Solution 1 The likelihood is

$$\prod_{j=1}^{n} \frac{1}{b-a} I(a < y_j < b) = (b-a)^{-n} I(a < u < v < b), \quad a < b,$$

where $u = \min y_j < v = \max y_j$ are the sample maxima and minima. Hence a sufficient statistic is $S = (U, V) = (\min Y_j, \max Y_j)$, using the factorisation theorem; as usual we suppose that the sample size is fixed.

(a) In this case I(a < u < v < b) equals

$$I(v < \theta)I(u < v)I(-\theta < u) = I(v < \theta)I(-u < \theta) = I\{\max(-u, v) < \theta\},\$$

because U < V with probability one, so $S = \max(-U, V)$ is a sufficient statistic. It is also minimal sufficient, since (in an obvious notation and setting 0/0 = 1)

$$\frac{f(z;\theta)}{f(y;\theta)} = \frac{(2\theta)^{-n}I(s_z < \theta)}{(2\theta)^{-n}I(s_y < \theta)} = \frac{I(s_z < \theta)}{I(s_y < \theta)}$$

does not depend on θ iff $s_z = s_y$.

(b) In this case

$$\frac{f(z;\theta)}{f(y;\theta)} = \frac{2^{-n}I(u_z < \theta < v_z)}{2^{-n}I(u_y < \theta < v_y)} = \frac{I(u_z < \theta < v_z)}{I(u_y < \theta < v_y)},$$

so, as we must have $u_z = u_y$ and $v_z = v_y$ for this not to depend on θ , S = (U, V) is minimal sufficient.

It seems clear that the distribution of A=V-U does not depend on θ . To formalise this we argue as follows: $Y_j \stackrel{\mathrm{D}}{=} \theta + W_j$, where $W_1, \ldots, W_n \stackrel{\mathrm{iid}}{\sim} U(-1,1)$. Hence

$$V \stackrel{\mathrm{D}}{=} \max(Y_1, \dots, Y_n) = \max(\theta + W_1, \dots, \theta + W_n) = \theta + \max W_j,$$

and likewise $U \stackrel{\mathrm{D}}{=} \theta + \min W_j$. Thus $A = V - U \stackrel{\mathrm{D}}{=} \max W_j - \max W_j$, whose distribution does not depend on θ . Thus A is ancillary.

A clumsier approach uses results on the joint densities of order statistics, which give

$$f_{U,V}(u,v) = \frac{n!}{1!(n-2)!1!} 2^{-n} (u-v)^{n-2}, \quad \theta - 1 < u < v < \theta + 1.$$

The Jacobian for the transformation $(u, v) \mapsto (u, a) = (u, v - u)$ is unity, so the joint density of U and A is

$$f_{U,A}(u,a) = n(n-1)2^{-n}a^{n-2} \times 1, \quad -1 < u - \theta < u - \theta + a < 1,$$

and as $-1 < u - \theta < 1$ we have -1 < a < 1, and the marginal density of A is therefore

$$f_A(a) = \int_{\theta-1}^{\theta+1-a} n(n-1)2^{-n}a^{n-2} du = n(n-1)2^{-n}(2-a)a^{n-2}, \quad 0 < a < 2.$$

As this does not depend on θ , A is ancillary.

Solution 2

(a) The joint density $f(y, n; \theta)$ of y_1, \ldots, y_n, n is

$$f(y \mid n; \theta) f(n; \theta) = \prod_{j=1}^{n} f(y_j; \theta) \times f(n; \theta) = \prod_{j=1}^{n} \frac{\theta^{y_j}}{y_j!} e^{-\theta} \times (1-\theta)^{n-1} \theta \propto \theta^{s+1} (1-\theta)^{n-1} e^{-n\theta}, \quad 0 < \theta < 1,$$

so the factorization theorem implies that $(S, N) = (Y_1 + \cdots + Y_N, N)$ is sufficient, and it is easy to check that it is also minimal, as the model is an exponential family. Here N is part of the minimal sufficient statistic because its value is informative about θ (very large N would imply that θ is very low, which would also reduce the likely value of S).

(b) The joint density is

$$\prod_{j=1}^{n} \frac{\theta_{j}^{y_{j}}}{y_{j}!} e^{-\theta_{j}} = \prod_{j=1}^{n} \frac{\exp(y_{j} x_{j}^{\mathrm{T}} \beta)}{y_{j}!} e^{-\exp(x_{j}^{\mathrm{T}} \beta)} \propto \exp\left(\sum_{j=1}^{n} y_{j} x_{j}^{\mathrm{T}} \beta - \sum_{j=1}^{n} e^{x_{j}^{\mathrm{T}} \beta}\right), \quad 0 < \theta < 1,$$

so the $d \times 1$ vector $S = \sum_{j=1}^{n} Y_j x_j$ is sufficient for β , using the factorisation theorem. This is a (d, d) exponential family, so S is also minimal sufficient.

