Homological algebra exercise sheet Week 10

Throughout the sheet we fix abelian categories \mathcal{A} and \mathcal{B} , assumed to have enough projectives. We let $A_{\bullet} \in \operatorname{Ch}(\mathcal{A})$, and fix a Cartan-Eilenberg resolution $P_{\bullet, \bullet} \to A_{\bullet}$ with augmentation $\varepsilon : P_{\bullet, 0} \to A_{\bullet}$.

- 1. Recall that by definition we have that $B_p(\varepsilon): B_p(P, d^h) \to B_p(A)$ and $H_p(\varepsilon): B_p(P, d^h) \to H_p(A)$ are projective resolutions.
 - (a) Show that $Z_p(\varepsilon): Z_p(P, d^h) \to Z_p(A)$ and $\varepsilon_p: P_{p, \bullet} \to A_p$ are projective resolutions.
 - (b) Suppose that A_{\bullet} is bounded below. Show that $\varepsilon : \operatorname{Tot}^{\oplus}(P_{\bullet,\bullet}) \to A$ is a quasi-isomorphism.
 - (c) Show (b) but now supposing that \mathcal{A} satisfies axiom (AB4) (ie \mathcal{A} is cocomplete and arbitrary direct sums of monics are monics). If you cannot show that ε gives a quasi-isomorphism, show via a spectral sequence argument that $\operatorname{Tot}^{\oplus}(P_{\bullet,\bullet})$ and A_{\bullet} have the same homologies.
- 2. Let $B_{\bullet} \in \operatorname{Ch}(\mathcal{A})$, and $f: A_{\bullet} \to B_{\bullet}$ be a chain map. If $Q_{\bullet, \bullet} \to B_{\bullet}$ is a Cartan-Eilenberg resolution, show that f induces a map of double complexes $\tilde{f}: P_{\bullet, \bullet} \to Q_{\bullet, \bullet}$ (as mentioned in class, this map is unique up to homotopy).
- 3. Fix a right exact functor $F: \mathcal{A} \to \mathcal{B}$
 - (a) Suppose A_{\bullet} is concentrated in degree 0. Show that $\mathbb{L}_{i}(F(A)) = L_{i}F(A_{0})$.
 - (b) Let $\operatorname{Ch}_{\geq 0}(\mathcal{A})$ be the subcategory of chain complexes in \mathcal{A} trivial below degree 0, ie $A_{\bullet} \in \operatorname{Ch}_{\geq 0}(\mathcal{A})$ if $A_p = 0 \ \forall p < 0$. Show that the hyper-left derived functors $\mathbb{L}_i F$, when restricted to $\operatorname{Ch}_{\geq 0}(\mathcal{A})$, are given by the ordinary derived functors of degree 0 homology, $L_i H_0 F$ (observe that $H_0 F$ is a right exact functor).
 - (c) Show the dimension shifting formula $\mathbb{L}_i F(A[n]) = \mathbb{L}_{i+n} F(A)$
- 4. Let A_{\bullet} be the mapping cone complex of $f, 0 \longrightarrow A_1 \stackrel{f}{\longrightarrow} A_0 \longrightarrow 0$. Show there is a long exact sequence

...
$$\mathbb{L}_i F(A) \longrightarrow L_i F(A_1) \xrightarrow{L_i F(f)} L_i F(A_0) \longrightarrow \mathbb{L}_i F(A) \longrightarrow \mathbb{L}_{i-1} F(A) \longrightarrow ...$$

- 5. Let $f: X \to Y$ be a morphism of ringed spaces and \mathcal{F} be an \mathcal{O}_X -module.
 - (a) Suppose that $R^q f_* \mathcal{F} = 0$ for q > 0. Then show that $H^p(X, \mathcal{F}) = H^p(Y, f_* \mathcal{F})$ for all p.
 - (b) Suppose that $H^p(Y, R^q f_* \mathcal{F}) = 0$ for all q and p > 0. Then show that $H^q(X, \mathcal{F}) = H^0(Y, R^q f_* \mathcal{F})$ for all q.