
MATH-562: Statistical Inference Anthony Davison

Solution 1

The Poisson model is a (1, 1) exponential family, so (by Example 36 and Theorem 38) S is a complete
minimal sufficient statistic. It is a sum of independent Poisson variables, so S ∼ Poiss(nλ).

(a) The required conditional distribution is obtained by setting

f(y1, . . . , yn | s) =
f(y1, . . . , yn)f(s | y1, . . . , yn)

f(s)
=

∏n
j=1 λ

yje−λ/yj ! × I(s = y1 + · · · + yn)

(nλ)se−nλ/s!

and this can be written as

f(y1, . . . , yn | s) =
s!∏n

j=1 yj!

n∏

j=1

n−yj × I(s = y1 + · · · + yn), y1, . . . , yn ∈ {0, 1, . . .},

which is multinomial with denominator s and probability vector (1/n, . . . , 1/n).

(b) Yes, because any function h(S) that is unbiased for ψ(λ) must be unique, by completeness of S.

(c) (i) Either strategy could be used. For the first, note that as T = I(Y1 = 0) is unbiased for e−λ, we
need to compute E(T | S). The multinomial distribution in (a) implies that Y1 | S = s ∼ B(s, 1/n),
so

E(T | S = s) = E{I(Y1 = 0) | S = s} = P(Y1 = 0 | S = s) = (1 − 1/n)s,

i.e., (1 − 1/n)S must be the optimal unbiased estimator. To check this, note that

E{(1 − 1/n)S} =
∞∑

s=0

(1 − 1/n)s(nλ)se−nλ/s! = e−nλ
∞∑

s=0

(n− 1)sλs/s! = e−nλe(n−1)λ = e−λ,

as required.

For the second strategy, we seek to solve E{h(S)} = e−λ, i.e.,

∞∑

s=0

h(s)(nλ)se−nλ/s! = e−λ =⇒
∞∑

s=0

h(s)(nλ)s/s! = e(n−1)λ,

and taking h(s) = (n− 1)s/ns achieves this, and gives the same estimator as the first strategy.

(ii) Here it’s not clear what unbiased estimator to start from, so we use the second strategy. We
need to solve E{h(S)} = e−2nλ, giving

∞∑

s=0

h(s)(nλ)se−nλ/s! = e−2nλ =⇒
∞∑

s=0

h(s)(nλ)s/s! = e−nλ,

so we must choose

h(s) =

{
−1, s odd,

1, s even.

The estimator in (i) seems reasonable, but that in (ii) is not, as it can be negative when estimating a
positive quantity, and ±1 is unlikely to be close to the target (a small positive number, most likely).
An obvious alternative would be exp(−2S), as λ̂ = S/n is the maximum likelihood estimator; this
estimator is biased but asymptotically has the smallest variance (by the Cramèr–Rao lower bound).

Solution 2

(a) We have E(Yj) = θ/2 and var(Yj) = θ2/12 so the unbiasedness of U is immediate and its variance
is θ2/(3n) = O(n−1).
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(b) The Rao–Blackwell theorem tells us that E(U | M) will be unbiased with a smaller variance, and
we can write

U =
2

n
(M + Y ′

1 + · · · Y ′
n−1),

where Y ′
1 , . . . , Y

′
n are the values of the original sample that are not the maximum. Each of these must

lie in the interval (0,M) and we saw in the notes that conditional on M = m they are independent
with U(0,m) distributions, so E(Y ′

j | M = m) = m/2. Hence

E(U | M = m) =
2

n
{m+ (n− 1)m/2} =

m

n
(2 + n− 1) = (n+ 1)m/n,

so the unbiased estimator based on M is θ̃ = (n + 1)M/n. As E(M r) = nθr/(n + r), we have
var(M) = nθ2/{(n + 2)(n + 1)2}, so

var(θ̃) =
(n+ 1)2

n2
var(M) =

θ2

n(n+ 2)
= O(n−2),

i.e., Rao–Blackwellisation has given an unbiased estimator with variance of lower order in n, which
is therefore much better than U .

For an alternative argument not involving order statistics, we might write

E(U | M) =
2

n
E





n∑

j=1

Yj | M = m



 =

2

n

n∑

j=1

E {YjI(Yj = M) + YjI(Yj < M) | M = m}

and then note that

E {YjI(Yj = M) | M = m} + E {YjI(Yj < M) | M = m} = m
1

n
+
m

2

n− 1

n

giving

E(U | M) =
2

n

n∑

j=1

(
m

1

n
+
m

2

n− 1

n

)
= (n+ 1)m/n.

Solution 3

(a) Replacing n in the first expression by n − 1 allows the term fY1,...,Yn−1
(y1, . . . , yn−1) to be written

in terms of the conditional density of Yn−1 given Y1, . . . , Yn−2, and then we simply iterate this,
finishing by writing fY1,Y2

(y1, y2) = fY2|Y1
(y2 | y1)fY1

(y1).

