain complex $C_{\bullet}(X)$, where for $n \geq 0$, $C_n(X)$ is the free abelian group with all singular n-simplices on X as its basis. Elements of $C_n(X)$ are called n-chains on X, and $H_n(X)$ is defined to be the nth homology group of S(X). If A is a subspace of X, then there is a short exact sequence

$$0 \to S(A) \to S(X) \to S(X, A) \to 0, \tag{6}$$

where S(X,A) is the quotient chain complex S(X)/S(A). Let $H_n(X,A)$ be the *n*th homology group of S(X,A). Each element of $H_n(X,A)$ is represented a relative *n*-cycle: an *n*-chain on X whose boundary, i.e., its image under the differential $C_n(X) \to C_{n-1}(X)$, actually lies in $C_{n-1}(A)$. Via Theorem 1.1, we obtain from (6) a long exact sequence

$$\cdots \to H_n(X) \to H_n(X,A) \xrightarrow{\partial} H_{n-1}(A) \to H_{n-1}(X) \to \cdots$$
 (7)

It turns out that the connecting homomorphism ∂ takes a relative cycle representing a class of $H_n(X, A)$ to the class in $H_{n-1}(A)$ represented by its boundary.

Example 1.8. Suppose that A, B are subspaces of a topological space X such that $X = \text{int}(A) \cup \text{int}(B)$. Then there is a short exact sequence of chain complexes

$$0 \to S(A \cap B) \to S(A) \oplus S(B) \to S(X) \to 0$$
,

which is sent by the functor in Proposition 1.5 to the long exact sequence

$$\cdots \to H_n(A \cap B) \to H_n(A) \oplus H_n(B) \to H_n(X) \to H_{n-1}(A \cap B) \to \cdots$$

This long exact sequence is known as the Mayer-Vietoris sequence.

2 Chain Homotopies

Definition 2.1. A chain complex C_{\bullet} is called *split* if there are morphisms $\{s_n: C_n \to C_{n+1}\}$, called *splitting maps*, such that $d_{n+1} = d_{n+1}s_nd_{n+1}$ for every integer n. A chain complex C_{\bullet} is *split exact* if it is split and acyclic.

Example 2.2. We show that every chain complex C_{\bullet} of vector spaces over a field k is split. For each integer n, pick $B'_n \leq C_n$ such that $C_n = Z_n \oplus B'_n$. Note that

$$B_n' \cong C_n/Z_n \cong \operatorname{im}(d_n) = B_{n-1}. \tag{8}$$

Let $\pi_n: Z_n \oplus B'_n \to Z_n$ and $\pi'_n: Z_n \oplus B'_n \to B'_n$ be projections. Then the isomorphism $C_n/Z_n \to B'_n$ is the the map taking $[c] \in C_n/Z_n$ to $\pi'_n(c)$. Also, the isomorphism $C_n/Z_n \to B_{n-1}$ maps $[c] \in C_n/Z_n$ to $d_n(c)$. Similarly, since $B_n = \operatorname{im}(d_{n+1})$ is a subspace of Z_n , we may pick $H'_n \leq Z_n$ such that $Z_n = B_n \oplus H'_n$. Note that

$$H_n' \cong Z_n/B_n = H_n. \tag{9}$$

Let $\rho_n: B_n \oplus H'_n \to B_n$ and $\rho'_n: B_n \oplus H'_n \to H'_n$ be the projections corresponding to this decomposition. Now we define the splitting map $s_n: C_n \to C_{n+1}$ to be the composition

$$C_n \xrightarrow{\pi_n} Z_n \xrightarrow{\rho_n} B_n \xrightarrow{q_n} B'_{n+1} \subseteq C_{n+1},$$

where q_n is from the same family of isomorphisms as in (8). What is the composition $d_{n+1}s_nd_{n+1}$? For an element $x \in C_{n+1}$, we have $d_{n+1}(x) \in B_n \subseteq Z_n$, thus

$$\begin{aligned} d_{n+1}s_n(d_{n+1}(x)) &= d_{n+1}q_n(d_{n+1}(x)) \\ &= d_{n+1}(\pi'_{n+1}(x)) \\ &= d_{n+1}(\pi_{n+1}(x)) + d_{n+1}(\pi'_{n+1}(x)) \\ &= d_{n+1}(x), \end{aligned}$$

