
MATH-562: Statistical Inference Anthony Davison

Solution 1

For the expected information we note that the log likelihood

ℓ(θ) = log f(y; θ) = (α+ 1) log(θ + y) − log α− α log θ, θ > 0,

has second derivative with respect to θ

− α+ 1

(θ + y)2
+
α

θ2
,

and as

E
{

(θ + Y )−2
}

=

∫
∞

0

1

(θ + y)2

αθα

(θ + y)α+1
dy =

α

(α+ 2)θ2

∫
∞

0

(α+ 2)θα+2

(θ + y)α+2+1
dy

and the final integral here equals unity, the expected information for a single observation is

ı1(θ) =
α

θ2
− (α+ 1)

α

(α + 2)θ2
=

α

(α+ 2)θ2
.

Provided that differentiation with respect to θ and integration with respect to y commute, which is the
case here, the Cramèr–Rao lower bound says that no unbiased estimator can have a lower asymptotic
variance than 1/{nı1(θ)}. This applies to the method-of-moments estimator θ̃ because we saw previously
that var(θ̃) = αθ2/{n(α − 2)}, provided α > 2, and therefore

var(θ̃)

1/{nı1(θ)} =
α2

(α+ 2)(α − 2)
=

α2

α2 − 4
> 1,

with the ratio exploding as α ↓ 2, i.e., θ̃ is increasingly inefficient as α ↓ 2, and actually has infinite
variance when 0 < α < 2.

Solution 2

(a) The variable Z = ⌊Y/δ⌋ is discrete, taking values in {0, 1, . . .}, and P(Z = z) equals

P(⌊Y/δ⌋ = z) = P{Y < (z + 1)δ} − P(Y ≤ zδ) = 1 − e−(z+1)λδ − (1 − e−zλδ) =
(
1 − e−λδ

)
e−zλδ.

As the Zj are independent, their likelihood can be expressed as

L(λ) = f(z1, . . . , zn;λ) =
n∏

j=1

(
1 − e−λδ

)
e−zjλδ, λ > 0,

and the log likelihood is

ℓ(λ) = n log
(
1 − e−λδ

)
− λδ

n∑

j=1

zj .

On differentiating this twice with respect to λ we obtain the given result; note that the zj drop out,
so E(Zj) is not required.

(b) The limit is obtained because 1 − e−λδ = λδ− (λδ)2/2 + o(δ3). It is easy to check that the expected
information based on the Yj is n/λ2, so the ratio of information quantities (aka the relative efficiency)
is

ı(δ)

ı(0)
=

(λδ)2 exp(−λδ)
{1 − exp(−λδ)}2

,

which equals e−1/(1 − e−1)2 = 0.920 when λδ = 1.
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(c) The relative efficiency is 99.92% in this case. Hence there is essentially no loss of information on λ
if the data are rounded to the nearest 0.1, when the mean is 1. This is slightly misleading„ because
in fact we should use the likelihood based on the Zj, whereas in practice we would usually use the
Zj in the likelihood based on the Yj.

(d) If we replace Y with Zδ in the usual log likelihood, we obtain average log likelihood

ℓ(λ′) = n−1


n log λ′ − λ′

n∑

j=1

δZj


 , λ′ > 0,

and as n → ∞ this converges to log λ′ − λ′δE(Z), which implies that the maximum likelihood
estimator converges to 1/{δE(Z)}. Now 1+Z has a geometric distribution with success probability
1−e−λδ, so E(Z) = (1−e−λδ)−1 −1 = (eλδ−1)−1, implying that the maximum likelihood estimator
based on the Zs converges to (eλδ − 1)/δ = λ+ δλ2/2 + δ2λ3/6 + · · · ; i.e., λ will be overestimated
by O(δ).

Solution 3

(a) The mean and variance of Y are respectively θ/2 and θ2/(12n), so 2Y is an unbiased estimator

of θ. If
D
= denotes equality in distribution then we can write Yj

D
= θUj, where Uj ∼ U(0, 1) are

independent for each j, and therefore

Q′ = Y /θ
D
= θU/θ = U

is a function of the data and of θ with a distribution that is (in principle) known. Thus Q is a pivot.
Its distribution could be estimated to arbitrary accuracy by simulation of U1, . . . , Un for any fixed
n or we can note that it is symmetric about 1/2 with variance 1/(12n), so a central limit theorem
gives √

12n(Q− 1/2)
·∼ N (0, 1).