(c) We can use exponential family results from Section 2.2, or just note that

$$f(y_1, \dots, y_n; \lambda) = \lambda^n \exp(-\lambda s), \quad s = y_1 + \dots + y_n > 0,$$

so $S = Y_1 + \cdots + Y_n$ is minimal sufficient. This is an exponential family, so S is also complete, and therefore it is independent of any distribution-constant statistics (by Basu's theorem). It is clear from its density function that $\lambda Y_j \stackrel{\text{D}}{=} E_j$, where $E_1, \ldots, E_n \stackrel{\text{iid}}{\sim} \exp(1)$, so

$$(Y_1/\overline{Y},\ldots,Y_n/\overline{Y}) \stackrel{\mathrm{D}}{=} (E_1/\overline{E},\ldots,E_n/\overline{E}),$$

which is distribution-constant, and therefore independent of $\overline{Y} = S/n$.

Solution 3 They are independent, so

$$f(y_1, y_2; \theta) = f(y_1; \theta) f(y_2; \theta) = \frac{y_1^{n-1} \theta^{-n}}{\Gamma(n)} e^{-y_1/\theta} \times \frac{y_2^{n-1} \theta^n}{\Gamma(n)} e^{-y_2 \theta}, \quad y_1, y_2 > 0, \theta > 0.$$

(a) On setting $\varphi(\theta)^{\mathrm{T}} = (1/\theta, \theta)$, $s(Y)^{\mathrm{T}} = (-Y_1, -Y_2)$ and $k(\theta) = 0$ we see that this is an exponential family in which φ lies in the set $\{(x,y): xy=1\} \subset \mathbb{R}^2_+$, a one-dimensional subset of the positive quadrant, while $-s(Y) \in \mathbb{R}^2_+$. Hence this is a (2,1) exponential family. It is clear from Example 36 that (Y_1, Y_2) are minimal sufficient.

There is a 1–1 mapping between $(Y_1, Y_2) = (TA, A/T)$ and (T, A), which is thus minimal sufficient.

(b) The Jacobian of the transformation $(y_1, y_2) \mapsto (t, a)$ is 2a/t > 0. Hence

$$f(t, a; \theta) = \frac{2a^{2n-1}}{t\Gamma(n)^2} \exp\{-a(t/\theta + \theta/t)\}, \quad a, t > 0, \theta > 0,$$

and the marginal density of A is

$$f(a;\theta) = C(a) \int_0^\infty t^{-1} \exp\left\{-a(t/\theta + \theta/t)\right\} dt = C(a) \int_{-\infty}^\infty \exp(-2a\cosh w) dw = C(a)I(a),$$

say, where $C(a) = 2a^{2n-1}/\Gamma(n)^2$ and we have changed variables from t to $w = \log(t/\theta)$, so $\mathrm{d}t/\mathrm{d}w = t$. As $f(a;\theta)$ does not depend on θ , A is ancillary. This was obvious from the problem statement, because if we write the two gamma variables as $X_1 \stackrel{\mathrm{D}}{=} Y_1/\theta$ and $X_2 \stackrel{\mathrm{D}}{=} Y_2\theta$, then the distribution of $A = (Y_1Y_2)^{1/2} \stackrel{\mathrm{D}}{=} (\theta X_1 \times X_2/\theta)^{1/2} = (X_1X_2)^{1/2}$ does not depend on θ . Hence

$$f(t\mid a;\theta) = \{tI(a)\}^{-1} \exp\left\{-a(t/\theta+\theta/t)\right\}, \quad t>0, \theta>0.$$

(c) The log likelihood is $\ell(\theta) \equiv -a(t/\theta + \theta/t)$, with first and second derivatives $a(t/\theta^2 - 1/t)$ and $-at/\theta^3$, so the unconditional Fisher information is $\mathrm{E}(AT/\theta^3) = \mathrm{E}(Y_1/\theta^3) = n\theta/\theta^3 = n/\theta^2$. This implies that a can be seen as an observed sample size, replacing n in the observed information.

The maximum likelihood estimate is $\hat{\theta} = t$ and $j(\hat{\theta}) = a/\hat{\theta}^2$. The standard error $j(\hat{\theta})^{-1/2} = \hat{\theta}/a^{1/2}$ is decreasing in a, which as we just saw plays the role of a sample size.