thus $d_{n+1}s_nd_{n+1}=d_{n+1}$. Hence C is a split chain complex. Next, we determine the conditions under which C is not only split, but split exact. Note that for $x \in C_n$, we have $\rho_n\pi_n(x)=d_{n+1}(y)$ for some $y \in C_{n+1}$, thus

$$d_{n+1}s_n(x) = d_{n+1}q_n(d_{n+1}(y))$$
$$= d_{n+1}(y)$$
$$= \rho_n \pi_n(x)$$

thus $d_{n+1}s_n$ is projection $C_n \to B_n$. Similarly, one may show that $s_{n-1}d_n$ is projection $C_n \to B'_n$. Since we have the decomposition $C_n = B_n \oplus H'_n \oplus H_n$, it follows from (9) that both the kernel and cokernel of the chain map $ds + sd : C_{\bullet} \to C_{\bullet}$ are the trivial homology complex $H_{\bullet}(C)$, that is, the complex with zero differentials whose nth object is $H_n(C)$. One may argue from here that C_{\bullet} is exact if and only if ds + sd is the identity chain map.

Remark 2.3. Given chain complexes C_{\bullet} and D_{\bullet} , and any collection of morphisms $\{s_n : C_n \to D_{n+1}\}_{n \in \mathbb{Z}}$, let $f_n : C_n \to D_n$ be the morphism

$$f_n = d_{n+1}^D s_n + s_{n-1} d_n^C.$$

Then $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ is in fact a chain map, since for any $n \in \mathbb{Z}$:

$$d_n^D f_n = d_n^D d_{n+1}^D s_n + d_n^D s_{n-1} d_n^C$$

$$= d_n^D s_{n-1} d_n^C$$

$$= s_{n-2} d_{n-1}^C d_n^C + d_n^D s_{n-1} d_n^C$$

$$= (s_{n-2} d_{n-1}^C + d_n^D s_{n-1}) d_n^C$$

$$= f_{n-1} d_n^C.$$

We give a special name to chain maps that are of this form.

Definition 2.4. A chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ is *null homotopic* if there are morphisms $s_n: C_n \to D_{n+1}, n \in \mathbb{Z}$, such that

$$f_n = d_{n+1}^D s_n + s_{n-1} d_n^C$$

for every integer n. The maps $\{s_n\}_{n\in\mathbb{Z}}$ are called a *chain contraction* of f. If the identity morphism $C_{\bullet} \to C_{\bullet}$ of a chain complex C_{\bullet} is null homotopic, we say that C_{\bullet} is *contractible*.

Returning to Example 2.2, we see that a chain complex C_{\bullet} of vector spaces over a field k is split exact if and only if C_{\bullet} is contractible. It turns out that this is true in the general case.

Exercise 2.5. Show that a chain complex C_{\bullet} is split exact if and only if it is contractible.

Definition 2.6. Let $f_{\bullet}, g_{\bullet} : C_{\bullet} \to D_{\bullet}$ morphisms of chain complexes. Then f_{\bullet}, g_{\bullet} are *chain homotopic* if their difference f-g is null homotopic. In this case, the corresponding family of maps $\{s_n\}_{n\in\mathbb{Z}}$ is called a *chain homotopy*. We may define an equivalence relation on morphisms of chain complexes by identifying chain maps that are chain homotopic.

The map $H_n(f): H_n(C) \to H_n(D)$ induced by a chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ depends only on the homotopy class of f_{\bullet} :

Proposition 2.7. If $f_{\bullet}, g_{\bullet}: C_{\bullet} \to D_{\bullet}$ are homotopic maps of chain complexes, then these maps induce the same maps $H_n(C_{\bullet}) \to H_n(D_{\bullet})$ on homology.

Proof. It suffices to show that $H_n(f)$ is the zero map $H_n(C) \to H_n(D)$ for all $n \in \mathbb{Z}$ if $f: C_{\bullet} \to D_{\bullet}$ is null homotopic. Let $\{s_n\}_{n \in \mathbb{Z}}$ be a chain contraction of f, and let $[x] \in H_n(C)$, where $x \in Z_n(C)$. Then

$$f_n(x) = d_{n+1}^D s_n(x) + s_{n-1} d_n^C(x) = d_{n+1}^D s_n(x)$$

lies in $B_n(D)$, thus [f(x)] is the zero element of $H_n(D)$. We conclude that $H_n(f)$ is the zero map $H_n(C) \to H_n(D)$.

