
Problem 1 Calculate the predictive probability for k future heads out of m tosses based on r heads
observed in n tosses, using a beta prior density for the success probability.

Solution 1 The posterior density for the success probability θ is

π(θ | R = r) =
θa+r−1(1 − θ)b+n−r−1

B(a + r, b + n − r)
, 0 < θ < 1,

and the conditional probability of k further heads in m further independent tosses is

P(K = k | θ) =

(
m

k

)

θk(1 − θ)m−k, k ∈ {0, . . . , m},

so the required predictive probability is

P(K = k | R = r) =
∫ 1

0
P(K = k | θ)π(θ | R = r) dθ

=

(
m

k

)
B(a + r + k, b + n + m − r − k)

B(a + r, b + n − r)
, k ∈ {0, . . . , m}.
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Problem 2 How would you express prior ignorance about an angle? About the position of a star in the
firmament?

Solution 2 Total ignorance would presumably correspond to uniform distributions on the circle an on
the sphere, i.e.,

π(θ) =
1

2π
, 0 < θ ≤ 2π, π(θ,φ) =

1

4π
, 0 < θ ≤ 2π, −π/2 ≤ φ ≤ π/2.

Taking into account the positions of the Milky Way or other astronomical features would be harder (and
would depend on the time of day . . . ).
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Problem 3 Verify this table of conjugate prior densities:

f(y | θ) Parameter Prior
Binomial success probability beta
Poisson mean gamma
Exponential rate gamma
Normal mean (known variance) normal
Normal variance (known mean) inverse gamma

Solution 3

For the binomial model, we have y ∈ {0, 1, . . . , m} and

f(y;π) =

(
m

y

)

θy(1 − θ)m−y ∝ θa(1 − θ)b, 0 < θ < 1,

so the density proportional to θa−1(1 − θ)b−1 and with a, b > 0 is conjugate. This is a beta density.
For the Poisson model, we have y ∈ {0, 1, . . .} and

f(y; µ) =
1

y!
µye−µ ∝ µae−bµ, µ > 0,

so the density proportional to µa−1e−bµ with a, b > 0 is conjugate. This is a gamma density.
For the exponential model, we have y > 0 and

f(y;λ) = λe−yλ, λ > 0,

so the density proportional to λa−1e−bλ with a, b > 0 is conjugate. This is a gamma density.
For the normal model with known variance, we have y real and

f(y; µ) = exp
{

−(y − µ)2/σ2 − 1
2 log(2πσ2)

}
∝ exp

{
yµ/σ2 − µ2/(2σ2)

}
= exp

(
aµ − bµ2/2

)

with a real and b positive. This corresponds to the N (µ0, τ2) density with a = µ0/τ2 and b = 1/τ2.
For the normal model with known mean, we have y real and

f(y; µ) = exp
{

−(y − µ)2/σ2 − 1
2 log(2πσ2)

}
∝ (σ−2)ae−b/σ2

= τae−bτ ,

say, where τ = 1/σ2 and a > −1 and b > 0. This is again the gamma density, but for τ = 1/σ2, so the
density of σ2 is said to be inverse gamma (more properly reciprocal gamma, but it’s too late to correct
this . . . ). If τ has the gamma density with parameters a, b > 0, then

π(τ) =
baτa−1

Γ(a)
e−bτ , τ > 0,

then the density of σ2 = 1/τ is

π(σ2) =
ba(σ2)1−a

Γ(a)
e−b/σ2

∣∣∣∣
dτ

dσ2

∣∣∣∣ =
ba

(σ2)a+1Γ(a)
e−b/σ2

, σ2 > 0.
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Problem 4 Find elements θ̃ and J̃(θ̃) of the normal approximation to a beta density, and hence check
the formulae in Example 11.11. Find also the posterior mean and variance of θ. Give an approximate
0.95 credible interval for θ. How does this differ from a 0.95 confidence interval? Comment.

