Problem 1 Calculate the predictive probability for k future heads out of m tosses based on r heads

observed in n tosses, using a beta prior density for the success probability.

Solution 1 The posterior density for the success probability 4 is

9a+r—1(1 o 0)b+n—r—1
Bla+rb+n—r)

T@|R=r)= , 0<0<1,
and the conditional probability of k further heads in m further independent tosses is
m ok m—k
P(K:k|9):<k>0(l—9) , ke{0,...,m},

so the required predictive probability is

1
P(K=k|R=r) — /OP(K:k|9)7r(0\R:r)d9

, ke{0,...,m}.

~ [(m\Bla+r+kb+n+m—r—k)
-\ k Bla+rb+n—r)



Problem 2 How would you express prior ignorance about an angle? About the position of a star in the
firmament?

Solution 2 Total ignorance would presumably correspond to uniform distributions on the circle an on
the sphere, i.e.,

1 1
7r(9):—7r, 0<0 <2, W(Q,qﬁ)zﬂ, 0<0<2m-—m/2<¢<m/2

Taking into account the positions of the Milky Way or other astronomical features would be harder (and
would depend on the time of day ...).



Problem 3 Verify this table of conjugate prior densities:

fly|0) Parameter Prior
Binomial success probability beta

Poisson mean gamma
Exponential rate gamma,
Normal mean (known variance) normal
Normal variance (known mean) inverse gamma

Solution 3
For the binomial model, we have y € {0,1,...,m} and

Fly;m) = (Zj) 0Y(1— 0)™ Y o 99(1 — 0)°, 0<B<1,

so the density proportional to 2~ (1 — §)*~! and with a,b > 0 is conjugate. This is a beta density.
For the Poisson model, we have y € {0,1,...} and

1
Flysm) = et o pte >0,

so the density proportional to u® te™® with a,b > 0 is conjugate. This is a gamma density.
For the exponential model, we have y > 0 and

FlysA) =Axe ¥, A >0,

so the density proportional to A® 'e™®* with a,b > 0 is conjugate. This is a gamma density.
For the normal model with known variance, we have y real and

Flysm) = exp {=(y — p)?/o® — Flog(2ma®) } o exp {yp/o” — 1i2/(20%) } = exp (ap — b /2)

with @ real and b positive. This corresponds to the N (g, 72) density with a = po/72 and b= 1/72.
For the normal model with known mean, we have y real and

Fys ) = exp {~(y — p)?*/0® - Ylog(2ma?) } o (072)"e /7" = roe7'T,

say, where 7 = 1/0% and @ > —1 and b > 0. This is again the gamma density, but for 7 = 1/02, so the
density of o2 is said to be inverse gamma (more properly reciprocal gamma, but it’s too late to correct
this ...). If 7 has the gamma density with parameters a,b > 0, then

a.a—1
_ bt —br

(1) = T(a) e, T>0,
then the density of 02 = 1/7 is
ba(O'Q)l_a o dr b 172
2y bjo® | 21 | b/o 2590
™) = T 32|~ (09T (a) 72




Problem 4 Find elements 6 and J (9) of the normal approximation to a beta density, and hence check
the formulae in Example 11.11. Find also the posterior mean and variance of . Give an approximate
0.95 credible interval for . How does this differ from a 0.95 confidence interval? Comment.

Solution 4 The log density is
logm(0) = (a—1)logh+ (b—1)log(1—0), 0<0O<1,

and its first and second derivatives are

a—1 b-1 a—1 b—1

6  1-6 2  (1-0)2

s00=(a—1) /(a 4+ b — 2) sets the first derivative to zero, and minus the second derivative evaluated at
0 equals
76 = (a+b—2)3
6) = (a—1)(b—1)

Updating using r successes out of m trials replaces a and b by a + r and b + m — r, which yields the
formulae in the example.

The posterior mean and variance of § are u(r) = (a+r/)(m+a+b) and o%(r) = (a+7r)(b+m—r)/(a+
b+ m)3, from which an approximate 95% credible interval can be found as pu(r) 4 1.960(r). This differs
from a 95% confidence interval in two ways: first, the presence of a and b in the formulae, which has little
numerical effect unless » = 0 or 7 = m, in which case the usual confidence interval (which has a = b = 0)
doesn’t work, because it has length zero; and second, the interpretation. In the credible interval 6 is
treated as random and the data as fixed, whereas in the confidence interval the parameter is fixed and r
is treated as the realisation of a random variable, so the probability is with respect to repeated sampling
from the model with 6 fixed. Despite this different in interpretation, there is essentially no numerical
difference between the intervals unless r is very small or very close to m, so in most cases a Bayesian and
frequentist would agree about the inference.



Problem 5 Two independent samples Yi,...,Y, g N(u,0?) and X1,..., X, g N(u,ca?) are
available, where ¢ > 0 is known. Find posterior densities for © and o based on prior m(u,0) < 1/0.

