
Homological Algebra Seminar Week 4

Will Ballard after the talk of
Claudio Pfammatter and Virgile Constantin

1 Long Exact Sequences

Theorem 1.1. Let A be an abelian category, and suppose that

0 A• B• C• 0
f• g•

is a short exact sequence in Ch(A). Then there is a collection of natural1 maps
{∂n : Hn(C) → Hn−1(A)}n∈Z, which we call connecting homomorphisms, such
that

· · · Hn+1(C) Hn(A) Hn(B) Hn(C) Hn−1(A) · · ·g̃n+1 ∂n+1 f̃n g̃n ∂n f̃n−1

is an exact sequence in A, where for each n ∈ Z, f̃n (respectively, g̃n) is the
image of the chain map f• (respectively, g•) under the functor Hn : Ch(A) → A.

Before proving this theorem, we state the Snake Lemma, which will help in our
construction of the connecting homomorphisms ∂n : Hn(C) → Hn−1(A).

Lemma 1.2 (The Snake Lemma). Let A = R–mod for some ring R, and
suppose that we have a commutative diagram in A of the form

A′ B′ C ′ 0

0 A B C

p1

f

p2

g h

i1 i2

.

Then, if the rows of this diagram are exact, there is an exact sequence

ker(f) ker(g) ker(h) coker(f) coker(g) coker(h)
p1 p2 ∂ ι̃1 ι̃2 ,

where for a ∈ A, ι̃1 maps a + f(A′) to i1(a) + g(B′), and for b ∈ B, ι̃2 maps
b+g(B′) to i2(b)+h(C ′). Also, we can compute ∂(c′) for any c′ ∈ ker(h). First,
we find b′ ∈ B′ such that p2(b

′) = c′, then we find the unique a ∈ A such that
i(a) = g(b′). Then ∂ satisfies

∂(c′) = a+ f(A′). (1)
1The sense in which the connecting homomorphisms are natural is explained in Remark

1.6.
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Proof. Please see Exercise 1 of this week’s exercise sheet.

Proof of Theorem 1.1. By the Freyd-Mitchell embedding Theorem, it suffices to
consider the case when A = R–mod for some ring R. Fix an integer n, and
consider the commutative diagram

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

f

dA

g

dB dC

f g

,

the rows of which are exact by Week 3, Exercise 1. Note that each fn is injective
and each gn is surjective. Hence we obtain via the Snake Lemma an exact
sequence

Zn(A) Zn(B) Zn(C) An−1/dAn Bn−1/dBn Cn−1/dCn
f g f̃ g̃

,

where the morphism f̃ : An−1/dAn → Bn−1/dBn satisfies

f̃(a+ dAn) = fn−1(a) + dBn

for all a ∈ An−1. The morphism g̃ : Bn−1/dBn → Cn−1/dCn satisfies an
analogous definition and is surjective because gn−1 is surjective. Since n ∈ Z
was arbitrary, we may construct a new commutative diagram

An/dAn+1 Bn/dBn+1 Cn/dCn+1 0

0 Zn−1(A) Zn−1(B) Zn−1(C)

f̃

dA
∗

g̃

dB
∗ dC

∗

f g

(2)

with exact rows. The morphism dA∗ : An/dAn+1 → Zn−1(A) satisfies

dA∗ (a+ dAn+1) = dAn (a)

for all a ∈ An, and the morphisms dB∗ , d
C
∗ satisfy analogous relations. To see

why the left square in (2) commutes, let a ∈ An and observe that

dB∗ ◦ f̃(a+ dAn+1) = dB∗ (fn(a) + dBn+1)

= dBn (fn(a))

!
= fn−1(d

A
n (a))

= fn−1 ◦ dA∗ (a+ dAn+1),

as needed, where the marked equality holds because f• is a chain map from A•
to B•. An identical argument shows that the right square commutes. Note that
the kernel of the morphism dA∗ : An/dAn+1 → Zn−1(A) is

ker(dA∗ ) = {a+ dAn+1 : a ∈ An, d
A
n (a) = 0}

= Zn(A)/dAn+1

= Hn(A),

2



and its cokernel is

coker(dA∗ ) = Zn−1(A)/im(dA∗ )

= Zn−1(A)/{dAn (a) : a ∈ An}
= Zn−1/dAn

= Hn−1(A).

