## Solution 1

(a) The geometric density on  $\mathcal{Y}$  is  $\log f(Y;\theta) = Y \log(1-\theta) + \log \theta$ , and as  $\mathrm{E}_g(Y) = \lambda$  we have  $\mathrm{E}_g\{\log f(Y;\theta)\} = \lambda \log(1-\theta) + \log \theta$ . Differentiation of this with respect to  $\theta$  yields  $-\lambda/(1-\theta) + 1/\theta$ , and setting this equal to zero yields  $\theta_g = (1+\lambda)^{-1}$ ; note that the second derivative is negative for all  $\theta$ . The mean of the geometric distribution with support  $\mathcal{Y}$  is  $1/\theta_g - 1 = \lambda$ , so the mis-specified geometric model matches the mean of g.

The log likelihood for an exponential family is  $s(y)^{\mathrm{T}}\varphi - k(\varphi) + \log m(y)$ , and its expected value under another exponential family model would be

$$E_g\{s(Y)\}^T\varphi - k(\varphi) + E_g\{\log m(Y)\},$$

which is to be maximised with respect to  $\varphi$ . This implies that  $E_g\{s(Y)\} = \nabla k(\varphi)$ , so  $\varphi$  is chosen so that the mean  $\nabla k(\varphi)$  under the candidate model equals the mean of s(Y) under the true model. So this is a general property.

- (b) The log likelihood derivatives for a single observation are  $\theta^{-1} Y/(1-\theta)$  and  $-\{1/\theta^2 + Y/(1-\theta)^2\}$ , and these give  $\hbar_1(\theta_g) = 1/\{\theta_g(1-\theta_g)\}$  and  $\iota_1(\theta_g) = 1/\{\theta_g^2(1-\theta_g)\}$ , so the sandwich variance for a sample of size n is  $\hbar(\theta_g)/\{n\iota_1(\theta_g)^2\} = \theta_g^3(1-\theta_g)/n$ , or  $\lambda/\{(1+\lambda)^4n\}$ .
- (c) The log likelihood is  $\ell(\theta) = n\overline{Y}\log(1-\theta) + n\log\theta$ , which gives  $\widehat{\theta} = h(\overline{Y})$ , where h(x) = 1/(1+x) for x > 0. The delta method variance is  $h'\{E(Y)\}^2 \operatorname{var}_g(\overline{Y}) = \{-1/(1+\lambda)^2\}^2 \lambda/n = \theta_g^4(1-\theta_g/(\theta_g n)) = \theta_g^4(1-\theta_g)/n$ .

This is not really a surprise, but it is reassuring that the sandwich formula gives the natural variance computed directly by applying the delta method to the formula for the MLE.

## Solution 2

(a) The density function is  $(\lambda/\psi)(1-y/\psi)_+^{\lambda-1}$ , so the log likelihood for a random sample can be written as

$$\ell(\psi, \lambda) = n \log \lambda - n \log \psi + (\lambda - 1) \sum_{j=1}^{n} \log(1 - y_j/\psi)_+,$$

and this implies that  $\hat{\lambda}_{\psi} = \operatorname{argmax}_{\lambda} \ell(\psi, \lambda) = n/s_{\psi}$ . Hence the profile log likelihood is

$$\ell_{\rm p}(\psi) \equiv s_{\psi} - n \log \psi - n \log s_{\psi}, \quad \psi > \max(y_1, \dots, y_n),$$

because clearly the upper bound to the support of the density,  $\psi$ , exceeds all the  $y_i$ .

(b) We write the joint density as

$$f(y_1, \dots, y_n; \psi, \lambda) = (\lambda/\psi)^n \exp\{-(\lambda - 1)s_{\psi}\}, \quad \lambda > 0,$$

and note that if  $\psi$  is fixed then this is a (1,1)-exponential family with canonical parameter  $-\lambda$  and canonical statistic  $s_{\psi}$ , which must therefore be minimal sufficient for  $\lambda$ . Now

$$P(Z > z) = P\{-\log(1 - Y/\psi) > z\} = P(1 - Y/\psi < e^{-z}) = P\{Y > \psi(1 - e^{-z})\} = e^{-\lambda z}, \quad z > 0,$$

so  $S_{\psi} = \sum_{j=1}^{n} Z_{j}$  is the sum of n independent exponential variables and therefore has a gamma  $(n, \lambda)$  distribution, and density

$$f_{S_{\psi}}(s_{\psi}; \psi, \lambda) = \frac{\lambda^n s_{\psi}^{n-1}}{\Gamma(n)} e^{-\lambda s_{\psi}}, \quad s_{\psi} > 0.$$

Thus the conditional density of  $Y_1, \ldots, Y_n$  given  $S_{\psi} = s_{\psi}$  is of the stated form.

(c) The conditional log likelihood from (b) is

$$\ell_c(\psi) = \log f(y \mid s_{\psi}; \psi) \equiv s_{\psi} - n \log \psi - (n-1) \log s_{\psi}, \quad \psi > \max(y_1, \dots, y_n),$$

so the only difference is the replacement of n by n-1 in the last term. The latter is preferable, because it is based on a true density, so it should have slightly better behaviour in small samples.