Solution 5 The likelihood is
n m
H (yj | 0®) x [ f(xj | pyco®), peR, 0% >0,
j=1 j=1

where as usual in Bayesian settings we condition on the parameters, which are regarded as random
variables. The prior is proportional to 1/0, so inspection of the product of the prior and likelihood
implies that we can write

w(1,0% | y,7) (J)(%)/ exp {~ A — B)?/(20%) - C/(267)}.

where a = m+n and A, B and C are to be determined. This implies that the posterior marginal density
of o2 is

7o [y.0) = [ 7o |y,w) dn o s exp{~C/(20%)

1
or equivalently that ¢ = 1/0% has density proportional to ¢*/2~2exp(—C$/2), i.e., that the posterior
density of ¢ is gamma with shape parameter (a — 2)/2 and scale parameter C/2, or equivalently that the
posterior density of o2 is inverse gamma with the same parameters. For the posterior marginal density
of u we likewise have

(| y, ) Z/W(Wb |y, 2)do o /<b(““)/2’2 exp [~ {A(u—B)?/2+C} /2] dg

o« {A(u- B2+ C}*(’HW

x {1+ a(u - B j2cm)) ",

where b = n +m — 2, which implies that T = (u — B)/(C/Ab)'/? has a t, distribution, conditional on the
data.
To find A, B and C, we note that the first and second derivatives of the outer sides of

n m n
D=y +Y (n—m)fe=n(u—=97+> (y; =9 +m(p—7) /HZ /e =A(n—B)*+C
j=1 i=1 j=1
with respect to p yield the equations
(n+m/e)p —ny—mz/c=A(u— B), n+mjc=A,

so B = (eng +m7)/(en +m) and C = 77 (B — yi)? + S (B — )% /e



Problem 6 Two balls are drawn successively without replacement from an urn containing three white
and two red balls. Are the outcomes of the first and second draws independent? Are they exchangeable?

Solution 6 Let W; and W5 denote the indicator variables that the two balls are white. Clearly P(W; =

1) =3/5 and
P(W) = Wy = 1) = (Z) (3)/(2) — 3 1/10.

To compute P(W5 = 1) we either argue by symmetry, or condition on the outcome of Wi:

2 3 3 2 3
P(Wo=1) = P(Wo = 1| Wy = )P(W1 = 1) + P(Wo = 1| W1 = OP(Wy =0) = T x =+ 2 x ===,
Similar computations (or symmetry) show that P(W; = 1,W, = 0) = P(W; = 0,W5 = 1), so the two
outcomes are exchangeable but not independent, because P(W; = Wy = 1) # P(W; = 1)P(Ws = 1)



Problem 7 Under what conditions are the Bernoulli random variables Y7 and Y5 = 1 —Y; exchangeable?
What about Y7,...,Y, given that Y7 +--- 4+ Y, = m?

Solution 7 Let P(Y; = 1) = p. For Y] and Y, to be exchangeable we must have
P(Yl :yun :y/) :P(Yl :y/7Y2 :y)7 yuy/ € {071}

This probability equals zero when y = ¢/, and if y = 1,4/ = 0 then it equals P(Y; = 1) = p, and if
y =0,y =1 then it equals P(Y; = 0) = 1 — p. Hence they are exchangeable only if p = 1/2.
For the second part of the question we use de Finetti’s theorem, writing S =Y; +--- 4+ Y, and

PS=m|Yi=y,....Ya =y )PMV1=y1,.... Y0 = yn)
P(S=m)
I(3Y; =m)P (Y1—y1,~.,Yn=yn)
P(S=m)

_ m fP( = a"'aYn:yn‘p)f(p)dp

(ZY_ ) P(S=m)
- I<s=m>/P<Y1:yl,...,Yn:yn\Szm)P(Szm\p)f(p)dp
= I(S=mPY1=uy1,....Yn=9yn | S=m)
/PY1—yl,...,Yn:yn|S:m)I(S:m)dm,

P(leyl,...,Yn:yn\S:m) =

say, because S is minimal sufficient for p. Thus this distribution has a representation in terms of a
mixture (of a single distribution!) and hence is exchangeable.



Problem 8 In Example 11.29, suppose that v} = 7'21}j. Show that an unbiased estimator of 72 is then
SS/(n—p)—1, where SS is the residual sum of squares and p is the dimension of 3, and explain why a
better estimator is max{SS/(n —p) — 1,0}.

Find also the profile log likelihood when v} = 72,

Solution 8 .
If v} = 72v;, then the computations in Example 11.29 imply that marginally y; ind N{zB, (1 +72)v,}.
In this case the unbiased estimator of 02 = 1 + 72 is the scaled sum of squares

6% = (n—p) (W) {1 = WX (XTWX)TIXTW2 L (W2y) = S5/(n - p),

and thus 72 = 62 — 1 is unbiased for 72. To avoid a negative estimate, it is better to take max(72,0).
When v} = 72, the log likelihood function is

1y 1\~ (y; — 25P)°
UB.7) = -5 2 loglus +7) = 5 3 = o 720,

and with 72 fixed the least squares estimate of /3 is obtained by weighted least squares regression of y on
the columns of X using weight matrix W2 = diag{1/(v1 +72),...,1/(v, +72)}, which results in residual
sum of squares

$S(r%) = (W)™ {1 = WX (X" W X)X TW L (W {2y,
The profile log likelihood is therefore
SS(7%)

1 n
EP(TQ) =3 Zlog(vj + 7'2) - 2> 0.
j=1