Hence, a second application of the Snake Lemma to (2) yields a connecting
homomorphism ∂n : Hn(C) → Hn−1(A) such that the sequence

Hn(A) Hn(B) Hn(C) Hn−1(A) Hn−1(B) Hn−1(C).
f̃n g̃n ∂n f̃n−1 g̃n−1

is exact. We note that f̃k = Hk(f•) and g̃k = Hk(g•) for k ∈ {n, n− 1}. Since
this sequence is exact for all n ∈ Z, we may paste them together to obtain the
desired long exact sequence.

Remark 1.3. Before continuing, we note that in the above proof we can actually
calculate the image of [c] ∈ Hn(C) under ∂n using Equation (1). Let c ∈ Zn(C).
Let b ∈ Bn be such that g̃n maps [b] ∈ Bn/dBn+1 to [c], i.e., [gn(b)] = [c] in
Cn/dCn+1. Then there is a ∈ Zn−1(A) such that

fn−1(a) = dB∗ ([b]) = dBn (b).

It follows that the connecting homomorphism ∂n : Hn(C) → Hn−1(A) satisfies
∂n([c]) = [a].

In our statement of Theorem 1.1, we mentioned that the connecting homomor-
phisms {∂n : Hn(C) → Hn−1(A)}n∈Z are natural. We now give the precise
meaning of this statement. To do so, we introduce two new categories.

Remark 1.4. Let C be an abelian category. Then there is category S(Ch(C))
whose objects are the short exact sequences of chain complexes in S. A morphism
in S(Ch(C)) from 0 → A → B → C → 0 to 0 → A′ → B′ → C ′ → 0 is a
commutative diagram of the shape

0 A B C 0

0 A′ B′ C ′ 0.

The category L(C) of long exact sequences in C is defined analogously.

Proposition 1.5. Let C be an abelian category. Then we may define a functor
from S(Ch(C)) to L(C) by mapping a short exact sequence of chain complexes
in C

0 A B C 0
f g
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to the long exact sequence in C

· · · Hn+1(C) Hn(A) Hn(B) Hn(C) Hn−1(A) · · ·g̃n+1 ∂n+1 f̃n g̃n ∂n f̃n−1
,

and by mapping a morphism in S(Ch(C))

0 A B C 0

0 A′ B′ C ′ 0

f

α

g

β γ

u v

(3)

to the following morphism in L(C)

· · · Hn(A) Hn(B) Hn(C) Hn−1(A) · · ·

· · · Hn(A
′) Hn(B

′) Hn(C
′) Hn−1(A

′) · · · .

∂ f̃

α̃

g̃

β̃

∂

γ̃

f̃

α̃

∂′ ũ ṽ ∂′ g̃

(4)

Proof. The only non-trivial part of this statement is that the diagram in (4)
defines a morphism in L(C). This holds if each square in the ladder diagram
commutes. β̃nf̃n = ũnα̃n and γ̃ng̃n = ṽnβ̃n follow immediately from the com-
mutativity of the diagram in (3) and the functoriality of Hn. Hence it suffices
to show that

Hn(C) Hn−1(A)

Hn(C
′) Hn−1(A

′)

∂n

γ̃n α̃n−1

∂′
n

(5)

commutes. Let [c] be an arbitrary element of Hn(C), where c ∈ Zn(C). By
Remark (1.3), if b ∈ Bn is such that g̃n[b] = [c], and a ∈ Zn−1(A) is such that
fn−1(a) = dBn (b), then ∂n[c] = [a]. We want to find the image of γ̃n[c] ∈ Hn(C

′)
under ∂′

n. Note that βn(b) ∈ B′
n is such that

ṽn[βn(b)] = ṽnβ̃n[b] = γ̃ng̃n[b] = γ̃n[c],

and αn−1(a) ∈ Zn−1(A
′) is such that

un−1(αn−1(a)) = βn−1(fn−1(a)) = βn−1(d
B
n (b)) = dB

′

n (βn(b)).