Remark 2.8. It can be shown that there is a homotopy category of chain complexes on A, in which the objects are chain complexes on A, and the morphisms are homotopy classes of chain morphisms. We have a special name for isomorphisms in this new category.

Definition 2.9. A chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ defines a *chain homotopy equivalence* if it is an isomorphism in the homotopy category of chain complexes, i.e., if there is a chain map $g_{\bullet}: D_{\bullet} \to C_{\bullet}$ such that $f_{\bullet}g_{\bullet}$ is chain homotopic to the identity on D_{\bullet} and $g_{\bullet}f_{\bullet}$ is chain homotopic to the identity on C_{\bullet} . If there exists a chain homotopy equivalence between two chain complexes, we say that they are *homotopy equivalent*.

3 Mapping Cones

The notion of homotopy in $\operatorname{Ch}(\mathcal{A})$ is closely related to the notion of homotopy in **Top**. Recall that continuous maps $f,g:X\to Y$ of topological spaces are homotopic in **Top** if there is a continuous map $H:[0,1]\times X\to Y$, called a homotopy, such that H(0,x)=f(x) and H(1,x)=g(x) for all $x\in X$. Equivalently, if $\iota_0:X\to\{0\}\times X$ and $\iota_1:X\to\{1\}\times X$ are the natural inclusions, then a continuous map $H:[0,1]\times X\to Y$ defines a homotopy between f and g if $H\circ\iota_0=f$ and $H\circ\iota_1=g$. Our aim is to find a counterpart for this definition in $\operatorname{Ch}(\mathcal{A})$. We first find a chain complex I_{\bullet} to act as an interval object. We assume that $\mathcal{A}=R$ —mod for a ring R.

Definition 3.1. Let I_{\bullet} be the simplicial chain complex of an interval, consisting of two vertices v_0, v_1 and one edge $e = [v_0, v_1]$. That is, $I_0 = R \langle v_0, v_1 \rangle$, $I_1 = R \langle e \rangle$, and $I_k = 0$ otherwise. Also, we have $\partial_1[v_0, v_1] = v_1 - v_0$ and $\partial_k = 0$ otherwise.

In **Top**, the domain of the homotopy H is the product of the interval [0,1] with X. In $Ch(\mathcal{A})$, the appropriate notion of a product is the tensor product.

Definition 3.2. Given chain complexes C_{\bullet} , D_{\bullet} , let $C_{\bullet} \otimes D_{\bullet}$ be the chain complex such that

$$(C_{\bullet} \otimes D_{\bullet})_n = \bigoplus_{i+j=n} C_i \otimes D_j,$$

with the *n*th differential on $C_{\bullet} \otimes D_{\bullet}$ defined as follows: if i, j are integers such that i + j = n, and $(x, y) \in C_i \times D_j$, then

$$d_n(x \otimes y) = d_i^C x \otimes y + (-1)^i (x \otimes d_j^D y).$$

Remark 3.3. Suppose that C_{\bullet} is a chain complex. Then $I_{\bullet} \otimes C_{\bullet}$ is the chain complex such that at level n:

$$(I_{\bullet} \otimes C_{\bullet})_n = (I_0 \otimes C_n) \oplus (I_1 \otimes C_{n-1})$$

= $(\langle v_0 \rangle \otimes C_n) \oplus (\langle v_1 \rangle \otimes C_n) \oplus (\langle e \rangle \otimes C_{n-1})$
= $C_n^{v_0} \oplus C_n^{v_1} \oplus C_{n-1}^e,$

where $C_n^{v_i} = \langle v_i \rangle \otimes C_n$, and $C_{n-1}^e = \langle e \rangle \otimes C_{n-1}$. If $x \in C_n$, then

$$d_n(v_i \otimes x) = v_i \otimes d_n^C x,$$

and if $x \in C_{n-1}$, then

$$d_n(e \otimes x) = v_1 \otimes x - v_0 \otimes x - e \otimes d_{n-1}^C x.$$

There are also chain maps $\iota_0, \iota_1 : C_{\bullet} \to I_{\bullet} \otimes C_{\bullet}$ such that $\iota_0(x) = v_0 \otimes x$ and $\iota_1(x) = v_1 \otimes x$ for $x \in C_n$.

