MATH-562: Statistical Inference Anthony Davison

Solution 1

(a)

The geometric density on ) is log f(Y;6) = Ylog(l — ) 4+ logf, and as E4(Y) = A we have
Eq{log f(Y;6)} = Alog(1—0)+log 6. Differentiation of this with respect to 6 yields —\/(1—6)+1/6,
and setting this equal to zero yields 6, = (1 + M)~ note that the second derivative is negative for
all §. The mean of the geometric distribution with support ) is 1/6, — 1 = A, so the mis-specified
geometric model matches the mean of g.

The log likelihood for an exponential family is s(y)T¢ — k(¢) + logm(y), and its expected value
under another exponential family model would be

Eg{s(Y)} ¢ — k(p) + Eg{logm(Y)},

which is to be maximised with respect to ¢. This implies that Eo{s(Y)} = Vk(¢), so ¢ is chosen
so that the mean Vk(y) under the candidate model equals the mean of s(Y') under the true model.
So this is a general property.

The log likelihood derivatives for a single observation are §~! —Y/(1—6) and —{1/6%>+Y/(1—6)?},
and these give hi(6,) = 1/{04(1 —0,)} and +1(0,) = 1/{93(1 —04)}, so the sandwich variance for a
sample of size n is h(0,)/{ni1(04)*} = 03(1 — 0,)/n, or A/{(1+ X)*n}.

The log likelihood is £(6) = nY log(1 —6)+nlog 6§, which gives § = h(Y), where h(z) = 1/(1+z) for
z > 0. The delta method variance is h'{E(Y)}?var,(Y) = {—1/(1 + N\)?}*\/n = 9;1(1 —04/(0gn) =
03(1 —6y)/n.

This is not really a surprise, but it is reassuring that the sandwich formula gives the natural variance
computed directly by applying the delta method to the formula for the MLE.

Solution 2

(a)

The density function is (A/1)(1—y/1)} ™", so the log likelihood for a random sample can be written
as

((h, ) = nlog A — nlogp+ (A — 1) > log(1 — y;/1)+,
j=1

and this implies that X¢ = argmax/(1), \) = n/sy. Hence the profile log likelihood is
lp(¥) = sy —nlogy —nlogsy, ¢ >max(yy,...,yn),
because clearly the upper bound to the support of the density, v, exceeds all the y;.
We write the joint density as
Fys sy, A) = (A9)" exp{=(A = D)sy}, A>0,

and note that if ¢ is fixed then this is a (1,1)-exponential family with canonical parameter —\ and
canonical statistic sy, which must therefore be minimal sufficient for A. Now

P(Z>z2)=P{-log(1-Y/¢p) > 2} =P(1-Y/p<e*) =P{Y >9p(l—e )} =e M 2>0,

so Sy = 374 Z;j is the sum of n independent exponential variables and therefore has a gamma
(n, A) distribution, and density

)\nsn—l
¢ 6—>\Sw

W s Sw>0

fsu(syp; ¥, A) =
Thus the conditional density of Y7,...,Y, given Sy = sy is of the stated form.

1



(¢) The conditional log likelihood from (b) is

le(¥) =log f(y | sy; ) = sy —nlogyh — (n—1)log sy, ¢ >max(y,...,yn),

so the only difference is the replacement of n by n — 1 in the last term. The latter is preferable,
because it is based on a true density, so it should have slightly better behaviour in small samples.

Solution 3

(a) Differentiation to obtain the first Bartlett identity gives

= [y v, A= w+/ 2l y’w’ ) = [y, M)z ¢+/ Mz’zp’)f(ywd)dy,

whose first term is zero only if A > 1; otherwise the identity fails. As we can write

Olog fly;,A) A=1 A
oY CY(l-y/y)

we see that differentiation of the identity

v log f(y; 0, N) ,, -
/0 GO ) £y 4p, Ay dy = 0

o
will result in an expression
dlog f(y; ¥, )
L y=1
that is finite only if A > 2. Thus the standard regularity conditions fail for A < 2.

fys b, N)

(b) The sample maximum satisfies
P(M, <2)=P(X <2)"={1-(1-a/p)}", 0<z<w,
so provided w € (0,¢n'/*), we can write
P{n' g — M) <w} = P(My>p—uwn'/)
= 1- [1 - {1 — (Y — wn—l/k)/qb}A]n

- 1- {1 - (wilib)A }n

— 1—exp{—(w/¥)}, n— oo,
= PW <w),

and this is valid for all w > 0 in the limit, because tn!/*

W has the Weibull distribution.

When A < 2, the standardised variable n'/* (1) — M,,) converges to its limit at least as fast as n'/2, so
in this case inference based on M,, would preferable to maximum likelihood estimation (even if the
latter was regular). But when A > 2 the Bartlett identities are satisfied, and maximum likelihood
estimation, with its rate of n!/2, will be (asymptotically) preferable.

— oo. This proves the desired convergence;

Solution 4



(a) If the inverses exist and we write

(A Ax (A A2
A_<A21 A22>’ AT = A%l A2 )

then
At = (A — Ap At Ay) T A2 = — AT A A%,
A%t = — A Ay AN A% = (Agg — A1 AT Ap) 7L,
from which the given formula follows at once.
(b) Differentiation gives
9ty () < ONL -
=/ A —2y Ay) =4
because X¢ maximises £(1, A) in the A-direction and thus ¢ (v, X¢) = 0. Hence
9%, (¥) < < Oy
=/ A 1 .
GOt wi (V5 Ap) + Lya (¥, Aw)asz

The final expression here is obtained by differentiation of the equation ¢, (v, X¢) = 0, giving

ON
0 = (. M) + O ) g
and thus 8Xw/8wT = —ln (v, Xip)*lﬁw(l/}, Xw), resulting in

0%ty (v)
DYoY™

= Ly (10, M) — Lyn (10, M) o (90, M) ™ o (10, Ayp).

On multiplying by —1 and using the notatlon — Lo (1, )\¢) = Jyy, €tc., we obtain the expression
for ]p, which becomes 7, = 7y — Jya jM Jnp When ) = 1/), giving the requlred distributional result
for ¢