Thus ∂′
n maps γ̃n[c] to [αn−1(a)] = α̃n−1[a] = α̃n−1∂n[c], i.e.,

∂′
nγ̃n[c] = α̃n−1∂n[c],

as needed. Hence we have mapped each morphism in S(Ch(C)) to a well-defined
morphism in L(C). It is immediately seen that this mapping preserves identity
morphisms and compositions. We thus have a functor from S(Ch(C)) to L(C).
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Remark 1.6. For each integer k, define functors Lk, Rk from S(Ch(C)) to C
such that

Lk

(
0 → A → B → C → 0

)
= Hk(A),

and
Rk

(
0 → A → B → C → 0

)
= Hk(C).

Then the commutativity of the diagram in (5) shows that for each integer n,
we may define a natural transformation ∂n : Rn =⇒ Ln−1 by assigning to
each short exact sequence 0 → A → B → C → 0 of chain complexes in C the
connecting homomorphism Hn(C) → Hn−1(A). It is for this reason that we say
the connecting homomorphisms in Theorem 1.1 are natural.

We now give a two brief examples to demonstrate the usefulness of long exact
sequences in algebraic topology.

Example 1.7. If X is a topological space, the singular complex S(X) is the
chain complex C•(X), where for n ≥ 0, Cn(X) is the free abelian group with all
singular n-simplices on X as its basis. Elements of Cn(X) are called n-chains
on X, and Hn(X) is defined to be the nth homology group of S(X). If A is a
subspace of X, then there is a short exact sequence

0 → S(A) → S(X) → S(X,A) → 0, (6)

where S(X,A) is the quotient chain complex S(X)/S(A). Let Hn(X,A) be
the nth homology group of S(X,A). Each element of Hn(X,A) is represented
a relative n-cycle: an n-chain on X whose boundary, i.e., its image under the
differential Cn(X) → Cn−1(X), actually lies in Cn−1(A). Via Theorem 1.1, we
obtain from (6) a long exact sequence

· · · → Hn(X) → Hn(X,A)
∂→ Hn−1(A) → Hn−1(X) → · · · . (7)

It turns out that the connecting homomorphism ∂ takes a relative cycle repre-
senting a class of Hn(X,A) to the class in Hn−1(A) represented by its boundary.

Example 1.8. Suppose that A,B are subspaces of a topological space X such
that X = int(A) ∪ int(B). Then there is a short exact sequence of chain com-
plexes

0 → S(A ∩B) → S(A)⊕ S(B) → S(X) → 0,

which is sent by the functor in Proposition 1.5 to the long exact sequence

· · · → Hn(A ∩B) → Hn(A)⊕Hn(B) → Hn(X) → Hn−1(A ∩B) → · · · .

This long exact sequence is known as the Mayer-Vietoris sequence.
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2 Chain Homotopies

Definition 2.1. A chain complex C• is called split if there are morphisms
{sn : Cn → Cn+1}, called splitting maps, such that dn+1 = dn+1sndn+1 for
every integer n. A chain complex C• is split exact if it is split and acyclic.

Example 2.2. We show that every chain complex C• of vector spaces over a
field k is split. For each integer n, pick B′

n ≤ Cn such that Cn = Zn⊕B′
n. Note

that
B′

n
∼= Cn/Zn

∼= im(dn) = Bn−1. (8)

Let πn : Zn ⊕ B′
n → Zn and π′

n : Zn ⊕ B′
n → B′

n be projections. Then
the isomorphism Cn/Zn → B′

n is the the map taking [c] ∈ Cn/Zn to π′
n(c).