## Solution 3

(a) Differentiation to obtain the first Bartlett identity gives

$$0 = f(y; \psi, \lambda)|_{y=\psi} + \int_0^{\psi} \frac{\partial f(y; \psi, \lambda)}{\partial \psi} \, \mathrm{d}y = f(y; \psi, \lambda)|_{y=\psi} + \int_0^{\psi} \frac{\partial \log f(y; \psi, \lambda)}{\partial \psi} f(y; \psi, \lambda) \, \mathrm{d}y,$$

whose first term is zero only if  $\lambda > 1$ ; otherwise the identity fails. As we can write

$$\frac{\partial \log f(y; \psi, \lambda)}{\partial \psi} = \frac{\lambda - 1}{\psi(1 - y/\psi)} - \frac{\lambda}{\psi},$$

we see that differentiation of the identity

$$\int_0^{\psi} \frac{\partial \log f(y; \psi, \lambda)}{\partial \psi} f(y; \psi, \lambda) \, \mathrm{d}y = 0$$

will result in an expression

$$\frac{\partial \log f(y; \psi, \lambda)}{\partial \psi} f(y; \psi, \lambda) \Big|_{y=\psi}$$

that is finite only if  $\lambda > 2$ . Thus the standard regularity conditions fail for  $\lambda \leq 2$ .

(b) The sample maximum satisfies

$$P(M_n \le x) = P(X \le x)^n = \{1 - (1 - x/\psi)^{\lambda}\}^n, \quad 0 < x < \psi,$$

so provided  $w \in (0, \psi n^{1/\lambda})$ , we can write

$$P\left\{n^{1/\lambda}(\psi - M_n) \le w\right\} = P\left(M_n \ge \psi - wn^{-1/\lambda}\right)$$

$$= 1 - \left[1 - \left\{1 - \left(\psi - wn^{-1/\lambda}\right)/\psi\right\}^{\lambda}\right]^n$$

$$= 1 - \left\{1 - \frac{(w/\psi)^{\lambda}}{n}\right\}^n$$

$$\to 1 - \exp\{-(w/\psi)^{\lambda}\}, \quad n \to \infty,$$

$$= P(W \le w),$$

and this is valid for all w > 0 in the limit, because  $\psi n^{1/\lambda} \to \infty$ . This proves the desired convergence; W has the Weibull distribution.

When  $\lambda \leq 2$ , the standardised variable  $n^{1/\lambda}(\psi - M_n)$  converges to its limit at least as fast as  $n^{1/2}$ , so in this case inference based on  $M_n$  would preferable to maximum likelihood estimation (even if the latter was regular). But when  $\lambda > 2$  the Bartlett identities are satisfied, and maximum likelihood estimation, with its rate of  $n^{1/2}$ , will be (asymptotically) preferable.

## Solution 4

(a) If the inverses exist and we write

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix},$$

then

$$A^{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}, A^{12} = -A_{11}^{-1}A_{12}A^{22}, A^{21} = -A_{22}^{-1}A_{21}A^{11}, A^{22} = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1},$$

from which the given formula follows at once.

(b) Differentiation gives

$$\frac{\partial \ell_{\mathrm{p}}(\psi)}{\partial \psi} = \ell_{\psi}(\psi, \widehat{\lambda}_{\psi}) + \frac{\partial \widehat{\lambda}_{\psi}^{\mathrm{T}}}{\partial \psi} \ell_{\lambda}(\psi, \widehat{\lambda}_{\psi}) = \ell_{\psi}(\psi, \widehat{\lambda}_{\psi})$$

because  $\hat{\lambda}_{\psi}$  maximises  $\ell(\psi, \lambda)$  in the  $\lambda$ -direction and thus  $\ell_{\lambda}(\psi, \hat{\lambda}_{\psi}) = 0$ . Hence

$$\frac{\partial^2 \ell_{\mathbf{p}}(\psi)}{\partial \psi \partial \psi^{\mathrm{T}}} = \ell_{\psi\psi}(\psi, \widehat{\lambda}_{\psi}) + \ell_{\psi\lambda}(\psi, \widehat{\lambda}_{\psi}) \frac{\partial \widehat{\lambda}_{\psi}}{\partial \psi^{\mathrm{T}}}.$$

The final expression here is obtained by differentiation of the equation  $\ell_{\lambda}(\psi, \hat{\lambda}_{\psi}) = 0$ , giving

$$0 = \ell_{\lambda\psi}(\psi, \widehat{\lambda}_{\psi}) + \ell_{\lambda\lambda}(\psi, \widehat{\lambda}_{\psi}) \frac{\partial \widehat{\lambda}_{\psi}}{\partial \psi^{\mathrm{T}}},$$

and thus  $\partial \hat{\lambda}_{\psi}/\partial \psi^{\mathrm{T}} = -\ell_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi})^{-1}\ell_{\lambda\psi}(\psi, \hat{\lambda}_{\psi})$ , resulting in

$$\frac{\partial^2 \ell_{\mathrm{p}}(\psi)}{\partial \psi \partial \psi^{\mathrm{T}}} = \ell_{\psi\psi}(\psi, \widehat{\lambda}_{\psi}) - \ell_{\psi\lambda}(\psi, \widehat{\lambda}_{\psi}) \ell_{\lambda\lambda}(\psi, \widehat{\lambda}_{\psi})^{-1} \ell_{\lambda\psi}(\psi, \widehat{\lambda}_{\psi}).$$

On multiplying by -1 and using the notation  $-\ell_{\psi\psi}(\psi, \widehat{\lambda}_{\psi}) = \widetilde{\jmath}_{\psi\psi}$ , etc., we obtain the expression for  $\widetilde{\jmath}_{\rm p}$ , which becomes  $\widehat{\jmath}_{\rm p} = \widehat{\jmath}_{\psi\psi} - \widehat{\jmath}_{\psi\lambda}\widehat{\jmath}_{\lambda\lambda}^{-1}\widehat{\jmath}_{\lambda\psi}$  when  $\psi = \widehat{\psi}$ , giving the required distributional result for  $\widehat{\psi}$ .