
MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) The geometric density on Y is log f(Y ; θ) = Y log(1 − θ) + log θ, and as Eg(Y ) = λ we have
Eg{log f(Y ; θ)} = λ log(1−θ)+log θ. Differentiation of this with respect to θ yields −λ/(1−θ)+1/θ,
and setting this equal to zero yields θg = (1 + λ)−1; note that the second derivative is negative for
all θ. The mean of the geometric distribution with support Y is 1/θg − 1 = λ, so the mis-specified
geometric model matches the mean of g.

The log likelihood for an exponential family is s(y)Tϕ − k(ϕ) + logm(y), and its expected value
under another exponential family model would be

Eg{s(Y )}Tϕ− k(ϕ) + Eg{logm(Y )},

which is to be maximised with respect to ϕ. This implies that Eg{s(Y )} = ∇k(ϕ), so ϕ is chosen
so that the mean ∇k(ϕ) under the candidate model equals the mean of s(Y ) under the true model.
So this is a general property.

(b) The log likelihood derivatives for a single observation are θ−1 −Y/(1−θ) and −{1/θ2 +Y/(1−θ)2},
and these give ~1(θg) = 1/{θg(1 − θg)} and ı1(θg) = 1/{θ2

g(1 − θg)}, so the sandwich variance for a
sample of size n is ~(θg)/{nı1(θg)

2} = θ3
g(1 − θg)/n, or λ/{(1 + λ)4n}.

(c) The log likelihood is ℓ(θ) = nY log(1−θ)+n log θ, which gives θ̂ = h(Y ), where h(x) = 1/(1+x) for
x > 0. The delta method variance is h′{E(Y )}2varg(Y ) = {−1/(1 + λ)2}2λ/n = θ4

g(1 − θg/(θgn) =
θ3
g(1 − θg)/n.

This is not really a surprise, but it is reassuring that the sandwich formula gives the natural variance
computed directly by applying the delta method to the formula for the MLE.

Solution 2

(a) The density function is (λ/ψ)(1−y/ψ)λ−1
+ , so the log likelihood for a random sample can be written

as

ℓ(ψ, λ) = n log λ− n logψ + (λ− 1)
n∑

j=1

log(1 − yj/ψ)+,

and this implies that λ̂ψ = argmaxλℓ(ψ, λ) = n/sψ. Hence the profile log likelihood is

ℓp(ψ) ≡ sψ − n logψ − n log sψ, ψ > max(y1, . . . , yn),

because clearly the upper bound to the support of the density, ψ, exceeds all the yj.

(b) We write the joint density as

f(y1, . . . , yn;ψ, λ) = (λ/ψ)n exp{−(λ− 1)sψ}, λ > 0,

and note that if ψ is fixed then this is a (1,1)-exponential family with canonical parameter −λ and
canonical statistic sψ, which must therefore be minimal sufficient for λ. Now

P(Z > z) = P{− log(1 − Y/ψ) > z} = P(1 − Y/ψ < e−z) = P{Y > ψ(1 − e−z)} = e−λz, z > 0,

so Sψ =
∑n
j=1 Zj is the sum of n independent exponential variables and therefore has a gamma

(n, λ) distribution, and density

fSψ(sψ;ψ, λ) =
λnsn−1

ψ

Γ(n)
e−λsψ , sψ > 0.

Thus the conditional density of Y1, . . . , Yn given Sψ = sψ is of the stated form.
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(c) The conditional log likelihood from (b) is

ℓc(ψ) = log f(y | sψ;ψ) ≡ sψ − n logψ − (n− 1) log sψ, ψ > max(y1, . . . , yn),

so the only difference is the replacement of n by n − 1 in the last term. The latter is preferable,
because it is based on a true density, so it should have slightly better behaviour in small samples.

