
MATH-562: Statistical Inference Anthony Davison

Solution 1 The likelihood is

n∏

j=1

1

b− a
I(a < yj < b) = (b− a)−nI(a < u < v < b), a < b,

where u = min yj < v = max yj are the sample maxima and minima. Hence a sufficient statistic is
S = (U, V ) = (min Yj,max Yj), using the factorisation theorem; as usual we suppose that the sample size
is fixed.

(a) In this case I(a < u < v < b) equals

I(v < θ)I(u < v)I(−θ < u) = I(v < θ)I(−u < θ) = I{max(−u, v) < θ},

because U < V with probability one, so S = max(−U, V ) is a sufficient statistic. It is also minimal
sufficient, since (in an obvious notation and setting 0/0 = 1)

f(z; θ)

f(y; θ)
=

(2θ)−nI(sz < θ)

(2θ)−nI(sy < θ)
=
I(sz < θ)

I(sy < θ)

does not depend on θ iff sz = sy.

(b) In this case
f(z; θ)

f(y; θ)
=

2−nI(uz < θ < vz)

2−nI(uy < θ < vy)
=
I(uz < θ < vz)

I(uy < θ < vy)
,

so, as we must have uz = uy and vz = vy for this not to depend on θ, S = (U, V ) is minimal
sufficient.

It seems clear that the distribution of A = V −U does not depend on θ. To formalise this we argue

as follows: Yj
D
= θ +Wj , where W1, . . . ,Wn

iid
∼ U(−1, 1). Hence

V
D
= max(Y1, . . . , Yn) = max(θ +W1, . . . , θ +Wn) = θ + maxWj ,

and likewise U
D
= θ+ minWj. Thus A = V −U

D
= maxWj − maxWj , whose distribution does not

depend on θ. Thus A is ancillary.

A clumsier approach uses results on the joint densities of order statistics, which give

fU,V (u, v) =
n!

1!(n− 2)!1!
2−n(u− v)n−2, θ − 1 < u < v < θ + 1.

The Jacobian for the transformation (u, v) 7→ (u, a) = (u, v − u) is unity, so the joint density of U
and A is

fU,A(u, a) = n(n− 1)2−nan−2 × 1, −1 < u− θ < u− θ + a < 1,

and as −1 < u− θ < 1 we have −1 < a < 1, and the marginal density of A is therefore

fA(a) =

∫ θ+1−a

θ−1
n(n− 1)2−nan−2 du = n(n− 1)2−n(2 − a)an−2, 0 < a < 2.

As this does not depend on θ, A is ancillary.

Solution 2
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(a) The joint density f(y, n; θ) of y1, . . . , yn, n is

f(y | n; θ)f(n; θ) =
n∏

j=1

f(yj; θ)×f(n; θ) =
n∏

j=1

θyj

yj !
e−θ×(1−θ)n−1θ ∝ θs+1(1−θ)n−1e−nθ, 0 < θ < 1,

so the factorization theorem implies that (S,N) = (Y1 + · · · + YN , N) is sufficient, and it is easy to
check that it is also minimal, as the model is an exponential family. Here N is part of the minimal
sufficient statistic because its value is informative about θ (very large N would imply that θ is very
low, which would also reduce the likely value of S).

(b) The joint density is

n∏

j=1

θ
yj
j

yj !
e−θj =

n∏

j=1

exp(yjx
T

j β)

yj!
e− exp(xT

j
β) ∝ exp




n∑

j=1

yjx
T

j β −
n∑

j=1

ex
T

j
β


 , 0 < θ < 1,

so the d × 1 vector S =
∑n
j=1 Yjxj is sufficient for β, using the factorisation theorem. This is a

(d, d) exponential family, so S is also minimal sufficient.

(c) We can use exponential family results from Section 2.2, or just note that

f(y1, . . . , yn;λ) = λn exp(−λs), s = y1 + · · · + yn > 0,

so S = Y1 + · · · + Yn is minimal sufficient. This is an exponential family, so S is also complete, and
therefore it is independent of any distribution-constant statistics (by Basu’s theorem). It is clear

from its density function that λYj
D
= Ej , where E1, . . . , En

iid
∼ exp(1), so

(Y1/Y , . . . , Yn/Y )
D
= (E1/E, . . . , En/E),

which is distribution-constant, and therefore independent of Y = S/n.

Solution 3 They are independent, so

f(y1, y2; θ) = f(y1; θ)f(y2; θ) =
yn−1

1 θ−n

Γ(n)
e−y1/θ ×

yn−1
2 θn

Γ(n)
e−y2θ, y1, y2 > 0, θ > 0.

(a) On setting ϕ(θ)T = (1/θ, θ), s(Y )T = (−Y1,−Y2) and k(θ) = 0 we see that this is an exponential
family in which ϕ lies in the set {(x, y) : xy = 1} ⊂ R

2
+, a one-dimensional subset of the positive

quadrant, while −s(Y ) ∈ R
2
+. Hence this is a (2, 1) exponential family. It is clear from Example 36

that (Y1, Y2) are minimal sufficient.

There is a 1–1 mapping between (Y1, Y2) = (TA,A/T ) and (T,A), which is thus minimal sufficient.