We give a new definition of homotopy in Ch(A) that mirrors the definition of homotopy in **Top** we saw earlier.

Definition 3.4. Chain maps $f_{\bullet}, g_{\bullet}: C_{\bullet} \to D_{\bullet}$ are chain homotopic if there is a chain map $H: I_{\bullet} \otimes C_{\bullet} \to D_{\bullet}$ such that $H \circ \iota_0 = f_{\bullet}$ and $H \circ \iota_1 = g_{\bullet}$.

Proposition 3.5. Chain maps $f_{\bullet}, g_{\bullet} : C_{\bullet} \to D_{\bullet}$ are chain homotopic in the sense of Definition 2.6 if and only if they are chain homotopic in the sense of Definition 3.4.

Proof. If f_{\bullet}, g_{\bullet} are chain homotopic in the sense of Definition 3.4, then there is a chain map $H: I_{\bullet} \otimes C_{\bullet} \to D_{\bullet}$ such that $H \circ \iota_0 = f_{\bullet}$ and $H \circ \iota_1 = g_{\bullet}$. For $x \in C_n$, we have $e \otimes x \in (I \otimes C)_{n+1}$. Thus we may define $s_n : C_n \to D_{n+1}$ by letting $s_n(x) = H_{n+1}(e \otimes x)$. It follows that

$$(d_{n+1}^{D}s_{n} + s_{n-1}d_{n}^{C})(x) = d_{n+1}^{D}H_{n+1}(e \otimes x) + H_{n}(e \otimes d_{n}^{C}x)$$

$$\stackrel{!}{=} H_{n}d_{n+1}^{I \otimes C}(e \otimes x) + H_{n}(e \otimes d_{n}^{C}x)$$

$$= H_{n}(v_{1} \otimes x - v_{0} \otimes x - e \otimes d_{n}^{C}x) + H_{n}(e \otimes d_{n}^{C}x)$$

$$= H_{n}(v_{1} \otimes x) - H_{n}(v_{0} \otimes x)$$

$$= H_{n} \circ \iota_{1}(x) - H_{n} \circ \iota_{0}(x)$$

$$= q(x) - f(x),$$

where the marked equality follows because H is a chain map. Thus the maps $\{s_n\}_{n\in\mathbb{Z}}$ are a chain contraction of f-g, and we conclude that the chain maps f_{\bullet}, g_{\bullet} are chain homotopic in the sense of Definition 2.6. Conversely, suppose that $\{s_n\}_{n\in\mathbb{Z}}$ is a chain contraction of f-g. Recall that $(I\otimes C)_n=C_n^{v_0}\oplus C_n^{v_1}\oplus C_{n-1}^e$. We define $H_n:(I\otimes C)_n\to D_n$ by requiring

$$H_n(v_0 \otimes x) = f_n(x)$$
 and $H_n(v_1 \otimes x) = g_n(x)$

for $x \in C_n$, and

$$H_n(e \otimes x) = s_{n-1}(x)$$

for $x \in C_{n-1}$. We leave it to the reader to show that $H: I_{\bullet} \otimes C_{\bullet} \to D_{\bullet}$ is a chain map such that $H \circ \iota_0 = f_{\bullet}$ and $H \circ \iota_1 = g_{\bullet}$, and thus that f_{\bullet}, g_{\bullet} are chain homotopic in the sense of Definition 3.4.

Given a chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$, we wish to define a new chain complex cone (f_{\bullet}) , called the *mapping cone* of f_{\bullet} . This construction takes inspiration from the mapping cone C_f of a continuous map $f: X \to Y$ of topological spaces. Recall that to form C_f , we first take the cone CX of the space X (i.e., we take the quotient of the cylinder $I \times X$ by the equivalence relation that collapses $\{1\} \times X$ to a point). Next, we glue CX to Y by taking the quotient of $CX \sqcup Y$ by the relation that glues $\{0\} \times X \subseteq CX$ to Y via $(0,x) \sim f(x)$. These two steps result in the mapping cone C_f . In $\mathrm{Ch}(\mathcal{A})$ we perform analogous maneuvers. First, we quotient the cylinder $I_{\bullet} \otimes C_{\bullet}$ by $\langle v_1 \rangle \otimes C_{\bullet}$. The object at the nth degree of this quotient is

$$\frac{(I_{\bullet} \otimes C_{\bullet})_n}{\langle v_1 \rangle \otimes C_n} = \frac{C_n^{v_0} \oplus C_n^{v_1} \oplus C_{n-1}^e}{C_n^{v_1}} \cong C_n^{v_0} \oplus C_{n-1}^e.$$