Also, the isomorphism Cn/Zn → Bn−1 maps [c] ∈ Cn/Zn to dn(c). Similarly,
since Bn = im(dn+1) is a subspace of Zn, we may pick H ′

n ≤ Zn such that
Zn = Bn ⊕H ′

n. Note that

H ′
n
∼= Zn/Bn = Hn. (9)

Let ρn : Bn⊕H ′
n → Bn and ρ′n : Bn⊕H ′

n → H ′
n be the projections corresponding

to this decomposition. Now we define the splitting map sn : Cn → Cn+1 to be
the composition

Cn
πn−→ Zn

ρn−→ Bn
qn−→ B′

n+1 ⊆ Cn+1,

where qn is from the same family of isomorphisms as in (8). What is the
composition dn+1sndn+1? For an element x ∈ Cn+1, we have dn+1(x) ∈ Bn ⊆
Zn, thus

dn+1sn(dn+1(x)) = dn+1qn(dn+1(x))

= dn+1(π
′
n+1(x))

= dn+1(πn+1(x)) + dn+1(π
′
n+1(x))

= dn+1(x),

thus dn+1sndn+1 = dn+1. Hence C is a split chain complex. Next, we determine
the conditions under which C is not only split, but split exact. Note that for
x ∈ Cn, we have ρnπn(x) = dn+1(y) for some y ∈ Cn+1, thus

dn+1sn(x) = dn+1qn(dn+1(y))

= dn+1(y)

= ρnπn(x)

thus dn+1sn is projection Cn → Bn. Similarly, one may show that sn−1dn is
projection Cn → B′

n. Since we have the decomposition Cn = Bn ⊕H ′
n ⊕Hn, it

follows from (9) that both the kernel and cokernel of the chain map ds + sd :
C• → C• are the trivial homology complex H•(C), that is, the complex with
zero differentials whose nth object is Hn(C). One may argue from here that C•
is exact if and only if ds+ sd is the identity chain map.
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Remark 2.3. Given chain complexes C• and D•, and any collection of mor-
phisms {sn : Cn → Dn+1}n∈Z, let fn : Cn → Dn be the morphism

fn = dDn+1sn + sn−1d
C
n .

Then f• : C• → D• is in fact a chain map, since for any n ∈ Z:

dDn fn = dDn dDn+1sn + dDn sn−1d
C
n

= dDn sn−1d
C
n

= sn−2d
C
n−1d

C
n + dDn sn−1d

C
n

= (sn−2d
C
n−1 + dDn sn−1)d

C
n

= fn−1d
C
n .

We give a special name to chain maps that are of this form.

Definition 2.4. A chain map f• : C• → D• is null homotopic if there are
morphisms sn : Cn → Dn+1, n ∈ Z, such that

fn = dDn+1sn + sn−1d
C
n

for every integer n. The maps {sn}n∈Z are called a chain contraction of f . If
the identity morphism C• → C• of a chain complex C• is null homotopic, we
say that C• is contractible.

Returning to Example 2.2, we see that a chain complex C• of vector spaces over
a field k is split exact if and only if C• is contractible. It turns out that this is
true in the general case.

Exercise 2.5. Show that a chain complex C• is split exact if and only if it is
contractible.

Definition 2.6. Let f•, g• : C• → D• morphisms of chain complexes. Then
f•, g• are chain homotopic if their difference f−g is null homotopic. In this case,
the corresponding family of maps {sn}n∈Z is called a chain homotopy. We may
define an equivalence relation on morphisms of chain complexes by identifying
chain maps that are chain homotopic.

The map Hn(f) : Hn(C) → Hn(D) induced by a chain map f• : C• → D•
depends only on the homotopy class of f•:

Proposition 2.7. If f•, g• : C• → D• are homotopic maps of chain complexes,
then these maps induce the same maps Hn(C•) → Hn(D•) on homology.

Proof. It suffices to show that Hn(f) is the zero map Hn(C) → Hn(D) for all
n ∈ Z if f : C• → D• is null homotopic. Let {sn}n∈Z be a chain contraction of
f , and let [x] ∈ Hn(C), where x ∈ Zn(C). Then

fn(x) = dDn+1sn(x) + sn−1d
C
n (x) = dDn+1sn(x)

lies in Bn(D), thus [f(x)] is the zero element of Hn(D). We conclude that
Hn(f) is the zero map Hn(C) → Hn(D).
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Remark 2.8. It can be shown that there is a homotopy category of chain com-
plexes on A, in which the objects are chain complexes on A, and the morphisms
are homotopy classes of chain morphisms. We have a special name for isomor-
phisms in this new category.