(b) This is a Markov process because the density of Yj given the past depends only on Yj−1, so we
obtain

fY0,...,Yn
(y0, . . . , yn) = fY0

(y0)
n∏

j=1

fYj |Yj−1
(yj | yj−1)

= f(y0)
n∏

j=1

exp{−{yj − µ− α(yj−1 − µ)}2/(2σ2)}

(2πσ2)1/2
,

and the log likelihood is

−2ℓ(µ, α, σ2) ≡ −2 log f(y0) + n log σ2 +
1

σ2

n∑

j=1

{yj − µ− α(yj−1 − µ)}2,

with (i) f(y0) = 1 and (ii) −2 log f(y0) ≡ log σ2 − log(1 − α2) + (y0 − µ)2(1 − α2)/σ2.

2



(c) The quadratic form in (b) can be expanded as

1

σ2





n∑

j=1

y2
j − 2α

n∑

j=1

yjyj−1 + α2
n∑

j=1

y2
j−1 + 2(α − 1)µ

n∑

j=1

yj − 2α(α − 1)µ
n−1∑

j=0

yj + n(α− 1)2µ2



 ,

so if (i) y0 is constant this is a (5, 3) exponential family with θ = (µ, σ2, α), minimal sufficient
statistic

s(y)T =




n∑

j=1

y2
j ,

n∑

j=1

y2
j−1,

n∑

j=1

yjyj−1,
n∑

j=1

yj,
n−1∑

j=0

yj


 ,

and

ϕ(θ)T = −2(1/θ2, θ
2
3/θ2,−2θ3/θ2, 2(θ3−1)θ1/θ2, 2θ3(θ3−1)θ1/θ2), k(ϕ) = −

n(θ3 − 1)2θ2
1

2θ2
−
n

2
log θ2,

and (ii) y0 must be added to the minimal sufficient statistic, making the model a (6, 3) exponential
family.

Solution 4

(a) Obviously (i) y ∼ y (reflexivity) and (ii) y′ ∼ y is equivalent to y′ ∼ y (symmetry). Equally obvious
is that (iii) y′ ∼ y and y′′ ∼ y′ implies that y′′ ∼ y (transitivity). Hence the relation ∼ is an
equivalence relation, which implies that the equivalence classes Cs for s ∈ T form a partition of Y.
If g(s) is a bijective function of s, then an inverse function g−1 exists and so Ch = {y : g{t(y)} =
h} = {y : g−1[g{t(y)}] = g−1(h)} = {y : t(y) = g−1(h)} = Cg−1(h), so the equivalence classes defined
using g are the same as those defined using t.

(b) We have

P(Y = y | Y ∈ Cs; θ) =
P(Y = y; θ)P(Y ∈ Cs | Y = y; θ)

P(Y ∈ Cs; θ)
=

P(Y = y; θ)

P(Y ∈ Cs; θ)
I{t(y) = s},

and the factorisation theorem applies and the last expression here is, as required,

g{t(y); θ}h(y)∑
y′∈Cs

g{t(y′); θ}h(y′)
I{t(y) = s} =

g(s; θ)h(y)∑
y′∈Cs

g(s; θ)h(y′)
=

h(y)∑
y′∈Cs

h(y′)
.

(c) The joint density is
n∏

j=1

θyj

yj!
e−θ = θy1+(y2+···+yn) exp(−nθ) × h(y),

where h(y) = 1/
∏
yj!, so the factorisation theorem implies that (T1, T2) = (Y1, Y2 + · · · + Yn) is

sufficient, with Y = {(y, . . . , yn) : y1, . . . , yn ∈ {0, 1, . . .}} and

T = {(t1, t2) : t1, t2 ∈ {0, 1, . . .}}, Cs = {y ∈ Y : y1 = s1,
n∑

j=2

yj = s2}, s ∈ T .

Hence the elements of this partition are determined by points (s1, s2) in the positive quadrant with
values in {0, 1, 2, . . .}. It is clear from the form of the joint density that T1 + T2 = Y1 + · · · + Yn

is also sufficient, and the corresponding sufficient partition consists of the sets C′
t = {(s1, s2) ∈ T :

s1 + s2 = t} for t ∈ {0, 1, . . .}, which lie on diagonals in the positive quadrant. This partition is
minimal because if y1, . . . , yn and z1, . . . , zm are both Poisson samples, their likelihood ratio is

θsz exp(−mθ)/
∏
zj!

θsy exp(−nθ)/
∏
yj!

∝ θsz−sy exp {θ(n−m)} ,

and this is independent of θ iff n = m and sz =
∑m

j=1 zj = sy =
∑n

j=1 yj. If the sample size n is
fixed, the minimal sufficient statistic is S = Y1 + · · · + Yn.
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