Solution 4 The log density is

log π(θ) ≡ (a − 1) log θ + (b − 1) log(1 − θ), 0 < θ < 1,

and its first and second derivatives are

a − 1

θ
− b − 1

1 − θ
, −a − 1

θ2
− b − 1

(1 − θ)2
.

so θ̃ = (a − 1)/(a + b − 2) sets the first derivative to zero, and minus the second derivative evaluated at
θ̃ equals

J(θ̃) =
(a + b − 2)3

(a − 1)(b − 1)
.

Updating using r successes out of m trials replaces a and b by a + r and b + m − r, which yields the
formulae in the example.

The posterior mean and variance of θ are µ(r) = (a+r/)(m+a+b) and σ2(r) = (a+r)(b+m−r)/(a+
b + m)3, from which an approximate 95% credible interval can be found as µ(r) ± 1.96σ(r). This differs
from a 95% confidence interval in two ways: first, the presence of a and b in the formulae, which has little
numerical effect unless r = 0 or r = m, in which case the usual confidence interval (which has a = b = 0)
doesn’t work, because it has length zero; and second, the interpretation. In the credible interval θ is
treated as random and the data as fixed, whereas in the confidence interval the parameter is fixed and r
is treated as the realisation of a random variable, so the probability is with respect to repeated sampling
from the model with θ fixed. Despite this different in interpretation, there is essentially no numerical
difference between the intervals unless r is very small or very close to m, so in most cases a Bayesian and
frequentist would agree about the inference.

5



Problem 5 Two independent samples Y1, . . . , Yn
iid∼ N (µ,σ2) and X1, . . . , Xm

iid∼ N (µ, cσ2) are
available, where c > 0 is known. Find posterior densities for µ and σ based on prior π(µ,σ) ∝ 1/σ.

Solution 5 The likelihood is

n∏

j=1

f(yj | µ,σ2) ×
m∏

j=1

f(xj | µ, cσ2), µ ∈ R,σ2 > 0,

where as usual in Bayesian settings we condition on the parameters, which are regarded as random
variables. The prior is proportional to 1/σ, so inspection of the product of the prior and likelihood
implies that we can write

π(µ,σ2 | y, x) ∝ 1

(σ2)(a+1)/2
exp

{
−A(µ − B)2/(2σ2) − C/(2σ2)

}
,

where a = m + n and A, B and C are to be determined. This implies that the posterior marginal density
of σ2 is

π(σ2 | y, x) =
∫
π(µ,σ | y, x) dµ ∝ 1

(σ2)a/2
exp{−C/(2σ2)}

or equivalently that φ = 1/σ2 has density proportional to φa/2−2 exp(−Cφ/2), i.e., that the posterior
density of φ is gamma with shape parameter (a − 2)/2 and scale parameter C/2, or equivalently that the
posterior density of σ2 is inverse gamma with the same parameters. For the posterior marginal density
of µ we likewise have

π(µ | y, x) =
∫
π(µ,φ | y, x) dφ ∝

∫
φ(a+1)/2−2 exp

[
−φ

{
A(µ − B)2/2 + C

}
/2
]

dφ

∝
{

A(µ − B)2/2 + C
}−(a−1)/2

∝
{

1 + Ab(µ − B)2/(2Cb)
}−(b+1)/2

,

where b = n + m − 2, which implies that T = (µ − B)/(C/Ab)1/2 has a tb distribution, conditional on the
data.

To find A, B and C, we note that the first and second derivatives of the outer sides of

n∑

j=1

(µ − yj)
2 +

m∑

i=1

(µ − xi)
2/c = n(µ − y)2 +

n∑

j=1

(yj − y)2 + m(µ − x)2/c +
m∑

i=1

(xi − x)2/c = A(µ − B)2 + C

with respect to µ yield the equations

(n + m/c)µ − ny − mx/c = A(µ − B), n + m/c = A,

so B = (cny + mx)/(cn + m) and C =
∑n

j=1(B − yj)2 +
∑m

i=1(B − xi)2/c.
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Problem 6 Two balls are drawn successively without replacement from an urn containing three white
and two red balls. Are the outcomes of the first and second draws independent? Are they exchangeable?

Solution 6 Let W1 and W2 denote the indicator variables that the two balls are white. Clearly P(W1 =
1) = 3/5 and

P(W1 = W2 = 1) =

(
3

2

)(
2

0

)

/

(
5

2

)

= 3 × 1/10.