Definition 2.9. A chain map f• : C• → D• defines a chain homotopy equiva-
lence if it is an isomorphism in the homotopy category of chain complexes, i.e.,
if there is a chain map g• : D• → C• such that f•g• is chain homotopic to the
identity on D• and g•f• is chain homotopic to the identity on C•. If there exists
a chain homotopy equivalence between two chain complexes, we say that they
are homotopy equivalent.

3 Mapping Cones

The notion of homotopy in Ch(A) is closely related to the notion of homotopy
in Top. Recall that continuous maps f, g : X → Y of topological spaces are
homotopic in Top if there is a continuous map H : [0, 1] × X → Y , called
a homotopy, such that H(0, x) = f(x) and H(1, x) = g(x) for all x ∈ X.
Equivalently, if ι0 : X → {0} × X and ι1 : X → {1} × X are the natural
inclusions, then a continuous map H : [0, 1] × X → Y defines a homotopy
between f and g if H ◦ ι0 = f and H ◦ ι1 = g. Our aim is to find a counterpart
for this definition in Ch(A). We first find a chain complex I• to act as an
interval object. We assume that A = R—mod for a ring R.

Definition 3.1. Let I• be the simplicial chain complex of an interval, consisting
of two vertices v0, v1 and one edge e = [v0, v1]. That is, I0 = R ⟨v0, v1⟩, I1 =
R ⟨e⟩, and Ik = 0 otherwise. Also, we have ∂1[v0, v1] = v1 − v0 and ∂k = 0
otherwise.

In Top, the domain of the homotopy H is the product of the interval [0, 1] with
X. In Ch(A), the appropriate notion of a product is the tensor product.

Definition 3.2. Given chain complexes C•, D•, let C• ⊗D• be the chain com-
plex such that

(C• ⊗D•)n =
⊕

i+j=n

Ci ⊗Dj ,

with the nth differential on C• ⊗D• defined as follows: if i, j are integers such
that i+ j = n, and (x, y) ∈ Ci ×Dj , then

dn(x⊗ y) = dCi x⊗ y + (−1)i(x⊗ dDj y).

Remark 3.3. Suppose that C• is a chain complex. Then I• ⊗ C• is the chain
complex such that at level n:

(I• ⊗ C•)n = (I0 ⊗ Cn)⊕ (I1 ⊗ Cn−1)

= (⟨v0⟩ ⊗ Cn)⊕ (⟨v1⟩ ⊗ Cn)⊕ (⟨e⟩ ⊗ Cn−1)

= Cv0
n ⊕ Cv1

n ⊕ Ce
n−1,
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where Cvi
n = ⟨vi⟩ ⊗ Cn, and Ce

n−1 = ⟨e⟩ ⊗ Cn−1. If x ∈ Cn, then

dn(vi ⊗ x) = vi ⊗ dCn x,

and if x ∈ Cn−1, then

dn(e⊗ x) = v1 ⊗ x− v0 ⊗ x− e⊗ dCn−1x.

There are also chain maps ι0, ι1 : C• → I• ⊗ C• such that ι0(x) = v0 ⊗ x and
ι1(x) = v1 ⊗ x for x ∈ Cn.

We give a new definition of homotopy in Ch(A) that mirrors the definition of
homotopy in Top we saw earlier.

Definition 3.4. Chain maps f•, g• : C• → D• are chain homotopic if there is
a chain map H : I• ⊗ C• → D• such that H ◦ ι0 = f• and H ◦ ι1 = g•.

Proposition 3.5. Chain maps f•, g• : C• → D• are chain homotopic in the
sense of Definition 2.6 if and only if they are chain homotopic in the sense of
Definition 3.4.