The resulting chain complex is called the cone of C_{\bullet} and is denoted by $\operatorname{cone}(C_{\bullet})$ (cf. Definition 3.8). Next, we mimic the step of gluing CX to Y via f by taking the quotient of $\operatorname{cone}(C_{\bullet}) \oplus D_{\bullet}$ by a relation that identifies $C_n^{v_0}$ and D_n via $x \sim f_n(x)$ for $x \in C_n$. This results in a chain complex $\operatorname{cone}(f_{\bullet})$, whose object at the nth degree is

$$\operatorname{cone}(f_{\bullet})_n = C_{n-1} \oplus D_n.$$

The differentials for this chain complex are induced by the differential of the cylinder $I_{\bullet}\otimes C_{\bullet}$.

Definition 3.6. Given a chain morphism $f_{\bullet}: C_{\bullet} \to D_{\bullet}$, define the mapping cone of f_{\bullet} to be the chain complex cone (f_{\bullet}) whose object in the nth degree is $C_{n-1} \oplus D_n$, and whose nth differential $C_{n-1} \oplus D_n \to C_{n-2} \oplus D_{n-1}$ satisfies

$$d_n(x,y) = (-d_{n-1}^C(x), d_n^D(y) - f_{n-1}(x))$$

$$= \begin{bmatrix} -d_{n-1}^C & 0 \\ -f_{n-1} & d_n^D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

for $(x,y) \in C_{n-1} \oplus D_n$.

Remark 3.7. We see that $cone(f_{\bullet})$ is indeed a chain complex by noting that the matrix representation of $d_n d_{n+1}$ is

$$\begin{bmatrix} -d_{n-1}^C & 0 \\ -f_{n-1} & d_n^D \end{bmatrix} \begin{bmatrix} -d_n^C & 0 \\ -f_n & d_{n+1}^D \end{bmatrix} = \begin{bmatrix} d_{n-1}^C d_n^C & 0 \\ f_{n-1} d_n^C - d_n^D f_n & d_n^D d_{n+1}^D \end{bmatrix} = 0,$$

since f_{\bullet} is a chain map.

Definition 3.8. Given a chain complex C_{\bullet} , define the cone of C_{\bullet} to be the mapping cone of the identity chain map $\operatorname{id}_{\bullet}^{C}: C_{\bullet} \to C_{\bullet}$. The cone of C_{\bullet} is denoted by $\operatorname{cone}(C_{\bullet})$.

Proposition 3.9. For any chain complex C_{\bullet} , the cone of C_{\bullet} is split exact.

Proof. We first find splitting maps $\{s_n : \operatorname{cone}(C_{\bullet})_n \to \operatorname{cone}(C_{\bullet})_{n+1}\}$. Let $s_n : C_{n-1} \oplus C_n \to C_n \oplus C_{n+1}$ be the map with matrix representation

$$s_n = \begin{bmatrix} 0 & -\mathrm{id}_n \\ 0 & 0 \end{bmatrix}.$$

Then

$$d_{n+1}s_n d_{n+1} = \begin{bmatrix} -d_n & 0 \\ -\mathrm{id}_n & d_{n+1} \end{bmatrix} \begin{bmatrix} 0 & -\mathrm{id}_n \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -d_n & 0 \\ -\mathrm{id}_n & d_{n+1} \end{bmatrix}$$
$$= \begin{bmatrix} 0 & d_n \\ 0 & \mathrm{id}_n \end{bmatrix} \begin{bmatrix} -d_n & 0 \\ -\mathrm{id}_n & d_{n+1} \end{bmatrix}$$
$$= \begin{bmatrix} -d_n & 0 \\ -\mathrm{id}_n & d_{n+1} \end{bmatrix}$$
$$= d_{n+1}.$$

