MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) If Xy # Xo then (X1+X2)/2=(0+14+6—1)/2 =0, so in this case P(§ € C) = 1. If X; = X5 then
P(Xl —-1= 9) = P(Xl =0+ 1) = 1/2 Moreover P(Xl = XQ) = P(Xl =X =0-— 1) + P(Xl =
Xy =0+1)=(1/2)% + (1/2)? = 1/2, by independence, so

PO eC)=POeC| X =X2)P(Xy = Xo)+P(0 € C | X1 # X2)P(Xy # Xo) = 1/2x1/2+1x1/2 = 3/4,

as required. This does not seem sensible, since if X; # Xo we know 6 with certainty, i.e., our
confidence set has coverage 100%.

(b) The sample space consists of the three lines Y = {(x,y) : |x — y| = 0,£1}. Two possible classes of
reference sets are Si(z) = {(z,y) : |xr —y| =1} and So(z) = {(z,y) : ® = y}. If (z1,22) € Si(x) for
some z, then C; = {(x1 + x2)/2} is a 100% confidence set, and if (x1,z2) € Sa(z) for some z, then
Co ={x1 + 1,21 — 1} is a 100% confidence set.

Solution 2

(a) In this case )
((0) = —y/0 —logh, ((¢) =logp—dy, ¢=1/0, 0>0,
s0 0¢/00 = —1/6? = —¢%, 0%¢/06* = 2/6% = 2¢>, and (in shorthand notation)
U0) =y/0° —1/0, €"(0) = ~2y/6° +1/6°, U(9)=1/¢—y, ["(¢)=—1/¢".
Note that <Z =1/y and 0= Y, SO 5 =1/ 5; checking the rest is tedious but easy.
(b) We need E(Y") = E(e"™) = Mx(r) for r = 1,2, and using the given formula leads to
B(Y) = exp(ut0?/2) = 6, var(Y) = exp(2u+20%)— {exp(u-+0?/2)} = exp(2u+0) (e —1) = 2\,

as required. Hence 02 = log(1 + ) and p = log ) — % log(1 + A).

The brute force approach to maximum likelihood estimation of 1) and A would be to compute the
density of Y, which is (check this if it is not obvious)

ox

Ox (logy — p)*
dy

1
= ———expy —
v=logy  YV2mo? { 20°

then write 02 = log(1 4+ \) and p = log 1) — %log(l + A), compute the corresponding log likelihood

fr s, 0?) = fx(zp,0%)

}, y>0,peR,0?>0,

based on ¥1, ..., ¥y, and hence obtain 1 and A. However it is much simpler to appeal to invariance:
logYi,...,logY, id N (i, 0?), so
n n
//Z = n_l Z log Yj, 82 Z log Yi — ’
j=1 J=1

and ¥ = exp(fi + 62/2) and A = exp(2) — 1.
Solution 3

(a) The hazard function may be interpreted as limy_,o h"'P{Y € [y,y + h) | Y > y}, i.e., the instanta-
neous probability of failure at time y conditional on survival to then, accounting for the term ‘force
of mortality’.

Since f(y) = h(y)F(y) the likelihood contribution is f(¢)2F ()~ = h(y)?F(t), as stated.



(b)

In this case the observed data are (t1,d1),...,(tn,dy), h(y) = X and F(y) = exp(—Ay), so the log
likelihood is

((A) = {djlogh(t;) +log F(t;)} = > (djlog A — At;), A>0.
j=1 j=1

Differentiation gives A = 3 dj/ > t; and £"(X) = — > d;/A? and as D; = I(Y; < ¢) is an indicator
variable, E(D;) = P(Y; < ¢) = 1 — e, leading to the stated formula. This seems reasonable
because a proportion e *¢ of the data are lost to censoring, and the lack of memory property means
that if they exceed ¢ we have no idea of their values and thus no information on A from them.

Treating ¢ as a realisation of C' means that we must compute E(e~*°), which is the moment-
generating function M¢(t) of C evaluated at t = —\, i.e.,

A0) =Bohlr, O) = 15 {1 - B (7€) } = 5 {1 - ( Aa )} = 51— a1/}

Ao+ A

(i) When o« — 0, E(C') — 00, so no observations will be censored in the limit, and thus 2(\) tends
to the usual quantity without censoring.

(ii) When «a — oo, E(C) — 0, the censoring probability tends to unity, and thus «(\) tends to zero.
(iii) When o = v =1 then (1 +1/a)”" = 1/2, and +()) is half that for an uncensored sample.

(iv) When o, v — oo for fixed p = v/a, (1+1/a)™" = (1+ p/v)"" — e #, and 1(\) corresponds to
censoring at a fixed time p/\; as E(C) = v/(a)) — /X and var(C) = v/(a))? — 0, C il /A

Solution 4

(a)

(b)

If we assume that the times to death have common distribution F, then the probability of death
by time c¢ is F'(¢), and the probability of being alive is thus 1 — F'(¢). Hence if d is the indicator
that the individual is alive, then their likelihood contribution is F(c)!~¢{1 — F(c)}%, which yields
the given likelihood, if the outcomes are independent.

Writing p(A) = exp(—Ac) and with s = 37, d; survivors, the log likelihood can be written as
() = (n—s)log{l —p(\)} + slogp(A), >0,

so p(A\) = s/n, which yields A = ¢ !log(n/s). For the Fisher information we note that S ~
B{n,p(\)}, and then after a little work obtain

B} g f (o) yon)_achiy
ox2 oX) Op2  OX20p |  1—p(\)’

because Ip(A)/OX = —cp(N), E(0€/0p) = 0 and E(S) = np(N).

In this case the likelihood contribution for an individual is (Ae™)!=%(e=*¢)4 5o with s = >, d;
the overall log likelihood is

Z(l —dj)(log A — Ay;) — Aes, A > 0.
j=1

This has second derivative —(n — s)/A?, leading to Fisher information {n — E(S)}/A? = n{l —
p(A)}/A2 so the asymptotic relative efficiency of using current status data is

n’p(N) . n{l—p(V} _ ANV p(Mlogp(V)}*

1-p() "~ A {1-pV {1-pN)}?
Perhaps surprisingly, this is fairly high: it equals 0.999,0.961,0.655 when p = 0.9,0.5,0.1 respec-
tively, so despite the strong censoring, relatively little information is lost overall. Unfortunately
this is a feature of the exponential distribution, and not of the problem itself.




