
MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) We have
m(y) = m(η + τε) = η + τm(ε), s(y) = s(η + τε) = τs(ε),

where ε = (ε1, . . . , εn), so

q1(y, η) =
m(y) − η

s(y)
=

η + τm(ε) − η

τs(ε)
=

m(ε)

s(ε)
, q2(y, τ) = s(y)/τ = τs(ε)/τ = s(ε),

so both q1(y, η) and q2(y, τ) are functions of the data y and parameters that have known distri-
butions, as those of m(ε)/s(ε) and s(ε) are both known (at least in principle). If Q1 = q1(ε, 0)
and Q2 = q2(ε) have respective α quantiles q′

1(α, n) and q′
2(α, n), i.e., P{Q1 ≤ q′

1(α, n)} = α and
P{Q2 ≤ q′

2(α, n)} = α for α ∈ (0, 1), then we can write

1 − 2α = P{q′
1(α, n) < Q1 ≤ q′

1(1 − α, n)} = P

{

q′
1(α, n) <

m(Y ) − η

s(Y )
≤ q′

1(1 − α, n)

}

,

and rearrangement of the inequality in the right-hand probability shows that

L = m(Y ) − s(Y )q′
1(1 − α, n), U = m(Y ) − s(Y )q′

1(α, n),

are the limits of a (1 − 2α) confidence interval for η. Likewise

1 − 2α = P{q′
2(α, n) < Q2 ≤ q′

2(1 − α, n)} = P
{

q′
2(α, n) < s(Y )/τ ≤ q′

2(1 − α, n)
}

,

and rearrangement of the inequality in the right-hand probability shows that

L = (s(Y )/q′
2(1 − α, n), U = s(Y )/q′

2(α, n)

are the limits of a (1 − 2α) confidence interval for τ .

(b) Clearly m1(y) = m1(η + τε) = n−1
∑

j(η + τεj) = η + τε and a similar calculation shows that
s1(y) = τs1(ε), and likewise for m2(y) and s2(y), leading to pivots.

Situation (i) corresponds to the t and χ2 statistics used for inference on η and τ when y1, . . . , yn
iid
∼ N (η, τ2).

Situation (ii) should give intervals that are highly robust to outliers.

(c) As {Y+ − M(Y )}/s(Y ) is easily shown to be independent of the parameters, with a known distri-
bution, it can be used to make prediction intervals for Y+.

Solution 2

(a) According to Bayes’ theorem

f(θ | y1) =
f(y1 | θ)f(θ)

f(y1)
∝ θy1+a−1(1 − θ)n1−y1+b−1, 0 < θ < 1,

where the constant of proportionality ensures that the right-hand side has unit integral. Since the
beta density has unit integral for any a, b > 0, and since y1 + a, n1 − y1 + b > 0, the constant of
proportionality must be obtained by replacing a and b by y1 + a and n1 − y1 + b, and thus must
equal Γ(n1 + a + b)/{Γ(y1 + a)Γ(n1 − y1 + b)}. This gives the stated posterior density.

Note that this argument avoids any need for integration, and that the constants in the densities
cancel from the numerator and denominator of the posterior.
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(b) Here
f(n2 | θ)f(θ) ∝ θy2+a−1(1 − θ)n2−y2+b−1, 0 < θ < 1,

and we see at once using the argument from (a) that

f(θ | n2) =
Γ(n2 + a + b)

Γ(y2 + a)Γ(n2 − y2 + b)
θy2+a−1(1 − θ)n2−y2+b−1, 0 < θ < 1.

(c) The two posterior densities will be the same, so any Bayesian inferences based on the two experi-
ments will be identical.

(d) In (a) the number of successes Y1 will tend to be small if θ < 1

2
, so the observed significance level

is the binomial probability

P0(Y1 ≤ y1) =
y1
∑

y=0

P0(Y = y) =
y1
∑

y=0

(

n1

y

)

2−n1 ,

where P0 denotes probability computed under the null hypothesis θ = 1

2
. Similarly if θ < 1

2
then it

will take longer to attain y2 successes than if θ = 1

2
, so we compute the negative binomial probability

P0(N2 ≥ n2) =
∞
∑

n=n2

P0(N2 = n) =
∞
∑

n=n2

(

n − 1

y2 − 1

)

2−n.