(b) The Jacobian of the transformation (y1, y2) 7→ (t, a) is 2a/t > 0. Hence

f(t, a; θ) =
2a2n−1

tΓ(n)2
exp {−a(t/θ + θ/t)} , a, t > 0, θ > 0,

and the marginal density of A is

f(a; θ) = C(a)

∫
∞

0
t−1 exp {−a(t/θ + θ/t)} dt = C(a)

∫
∞

−∞

exp(−2a coshw) dw = C(a)I(a),

say, where C(a) = 2a2n−1/Γ(n)2 and we have changed variables from t to w = log(t/θ), so dt/dw = t.
As f(a; θ) does not depend on θ, A is ancillary. This was obvious from the problem statement,

because if we write the two gamma variables as X1
D
= Y1/θ and X2

D
= Y2θ, then the distribution of

A = (Y1Y2)1/2 D
= (θX1 ×X2/θ)

1/2 = (X1X2)1/2 does not depend on θ. Hence

f(t | a; θ) = {tI(a)}−1 exp {−a(t/θ + θ/t)} , t > 0, θ > 0.
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(c) The log likelihood is ℓ(θ) ≡ −a(t/θ + θ/t), with first and second derivatives a(t/θ2 − 1/t) and
−at/θ3, so the unconditional Fisher information is E(AT/θ3) = E(Y1/θ

3) = nθ/θ3 = n/θ2. This
implies that a can be seen as an observed sample size, replacing n in the observed information.

The maximum likelihood estimate is θ̂ = t and (θ̂) = a/θ̂2. The standard error (θ̂)−1/2 = θ̂/a1/2

is decreasing in a, which as we just saw plays the role of a sample size.

Solution 4

(a) The joint density is

f(y1, y2;ψ, λ) = λ(λ+ ψ) exp{−(y1 + y2)λ− y2ψ}, y1, y2 > 0, ψ, λ > 0.

This is a (2, 2) exponential family with ϕ = (ψ, λ) and s(y) = (y2, y1 + y2), so we can eliminate λ
using the conditional density of T = Y2 given W = Y1 + Y2. The Jacobian of the transformation
(y1, y2) 7→ (t = y2, w = y1 + y2) is 1, so the joint density of (T,W ) is

f(t, w;λ, ψ) = f(y1, y2;ψ, λ) × 1|y1=w−t,y2=t = λ(λ+ ψ) exp(−wλ− tψ), 0 < t < w.

Hence the marginal density of W is

f(w;λ, ψ) =

∫ w

0
f(t, w;λ, ψ) dt = λ(λ+ ψ) exp(−wλ)ψ−1(1 − e−wψ),

and the required conditional density and distribution are of truncated exponential form

f(t | w;ψ) =
ψe−tψ

1 − e−wψ
, F (t | w;ψ) =

1 − e−tψ

1 − e−wψ
, 0 < t < w.

Given observed values wo and to, the limits of the 1 − 2α confidence interval are the values of ψ
that satisfy F (to | wo;ψ) = α, 1 − α.

(b) We let Q = ψY2/Y1 and note that

P(Q ≤ q) = P(ψY2/q ≤ Y1)

=

∫
∞

0
f(y2;ψ, λ)P(Y1 > ψy2/q)

=

∫
∞

0
λψe−λψy2 e−λy1

∣∣∣
y1=ψy2/q

dy2

=
λψ

λψ(1 + 1/q)

=
q

1 + q
, q > 0.

Hence Q is a pivot on which inference for ψ can be based. The α quantile qα of Q satisfies P(Q ≤ qα)
and hence qα = α/(1 − α). Thus

1 − 2α = P(qα < Q ≤ q1−α) = P(qα < ψY2/Y1 ≤ q1−α),

and hence the 1 − 2α confidence interval based on observed data yo
1, y

o
2 has limits

α

1 − α

yo
1

yo
2

,
1 − α

α

yo
1

yo
2

.

(c) This model is not a linear exponential family, but if ψ is fixed then the density is

f(y1, y2;ψ, λ) = λ2ψ exp{−λ(y1 + ψy2)}, y1, y2 > 0,
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and λ can be eliminated by conditioning on wψ = y1+ψy2. If we set t = y1, then |∂(wψ , t)/∂(y1, y2)| =
ψ > 0, so

f(t, wψ;ψ, λ) = f(y1, y2;ψ, λ)

∣∣∣∣∣
∂(y1, y2)

∂(wψ, t)

∣∣∣∣∣

∣∣∣∣∣
y1=t,y2=(wψ−t)/ψ

= λ2 exp(−λwψ), 0 < t < wψ,

and thus the marginal density of Wψ is

f(wψ;ψ, λ) =

∫ wψ

0
f(t, wψ;ψ, λ) dt = λ2wψ exp(−λwψ), wψ > 0,

giving

f(t | wψ;ψ) =
f(t, wψ;ψ, λ)

f(wψ;ψ, λ)
= w−1

ψ , 0 < t < wψ,

i.e., T | Wψ = wψ ∼ U(0, wψ).

The limits of a 1 − 2α confidence interval for ψ solve the equations F (to | wo
ψ;ψ) = α, 1 − α, and

setting to = yo
1 and wo

ψ = yo
1 + ψyo

2 leads to the interval in (b).
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