which confirms that $\operatorname{cone}(C_{\bullet})$ is split. To see that $\operatorname{cone}(C_{\bullet})$ is acyclic, note that for each n:

$$\ker(d_n) = \ker \begin{bmatrix} -d_{n-1} & 0 \\ -\mathrm{id}_{n-1} & d_n \end{bmatrix}$$

$$= \{(x, y) \in C_{n-1} \oplus C_n : d_{n-1}x = 0, x = d_n y\}$$

$$= \{(d_n y, y) : y \in C_n\}$$

$$= \operatorname{im} \begin{bmatrix} -d_n & 0 \\ -\mathrm{id}_n & d_{n+1} \end{bmatrix}$$

$$= \operatorname{im}(d_{n+1}).$$

This confirms that $cone(C_{\bullet})$ is split exact.

Remark 3.10. Proposition 3.9 is the homological realization of the fact that the cone CX of any topological space X is contractible.

We demonstrate the value of mapping cones of chain maps in our final result, which reduces questions about quasi-isomorphisms to the study of exact complexes. We begin by recalling the definition of a quasi-isomorphism:

Definition 3.11. A chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ is called a *quasi-isomorphism* if its image $H_n(f_{\bullet}): H_n(C_{\bullet}) \to H_n(D_{\bullet})$ under the homology functor H_n is an isomorphism for every integer n.

Proposition 3.12. A chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ is a quasi-isomorphism if and only if the mapping cone complex of f_{\bullet} is exact.

Proof. Given a chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$, we claim that there is a short exact sequence of chain complexes

$$0 \longrightarrow D_{\bullet} \xrightarrow{\alpha_{\bullet}} \operatorname{cone}(f_{\bullet}) \xrightarrow{\beta_{\bullet}} C_{\bullet}[-1] \longrightarrow 0, \tag{10}$$

where $C_{\bullet}[-1]$ is the (-1)th translate of C_{\bullet} , the map α_{\bullet} satisfies $\alpha_n(x) = (0, x)$ for $x \in D_n$, and the map β_{\bullet} satisfies $\beta_n(x, y) = -x$ for $(x, y) \in C_{n-1} \oplus D_n$. So as long as one remembers that the *n*th differential for $C_{\bullet}[-1]$ is $-d_n^C$ (cf. Translation 1.2.8 in Weibel's book), it is easy to show that $\alpha_{\bullet}, \beta_{\bullet}$ are chain maps, and that the sequence in (10) is exact. By Theorem 1.1, there is a long exact sequence

$$\cdots \to H_{n+1}(\operatorname{cone}_f) \to H_n(C) \xrightarrow{\partial_n} H_n(D) \to H_n(\operatorname{cone}_f) \to H_{n-1}(C) \to \cdots,$$
(11)

where we have recalled that $H_n(C[-1]) \cong H_{n-1}(C)$. Let $x \in Z_n(C)$ to compute the image of $[x] \in H_n(C)$ under the connecting homomorphism ∂_n . β_{n+1} maps (-x,0) to x. Next, we have

$$d_{n+1}^{\text{cone}}(-x,0) = \begin{bmatrix} -d_n^C & 0 \\ -f_n & d_{n+1}^D \end{bmatrix} \begin{bmatrix} -x \\ 0 \end{bmatrix} = \begin{bmatrix} d_n^C(x) \\ f_n(x) \end{bmatrix} = \begin{bmatrix} 0 \\ f_n(x) \end{bmatrix},$$

since $x \in Z_n(C)$. Lastly, we note that α_n maps $f_n(x)$ to $(0, f_n(x))$. Thus the image of [x] under the connecting homomorphism ∂_n is

$$\partial_n[x] = [f_n(x)] = \tilde{f}_n[x].$$

In particular, the connecting homomorphism ∂_n is precisely the map $H_n(f)$: $H_n(C) \to H_n(D)$. Since the sequence in (11) is exact, we conclude that f_{\bullet} : $C_{\bullet} \to D_{\bullet}$ is a quasi-isomorphism if and only if $H_n(\text{cone}_f) = 0$ for all n, that is, if and only if the mapping cone complex of f_{\bullet} is exact.