Solution 3

(a) Differentiation to obtain the first Bartlett identity gives

0 = f(y;ψ, λ)|y=ψ +

∫ ψ

0

∂f(y;ψ, λ)

∂ψ
dy = f(y;ψ, λ)|y=ψ +

∫ ψ

0

∂ log f(y;ψ, λ)

∂ψ
f(y;ψ, λ) dy,

whose first term is zero only if λ > 1; otherwise the identity fails. As we can write

∂ log f(y;ψ, λ)

∂ψ
=

λ− 1

ψ(1 − y/ψ)
−
λ

ψ
,

we see that differentiation of the identity

∫ ψ

0

∂ log f(y;ψ, λ)

∂ψ
f(y;ψ, λ) dy = 0

will result in an expression
∂ log f(y;ψ, λ)

∂ψ
f(y;ψ, λ)

∣∣∣∣
y=ψ

that is finite only if λ > 2. Thus the standard regularity conditions fail for λ ≤ 2.

(b) The sample maximum satisfies

P(Mn ≤ x) = P(X ≤ x)n =
{

1 − (1 − x/ψ)λ
}n
, 0 < x < ψ,

so provided w ∈ (0, ψn1/λ), we can write

P
{
n1/λ(ψ −Mn) ≤ w

}
= P

(
Mn ≥ ψ − wn−1/λ

)

= 1 −

[
1 −

{
1 − (ψ − wn−1/λ)/ψ

}λ]n

= 1 −

{
1 −

(w/ψ)λ

n

}n

→ 1 − exp{−(w/ψ)λ}, n → ∞,

= P(W ≤ w),

and this is valid for all w > 0 in the limit, because ψn1/λ → ∞. This proves the desired convergence;
W has the Weibull distribution.

When λ ≤ 2, the standardised variable n1/λ(ψ−Mn) converges to its limit at least as fast as n1/2, so
in this case inference based on Mn would preferable to maximum likelihood estimation (even if the
latter was regular). But when λ > 2 the Bartlett identities are satisfied, and maximum likelihood
estimation, with its rate of n1/2, will be (asymptotically) preferable.

Solution 4
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(a) If the inverses exist and we write

A =

(
A11 A12

A21 A22

)
, A−1 =

(
A11 A12

A21 A22

)
,

then

A11 = (A11 −A12A
−1
22 A21)−1, A12 = −A−1

11 A12A
22,

A21 = −A−1
22 A21A

11, A22 = (A22 −A21A
−1
11 A12)−1,

from which the given formula follows at once.

(b) Differentiation gives

∂ℓp(ψ)

∂ψ
= ℓψ(ψ, λ̂ψ) +

∂λ̂T

ψ

∂ψ
ℓλ(ψ, λ̂ψ) = ℓψ(ψ, λ̂ψ)

because λ̂ψ maximises ℓ(ψ, λ) in the λ-direction and thus ℓλ(ψ, λ̂ψ) = 0. Hence

∂2ℓp(ψ)

∂ψ∂ψT
= ℓψψ(ψ, λ̂ψ) + ℓψλ(ψ, λ̂ψ)

∂λ̂ψ
∂ψT

.

The final expression here is obtained by differentiation of the equation ℓλ(ψ, λ̂ψ) = 0, giving

0 = ℓλψ(ψ, λ̂ψ) + ℓλλ(ψ, λ̂ψ)
∂λ̂ψ
∂ψT

,

and thus ∂λ̂ψ/∂ψ
T = −ℓλλ(ψ, λ̂ψ)−1ℓλψ(ψ, λ̂ψ), resulting in

∂2ℓp(ψ)

∂ψ∂ψT
= ℓψψ(ψ, λ̂ψ) − ℓψλ(ψ, λ̂ψ)ℓλλ(ψ, λ̂ψ)−1ℓλψ(ψ, λ̂ψ).

On multiplying by −1 and using the notation −ℓψψ(ψ, λ̂ψ) = ̃ψψ, etc., we obtain the expression

for ̃p, which becomes ̂p = ̂ψψ − ̂ψλ̂
−1
λλ ̂λψ when ψ = ψ̂, giving the required distributional result

for ψ̂.
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