This approximation will be good enough for most practical purposes when n ≥ 12: taking Z =∑12
j=1 Uj − 1/2

·∼ N (0, 1) is an old fudge to get standard normal variables from U(0, 1) ones.

(b) We have
P(zα/2 ≤

√
12n(Q− 1/2) ≤ z1−α/2) = 1 − α,

and replacing Q by Y /θ and inverting the pivot yields an interval with limits

L =
Y

1
2 + z1−α/2/(12n)1/2

, U =
Y

1
2 + zα/2/(12n)1/2

.

Computing this with n = 16 and y = 320869 gives the interval (500225.9, 894902.8)
.
= (500226, 894903).

(c) The interval computed using the maximum is (524136.7, 659001.1)
.
= (524137, 659001). This is

clearly better than that in (b), because (i) it is much shorter but both are 95% intervals, (ii) it
lies wholly to the right of the observed maximum and therefore does not include values we already
know to be impossible, and (iii) it is exact for any n. (The last reason is less important, because
as mentioned above, the normal approximation to the distribution of Y is excellent for n = 16.)

Solution 4

(a) The negative log likelihood function is

−ℓ(ψ, λ) ≡ 1
2
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)( σ2
1 σ1σ2ρ
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2
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=
1
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+
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, ψ, λ ∈ R,
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and its first derivatives are

−ℓψ(ψ, λ) =
1

1 − ρ2

n∑

j=1

{
ψ − yj
σ2

1

+
ρ(xj − λ)

σ1σ2

}
∝ ψ − yn + σ1ρ(xn − λ)/σ2,

−ℓλ(ψ, λ) =
1

1 − ρ2

n∑

j=1

{
ρ(yj − ψ)

σ1σ2
+
λ− xj
σ2

2

}
+

n+m∑

j=n+1

λ− xj
σ2

2

.

The first of these implies that if ℓψ(ψ̂, λ̂) = 0 then ψ̂ = yn − σ1ρ(xn − λ̂)/σ2. If we substi-

tute this expression into the second equation, setting ℓλ(ψ̂, λ̂) = 0, and simplify, we obtain λ̂ =
(n + m)−1∑n+m

j=1 xj after a little struggle, which gives the desired formula for ψ̂ on replacing the
observations with the corresponding random variables.

(b) Linearity of the expectation operator implies that E(Y n) = E(Y ) = ψ, E(Xn) = E(Xn+m) =
E(X) = λ and thus E(ψ̂) = E(Y n) + ρσ1E(Xn+m − Xn)/σ2 = ψ + ρσ1(λ − λ)/σ2 = ψ. Clearly
var(Y n) = σ2

1/n.

The Fisher information matrix is

ı(ψ, λ) =
1

1 − ρ2




n
σ2

1

− nρ
σ1σ2

− nρ
σ1σ2

n
σ2

2

+ m(1−ρ2)
σ2

2


 ,

and the (ψ,ψ) corner of ı(ψ, λ)−1 is σ2
1{1 − mρ2/(n +m)}/n, which is the asymptotic variance of

ψ̂; in fact here this variance is exact, as a direct computation of var(ψ̂) shows. Hence the relative
efficiency is

var(Y n)

var(ψ̂)
=

1

1 −mρ2/(n +m)
.

(i) When ρ = 0, the relative efficiency is one, because X is then independent of Y and the auxiliary
data give no information about ψ.

(ii) When m → ∞, λ is known exactly from Xn+m, so ψ̂ = Y n + ρσ1(λ −Xn)/σ2 and the relative
efficiency becomes 1/(1 − ρ2).

(iii) When ρ → ±1 the auxiliary observations Xn+1, . . . ,Xn+m are perfectly informative about ψ,
so the sample size is effectively n+m, and the relative efficiency is (n+m)/n.
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