Solution 4

(a) The joint density is

$$f(y_1, y_2; \psi, \lambda) = \lambda(\lambda + \psi) \exp\{-(y_1 + y_2)\lambda - y_2\psi\}, \quad y_1, y_2 > 0, \psi, \lambda > 0.$$

This is a (2,2) exponential family with $\varphi = (\psi, \lambda)$ and $s(y) = (y_2, y_1 + y_2)$, so we can eliminate λ using the conditional density of $T = Y_2$ given $W = Y_1 + Y_2$. The Jacobian of the transformation $(y_1, y_2) \mapsto (t = y_2, w = y_1 + y_2)$ is 1, so the joint density of (T, W) is

$$f(t, w; \lambda, \psi) = f(y_1, y_2; \psi, \lambda) \times 1|_{y_1 = w - t, y_2 = t} = \lambda(\lambda + \psi) \exp(-w\lambda - t\psi), \quad 0 < t < w.$$

Hence the marginal density of W is

$$f(w; \lambda, \psi) = \int_0^w f(t, w; \lambda, \psi) dt = \lambda(\lambda + \psi) \exp(-w\lambda)\psi^{-1}(1 - e^{-w\psi}),$$

and the required conditional density and distribution are of truncated exponential form

$$f(t \mid w; \psi) = \frac{\psi e^{-t\psi}}{1 - e^{-w\psi}}, \quad F(t \mid w; \psi) = \frac{1 - e^{-t\psi}}{1 - e^{-w\psi}}, \quad 0 < t < w.$$

Given observed values $w^{\rm o}$ and $t^{\rm o}$, the limits of the $1-2\alpha$ confidence interval are the values of ψ that satisfy $F(t^{\rm o} \mid w^{\rm o}; \psi) = \alpha, 1-\alpha$.

(b) We let $Q = \psi Y_2/Y_1$ and note that

$$P(Q \le q) = P(\psi Y_2/q \le Y_1)$$

$$= \int_0^\infty f(y_2; \psi, \lambda) P(Y_1 > \psi y_2/q)$$

$$= \int_0^\infty \lambda \psi e^{-\lambda \psi y_2} e^{-\lambda y_1} \Big|_{y_1 = \psi y_2/q} dy_2$$

$$= \frac{\lambda \psi}{\lambda \psi (1 + 1/q)}$$

$$= \frac{q}{1 + q}, \quad q > 0.$$

Hence Q is a pivot on which inference for ψ can be based. The α quantile q_{α} of Q satisfies $P(Q \leq q_{\alpha})$ and hence $q_{\alpha} = \alpha/(1-\alpha)$. Thus

$$1 - 2\alpha = P(q_{\alpha} < Q \le q_{1-\alpha}) = P(q_{\alpha} < \psi Y_2 / Y_1 \le q_{1-\alpha}),$$

and hence the $1-2\alpha$ confidence interval based on observed data $y_1^{\rm o},y_2^{\rm o}$ has limits

$$\frac{\alpha}{1-\alpha} \frac{y_1^{\circ}}{y_2^{\circ}}, \quad \frac{1-\alpha}{\alpha} \frac{y_1^{\circ}}{y_2^{\circ}}.$$

(c) This model is not a linear exponential family, but if ψ is fixed then the density is

$$f(y_1, y_2; \psi, \lambda) = \lambda^2 \psi \exp\{-\lambda (y_1 + \psi y_2)\}, \quad y_1, y_2 > 0,$$

and λ can be eliminated by conditioning on $w_{\psi} = y_1 + \psi y_2$. If we set $t = y_1$, then $|\partial(w_{\psi}, t)/\partial(y_1, y_2)| = \psi > 0$, so

$$f(t, w_{\psi}; \psi, \lambda) = f(y_1, y_2; \psi, \lambda) \left| \frac{\partial(y_1, y_2)}{\partial(w_{\psi}, t)} \right|_{y_1 = t, y_2 = (w_{\psi} - t)/\psi} = \lambda^2 \exp(-\lambda w_{\psi}), \quad 0 < t < w_{\psi},$$

and thus the marginal density of W_{ψ} is

$$f(w_{\psi}; \psi, \lambda) = \int_0^{w_{\psi}} f(t, w_{\psi}; \psi, \lambda) dt = \lambda^2 w_{\psi} \exp(-\lambda w_{\psi}), \quad w_{\psi} > 0,$$

giving

$$f(t \mid w_{\psi}; \psi) = \frac{f(t, w_{\psi}; \psi, \lambda)}{f(w_{\psi}; \psi, \lambda)} = w_{\psi}^{-1}, \quad 0 < t < w_{\psi},$$

i.e.,
$$T \mid W_{\psi} = w_{\psi} \sim U(0, w_{\psi}).$$

The limits of a $1-2\alpha$ confidence interval for ψ solve the equations $F(t^{\rm o}\mid w_{\psi}^{\rm o};\psi)=\alpha,1-\alpha,$ and setting $t^{\rm o}=y_1^{\rm o}$ and $w_{\psi}^{\rm o}=y_1^{\rm o}+\psi y_2^{\rm o}$ leads to the interval in (b).