The following R code shows the computation:

pbinom(x=3,size=12,prob=1/2)

[1] 0.07299805

nbinom(x=11,size=3,prob=1/2,lower.tail=F)

[1] 0.006469727

Unlike with (c), these suggest quite different evidence against the null hypothesis, because they
sum probabilities over two different reference sets.

Solution 3

(a) We note that E(Ij) = 0 and var(Ij) = 1, so E(D) = θ, and as the Ij are independent,

var(D) = m−2

m
∑

j=1

var(θ + Ijcj) = m−2

m
∑

j=1

c2
j var(Ij) = m−2

m
∑

j=1

c2
j = σ2.

The cj are unknown and therefore so is σ2, which must be estimated from the data D1, . . . , Dm.

(b) To estimate σ2, we use the problems for week 3 to write

S2 =
1

m(m − 1)

m
∑

j=1

(Dj − D)2 =
1

2m2(m − 1)

m
∑

j,k=1

(Dj − Dk)2 =
1

2m2(m − 1)

m
∑

j 6=k

(Dj − Dk)2,

and note that as Dj − Dk = Ijcj − Ikck, E(Ij) = 0 and var(Ij) = 1, and the Ij are independent,
the right-most expression has expectation

2(m − 1)

2m2(m − 1)

m
∑

j=1

c2
j E(I2

j ) −
2

2m2(m − 1)

∑

j 6=k

cjckE(IjIk) =
1

m2

m
∑

j=1

c2
j = σ2,
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(c) To ease the notation, let m = 2n. Under this randomization scheme the number of possible
allocations is

(m
n

)

, which equals 252 when m = 10; this is appreciably lower than the number 1024
obtained before.

The expectations and variances of the Ij are the same as in (a), but if j 6= k then by symmetry

cov(Ij , Ik) = E(IjIk) = 2P(Ij = Ik) − 2P(Ij 6= Ik) = 2
n(n − 1)

2n(2n − 1)
− 2

n2

2n(2n − 1)
= −

1

m − 1
.

Under this randomisation scheme,
∑m

j=1 Ij = 0, so D = θ+m−1
∑m

j=1 Ij(cj−c). Obviously E(D) = θ
and

m2var(D) =
m
∑

j=1

(cj − c)2var(Ij) +
∑

i6=j

(ci − c)(cj − c)cov(Ii, Ij)

=
m
∑

j=1

(cj − c)2 −
1

m − 1

m
∑

j=1

(cj − c)
∑

i6=j

(ci − c)

=
m
∑

j=1

(cj − c)2 +
1

m − 1

m
∑

j=1

(cj − c)2

=
m

m − 1

m
∑

j=1

(cj − c)2,

where the step from the second to third lines used the fact that
∑m

i=1(ci − c) = 0 implies that
∑

i6=j(ci − c) = −(cj − c). Hence

var(D) =
1

m(m − 1)

m
∑

j=1

(cj − c)2 = τ2,

say; note that subtracting c from the cj will mean that it is very likely that τ2 < σ2.

To find an estimator of the unknown τ2 we write εj = Ijcj and note that

m
∑

j=1

(Dj − D)2 =
m
∑

j=1

(εj − ε)2 =
m
∑

j=1

ε2
j − mε2 =

m
∑

j=1

I2
j c2

j −
1

m

m
∑

i,j=1

IjIicjci

has expected value

m
∑

j=1

c2
j −

1

m







m
∑

j=1

c2
j +

m
∑

i6=j

cicjcov(Ii, Ij)







=
m
∑

j=1

c2
j −

1

m







m
∑

j=1

c2
j −

1

m − 1

m
∑

j=1

cj(mc − cj)







which equals

m
∑

j=1

(cj − c)2 −
1

m

m
∑

j=1

(cj − c)2 −
1

m(m − 1)

m
∑

j=1

(cj − c)2 =
m − 2

m − 1

m
∑

j=1

(cj − c)2.

Hence τ2 is estimated by
1

m(m − 2)

m
∑

j=1

(Dj − D)2,

which can be computed from the observed differences D1, . . . , Dm.
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