
MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) If X1 6= X2 then (X1 +X2)/2 = (θ+1+θ−1)/2 = θ, so in this case P(θ ∈ C) = 1. If X1 = X2 then
P(X1 − 1 = θ) = P(X1 = θ + 1) = 1/2. Moreover P(X1 = X2) = P(X1 = X2 = θ − 1) + P(X1 =
X2 = θ + 1) = (1/2)2 + (1/2)2 = 1/2, by independence, so

P(θ ∈ C) = P(θ ∈ C | X1 = X2)P(X1 = X2)+P(θ ∈ C | X1 6= X2)P(X1 6= X2) = 1/2×1/2+1×1/2 = 3/4,

as required. This does not seem sensible, since if X1 6= X2 we know θ with certainty, i.e., our
confidence set has coverage 100%.

(b) The sample space consists of the three lines Y = {(x, y) : |x− y| = 0,±1}. Two possible classes of
reference sets are S1(x) = {(x, y) : |x− y| = 1} and S2(x) = {(x, y) : x = y}. If (x1, x2) ∈ S1(x) for
some x, then C1 = {(x1 + x2)/2} is a 100% confidence set, and if (x1, x2) ∈ S2(x) for some x, then
C2 = {x1 + 1, x1 − 1} is a 100% confidence set.

Solution 2

(a) In this case
ℓ(θ) = −y/θ − log θ, ℓ̃(φ) = log φ− φy, φ = 1/θ, θ > 0,

so ∂φ/∂θ = −1/θ2 = −φ2, ∂2φ/∂θ2 = 2/θ3 = 2φ3, and (in shorthand notation)

ℓ′(θ) = y/θ2 − 1/θ, ℓ′′(θ) = −2y/θ3 + 1/θ2, ℓ̃′(φ) = 1/φ− y, ℓ̃′′(φ) = −1/φ2.

Note that φ̂ = 1/y and θ̂ = y, so φ̂ = 1/θ̂; checking the rest is tedious but easy.

(b) We need E(Y r) = E(erX) = MX(r) for r = 1, 2, and using the given formula leads to

E(Y ) = exp(µ+σ2/2) = ψ, var(Y ) = exp(2µ+2σ2)−{exp(µ+σ2/2)}2 = exp(2µ+σ2)(eσ2−1) = ψ2λ,

as required. Hence σ2 = log(1 + λ) and µ = logψ − 1
2

log(1 + λ).

The brute force approach to maximum likelihood estimation of ψ and λ would be to compute the
density of Y , which is (check this if it is not obvious)

fY (y;µ, σ2) = fX(x;µ, σ2)
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, y > 0, µ ∈ R, σ2 > 0,

then write σ2 = log(1 + λ) and µ = logψ − 1
2

log(1 + λ), compute the corresponding log likelihood

based on y1, . . . , yn and hence obtain ψ̂ and λ̂. However it is much simpler to appeal to invariance:

log Y1, . . . , log Yn
iid∼ N (µ, σ2), so

µ̂ = n−1
n∑

j=1

log yj, σ̂2 = n−1
n∑

j=1

(log yj − µ̂)2,

and ψ̂ = exp(µ̂ + σ̂2/2) and λ̂ = exp(σ̂2) − 1.

Solution 3

(a) The hazard function may be interpreted as limh→0 h
−1P{Y ∈ [y, y + h) | Y > y}, i.e., the instanta-

neous probability of failure at time y conditional on survival to then, accounting for the term ‘force
of mortality’.

Since f(y) = h(y)F(y) the likelihood contribution is f(t)dF(t)1−d = h(y)dF(t), as stated.
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(b) In this case the observed data are (t1, d1), . . . , (tn, dn), h(y) = λ and F(y) = exp(−λy), so the log
likelihood is

ℓ(λ) =
n∑

j=1

{dj log h(tj) + log F(tj)} =
n∑

j=1

(dj log λ− λtj) , λ > 0.

Differentiation gives λ̂ =
∑
dj/

∑
tj and ℓ′′(λ) = − ∑

dj/λ
2 and as Dj = I(Yj ≤ c) is an indicator

variable, E(Dj) = P(Yj ≤ c) = 1 − e−λc, leading to the stated formula. This seems reasonable
because a proportion e−λc of the data are lost to censoring, and the lack of memory property means
that if they exceed c we have no idea of their values and thus no information on λ from them.

(c) Treating c as a realisation of C means that we must compute E(e−λC), which is the moment-
generating function MC(t) of C evaluated at t = −λ, i.e.,

ı(λ) = EC{ı(λ,C)} =
n

λ2

{
1 − E

(
e−λC

)}
=

n

λ2

{
1 −

(
λα

λα+ λ

)ν}
=

n

λ2

{
1 − (1 + 1/α)−ν

}
.

(i) When α → 0, E(C) → ∞, so no observations will be censored in the limit, and thus ı(λ) tends
to the usual quantity without censoring.

(ii) When α → ∞, E(C) → 0, the censoring probability tends to unity, and thus ı(λ) tends to zero.

(iii) When α = ν = 1 then (1 + 1/α)−ν = 1/2, and ı(λ) is half that for an uncensored sample.

(iv) When α, ν → ∞ for fixed µ = ν/α, (1 + 1/α)−ν = (1 + µ/ν)−ν → e−µ, and ı(λ) corresponds to

censoring at a fixed time µ/λ; as E(C) = ν/(αλ) → µ/λ and var(C) = ν/(αλ)2 → 0, C
P−→ µ/λ.

Solution 4

(a) If we assume that the times to death have common distribution F , then the probability of death
by time c is F (c), and the probability of being alive is thus 1 − F (c). Hence if d is the indicator
that the individual is alive, then their likelihood contribution is F (c)1−d{1 − F (c)}d, which yields
the given likelihood, if the outcomes are independent.

(b) Writing p(λ) = exp(−λc) and with s =
∑

j dj survivors, the log likelihood can be written as

ℓ(λ) = (n− s) log{1 − p(λ)} + s log p(λ), λ > 0,

so p(λ̂) = s/n, which yields λ̂ = c−1 log(n/s). For the Fisher information we note that S ∼
B{n, p(λ)}, and then after a little work obtain

E

{
−∂2ℓ(λ)

∂λ2

}
= −E

{(
∂p

∂λ

)2 ∂2ℓ

∂p2
+
∂2p

∂λ2

∂ℓ

∂p

}
=
nc2p(λ)

1 − p(λ)
,

because ∂p(λ)/∂λ = −cp(λ), E(∂ℓ/∂p) = 0 and E(S) = np(λ).

(c) In this case the likelihood contribution for an individual is (λe−λy)1−d(e−λc)d, so with s =
∑

j dj

the overall log likelihood is

n∑

j=1

(1 − dj)(log λ− λyj) − λcs, λ > 0.

This has second derivative −(n − s)/λ2, leading to Fisher information {n − E(S)}/λ2 = n{1 −
p(λ)}/λ2 so the asymptotic relative efficiency of using current status data is

nc2p(λ)

1 − p(λ)
÷ n{1 − p(λ)}

λ2
=

λ2c2p(λ)

{1 − p(λ)}2
=
p(λ){log p(λ)}2

{1 − p(λ)}2
.

Perhaps surprisingly, this is fairly high: it equals 0.999, 0.961, 0.655 when p = 0.9, 0.5, 0.1 respec-
tively, so despite the strong censoring, relatively little information is lost overall. Unfortunately
this is a feature of the exponential distribution, and not of the problem itself.
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