Proof. If f•, g• are chain homotopic in the sense of Definition 3.4, then there is
a chain map H : I• ⊗ C• → D• such that H ◦ ι0 = f• and H ◦ ι1 = g•. For
x ∈ Cn, we have e ⊗ x ∈ (I ⊗ C)n+1. Thus we may define sn : Cn → Dn+1 by
letting sn(x) = Hn+1(e⊗ x). It follows that

(dDn+1sn + sn−1d
C
n )(x) = dDn+1Hn+1(e⊗ x) +Hn(e⊗ dCn x)

!
= Hnd

I⊗C
n+1 (e⊗ x) +Hn(e⊗ dCn x)

= Hn(v1 ⊗ x− v0 ⊗ x− e⊗ dCn x) +Hn(e⊗ dCn x)

= Hn(v1 ⊗ x)−Hn(v0 ⊗ x)

= Hn ◦ ι1(x)−Hn ◦ ι0(x)
= g(x)− f(x),

where the marked equality follows because H is a chain map. Thus the maps
{sn}n∈Z are a chain contraction of f − g, and we conclude that the chain maps
f•, g• are chain homotopic in the sense of Definition 2.6. Conversely, suppose
that {sn}n∈Z is a chain contraction of f − g. Recall that (I ⊗ C)n = Cv0

n ⊕
Cv1

n ⊕ Ce
n−1. We define Hn : (I ⊗ C)n → Dn by requiring

Hn(v0 ⊗ x) = fn(x) and Hn(v1 ⊗ x) = gn(x)

for x ∈ Cn, and
Hn(e⊗ x) = sn−1(x)

for x ∈ Cn−1. We leave it to the reader to show that H : I• ⊗ C• → D• is a
chain map such that H ◦ ι0 = f• and H ◦ ι1 = g•, and thus that f•, g• are chain
homotopic in the sense of Definition 3.4.
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Given a chain map f• : C• → D•, we wish to define a new chain complex
cone(f•), called the mapping cone of f•. This construction takes inspiration
from the mapping cone Cf of a continuous map f : X → Y of topological
spaces. Recall that to form Cf , we first take the cone CX of the space X (i.e.,
we take the quotient of the cylinder I × X by the equivalence relation that
collapses {1} ×X to a point) . Next, we glue CX to Y by taking the quotient
of CX ⊔ Y by the relation that glues {0} × X ⊆ CX to Y via (0, x) ∼ f(x).
These two steps result in the mapping cone Cf . In Ch(A) we perform analogous
maneuvers. First, we quotient the cylinder I• ⊗C• by ⟨v1⟩ ⊗C•. The object at
the nth degree of this quotient is

(I• ⊗ C•)n
⟨v1⟩ ⊗ Cn

=
Cv0

n ⊕ Cv1
n ⊕ Ce

n−1

Cv1
n

∼= Cv0
n ⊕ Ce

n−1.

The resulting chain complex is called the cone of C• and is denoted by cone(C•)
(cf. Definition 3.8). Next, we mimic the step of gluing CX to Y via f by
taking the quotient of cone(C•) ⊕D• by a relation that identifies Cv0

n and Dn

via x ∼ fn(x) for x ∈ Cn. This results in a chain complex cone(f•), whose
object at the nth degree is

cone(f•)n = Cn−1 ⊕Dn.

The differentials for this chain complex are induced by the differential of the
cylinder I• ⊗ C• .

Definition 3.6. Given a chain morphism f• : C• → D•, define the mapping
cone of f• to be the chain complex cone(f•) whose object in the nth degree is
Cn−1 ⊕Dn, and whose nth differential Cn−1 ⊕Dn → Cn−2 ⊕Dn−1 satisfies

dn(x, y) = (−dCn−1(x), d
D
n (y)− fn−1(x))

=

[
−dCn−1 0
−fn−1 dDn

] [
x
y

]
for (x, y) ∈ Cn−1 ⊕Dn.