To compute P(W2 = 1) we either argue by symmetry, or condition on the outcome of W1:

P(W2 = 1) = P(W2 = 1 | W1 = 1)P(W1 = 1) + P(W2 = 1 | W1 = 0)P(W1 = 0) =
2

4
× 3

5
+

3

4
× 2

5
=

3

5
.

Similar computations (or symmetry) show that P(W1 = 1, W2 = 0) = P(W1 = 0, W2 = 1), so the two
outcomes are exchangeable but not independent, because P(W1 = W2 = 1) ̸= P(W1 = 1)P(W2 = 1).
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Problem 7 Under what conditions are the Bernoulli random variables Y1 and Y2 = 1−Y1 exchangeable?
What about Y1, . . . , Yn given that Y1 + · · · + Yn = m?

Solution 7 Let P(Y1 = 1) = p. For Y1 and Y2 to be exchangeable we must have

P(Y1 = y, Y2 = y′) = P(Y1 = y′, Y2 = y), y, y′ ∈ {0, 1}.

This probability equals zero when y = y′, and if y = 1, y′ = 0 then it equals P(Y1 = 1) = p, and if
y = 0, y′ = 1 then it equals P(Y1 = 0) = 1 − p. Hence they are exchangeable only if p = 1/2.

For the second part of the question we use de Finetti’s theorem, writing S = Y1 + · · · + Yn and

P(Y1 = y1, . . . , Yn = yn | S = m) =
P(S = m | Y1 = y1, . . . , Yn = yn)P(Y1 = y1, . . . , Yn = yn)

P(S = m)

=
I(
∑

Yj = m)P(Y1 = y1, . . . , Yn = yn)

P(S = m)

= I
(∑

Yj = m
) ∫ P(Y1 = y1, . . . , Yn = yn | p)f(p) dp

P(S = m)

= I (S = m)
∫

P(Y1 = y1, . . . , Yn = yn | S = m)P(S = m | p)f(p) dp

= I(S = m)P(Y1 = y1, . . . , Yn = yn | S = m)

=
∫

P(Y1 = y1, . . . , Yn = yn | S = m)I(S = m) dm,

say, because S is minimal sufficient for p. Thus this distribution has a representation in terms of a
mixture (of a single distribution!) and hence is exchangeable.
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Problem 8 In Example 11.29, suppose that v′
j = τ2vj . Show that an unbiased estimator of τ2 is then

SS/(n − p) − 1, where SS is the residual sum of squares and p is the dimension of β, and explain why a
better estimator is max{SS/(n − p) − 1, 0}.

Find also the profile log likelihood when v′
j = τ2.

Solution 8

If v′
j = τ2vj , then the computations in Example 11.29 imply that marginally yj

ind∼ N {xT
j β, (1+τ2)vj}.

In this case the unbiased estimator of σ2 = 1 + τ2 is the scaled sum of squares

σ̃2 = (n − p)−1(W 1/2y)T
{

I − W 1/2X(XTW X)−1XTW 1/2
}

(W 1/2y) = SS/(n − p),

and thus τ̂2 = σ̃2 − 1 is unbiased for τ2. To avoid a negative estimate, it is better to take max(τ̂2, 0).
When v′

j = τ2, the log likelihood function is

ℓ(β, τ2) ≡ −1

2

n∑

j=1

log(vj + τ2) − 1

2

n∑

j=1

(yj − xT
j β)2

vj + τ2
, τ2 ≥ 0,

and with τ2 fixed the least squares estimate of β is obtained by weighted least squares regression of y on
the columns of X using weight matrix Wτ2 = diag{1/(v1 + τ2), . . . , 1/(vn + τ2)}, which results in residual
sum of squares

SS(τ2) = (W 1/2
τ2 y)T

{
I − W 1/2

τ2 X(XTWτ2X)−1XTW 1/2
τ2

}
(W 1/2

τ2 y).

The profile log likelihood is therefore

ℓp(τ2) = −1

2

n∑

j=1

log(vj + τ2) − SS(τ2)

2
, τ2 ≥ 0.
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