Remark 3.7. We see that cone(f•) is indeed a chain complex by noting that
the matrix representation of dndn+1 is[

−dCn−1 0
−fn−1 dDn

] [
−dCn 0
−fn dDn+1

]
=

[
dCn−1d

C
n 0

fn−1d
C
n − dDn fn dDn dDn+1

]
= 0,

since f• is a chain map.

Definition 3.8. Given a chain complex C•, define the cone of C• to be the
mapping cone of the identity chain map idC• : C• → C•. The cone of C• is
denoted by cone(C•).

Proposition 3.9. For any chain complex C•, the cone of C• is split exact.
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Proof. We first find splitting maps {sn : cone(C•)n → cone(C•)n+1}. Let sn :
Cn−1 ⊕ Cn → Cn ⊕ Cn+1 be the map with matrix representation

sn =

[
0 −idn
0 0

]
.

Then

dn+1sndn+1 =

[
−dn 0
−idn dn+1

] [
0 −idn
0 0

] [
−dn 0
−idn dn+1

]
=

[
0 dn
0 idn

] [
−dn 0
−idn dn+1

]
=

[
−dn 0
−idn dn+1

]
= dn+1,

which confirms that cone(C•) is split. To see that cone(C•) is acyclic, note that
for each n:

ker(dn) = ker

[
−dn−1 0
−idn−1 dn

]
= {(x, y) ∈ Cn−1 ⊕ Cn : dn−1x = 0, x = dny}
= {(dny, y) : y ∈ Cn}

= im

[
−dn 0
−idn dn+1

]
= im(dn+1).

This confirms that cone(C•) is split exact.

Remark 3.10. Proposition 3.9 is the homological realization of the fact that
the cone CX of any topological space X is contractible.

We demonstrate the value of mapping cones of chain maps in our final result,
which reduces questions about quasi-isomorphisms to the study of exact com-
plexes. We begin by recalling the definition of a quasi-isomorphism:

Definition 3.11. A chain map f• : C• → D• is called a quasi-isomorphism if
its image Hn(f•) : Hn(C•) → Hn(D•) under the homology functor Hn is an
isomorphism for every integer n.

Proposition 3.12. A chain map f• : C• → D• is a quasi-isomorphism if and
only if the mapping cone complex of f• is exact.

Proof. Given a chain map f• : C• → D•, we claim that there is a short exact
sequence of chain complexes

0 −→ D•
α•−→ cone(f•)

β•−→ C•[−1] −→ 0, (10)

11



where C•[−1] is the (−1)th translate of C•, the map α• satisfies αn(x) = (0, x)
for x ∈ Dn, and the map β• satisfies βn(x, y) = −x for (x, y) ∈ Cn−1 ⊕ Dn.
So as long as one remembers that the nth differential for C•[−1] is −dCn (cf.
Translation 1.2.8 in Weibel’s book), it is easy to show that α•, β• are chain
maps, and that the sequence in (10) is exact. By Theorem 1.1, there is a long
exact sequence

· · · → Hn+1(conef ) → Hn(C)
∂n→ Hn(D) → Hn(conef ) → Hn−1(C) → · · · ,

(11)
where we have recalled that Hn(C[−1]) ∼= Hn−1(C). Let x ∈ Zn(C) to compute
the image of [x] ∈ Hn(C) under the connecting homomorphism ∂n. βn+1 maps
(−x, 0) to x. Next, we have

dconen+1(−x, 0) =

[
−dCn 0
−fn dDn+1

] [
−x
0

]
=

[
dCn (x)
fn(x)

]
=

[
0

fn(x)

]
,

since x ∈ Zn(C). Lastly, we note that αn maps fn(x) to (0, fn(x)). Thus the
image of [x] under the connecting homomorphism ∂n is

∂n[x] = [fn(x)] = f̃n[x].

In particular, the connecting homomorphism ∂n is precisely the map Hn(f) :
Hn(C) → Hn(D). Since the sequence in (11) is exact, we conclude that f• :
C• → D• is a quasi-isomorphism if and only if Hn(conef ) = 0 for all n, that is,
if and only if the mapping cone complex of f• is exact.

12


