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Solution 1 Clearly∑
j

(Yj − Y )2 =
∑
j

(Y 2
j − 2YjY + Y

2) =
∑
j

Y 2
j − 2Y

∑
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Yj +nY
2 =

∑
j

Y 2
j − 2nY 2 +nY

2 =
∑
j

Y 2
j −nY

2

as required.

(a) The variance of a sum of independent variables is the sum of the variances, so

var(Y ) = n−2var

∑
j

Yj

 = n−2∑
j

var(Yj) = σ2/n.

Moreover Y − µ does not depend on j, so
n∑
j=1
{Yj−µ−(Y −µ)}2 =

∑
j

(Yj−µ)2−2(Y −µ)
∑
j

(Yj−µ)+
∑
j

(Y −µ)2 =
∑
j

(Yj−µ)2−n(Y −µ)2,

and this has expectation
∑
j var(Yj)− nvar(Y ) = nσ2 − nσ2/n = (n− 1)σ2, as required.

(b) We have

n∑
j,k=1

(Yj −Yk)2 =
∑
j,k

(Y 2
j +Y 2

k − 2YjYk) = 2n
∑
j

Y 2
j − 2n2Y

2 = 2n

∑
j

Y 2
j − nY

2

 = 2n(n− 1)S2,

as required.

Solution 2

(a) If θ̂ is unbiased, then we must have E(
∑
j ajTj) =

∑
j ajθ = θ for any possible θ, so

∑
aj = 1. Now

var(
∑
j ajTj) =

∑
j a

2
jvj , and we seek to minimise this subject to

∑
aj = 1. The corresponding

Lagrangian is ∑
j

a2
jvj + λ

(∑
aj − 1

)
,

and differentiation with respect to aj and to λ gives

2vjaj + λ = 0, j = 1, . . . , n,
∑
j

aj = 1,

resulting in aj = v−1
j /

∑
i v
−1
i and var(θ̂) = (

∑
j v
−1
j )−1.

(b) If the Tj
ind∼ N (θ, σ2vj) then the log likelihood function is

`(θ, σ2) = −1
2

n∑
j=1

{
log(2πσ2vj) + (tj − θ)2/(σ2vj)

}
≡ −n2 log σ2 − 1

2σ2

∑
(tj − θ)2/vj ,

where the second expression ignores additive constants. Differentiation gives

`θ = 1
σ2

∑
(tj − θ)/vj , `σ2 = − n

2σ2 + 1
2(σ2)2

∑
(tj − θ)2/vj ,

in an obvious notation, and it is easy to check that θ̂ is the sole solution of the first equation
whatever the value of σ2, and that σ̂2 = n−1∑(tj − θ̂)2/vj ; the corresponding unbiased estimator
uses the denominator n− 1.

1



(c) In this case we maximise not over σ2 ∈ (0,∞) but over σ2 ≥ 1, so the estimator becomes
σ̃2 = max(σ̂2, 1).

Solution 3
The probability of infection is P(Y > 0) = 1− e−µ, so the likelihood is

(1− e−µ)r(e−µ)m−r = (eµ − 1)r(e−µ)m, µ > 0.

The log likelihood `(µ) = r log(eµ − 1)−mµ has first and second derivatives

`′(µ) = reµ

eµ − 1 −m, `′′(µ) = −r eµ

(eµ − 1)2 ,

so e−µ̂ = (m−r)/m, giving µ̂ = log{m/(m−r)}, and observed information J(µ̂) = r2(m−r)/m2, while the
expected information is I(µ) = E(R)eµ/(eµ − 1)2 = m/(eµ−1), because E(R) = mP(Y = 1) = m(1−e−µ).

The asymptotic distribution of µ̂ is N{µ, I(µ)−1}
Alternatively we write µ̂ = g(r/m) = − log(1− r/m), with g(u) = − log(1− u) and g′(u) = 1/(1− u),

note that R ∼ B(m, 1 − e−µ) , so R/m ·∼ N{1 − e−µ, e−µ(1 − e−µ)/m}, and apply the delta method,
which gives that g(R/m) is approximately normal with mean and variance

g(1− e−µ) = µ, g′(1− e−µ)2var(R/m) = (eµ − 1)/m.

The asymptotic variance is (eµ − 1)/m > 0 for any µ > 0, but the exact variance is infinite for any m,
because

E(µ̂) =
m∑
r=0

log{m/(m− r)}P(R = r) = logm−
m∑
r=0

log(m− r)P(R = r) =∞,

as P(R = m) = (1− e−µ)m > 0 for any µ and m.

Solution 4

(a) The minimum value of zero is attained when ∇y log f(y; θ′) −∇y log f(y; θ) ≡ 0, and this clearly
occurs when θ′ = θg, say. Now suppose that ∇y log f(y; θ′) −∇y log g(y) ≡ 0, and integrate with
respect to y to obtain

log f(y; θ′)− log g(y) = a(θ′)

where a(·) is an arbitrary function of θ alone. Hence g(y)b(θ′) = f(y; θ′) for all y, which implies
that as both f and g are densities, they must be identical.

(b) (i) In this case the log likelihood is −1
2 log(2πτ2) − (y − η)2/(2τ2), and the two derivatives are

−(y − η)/τ2 and −1/τ2, so the objective function is

E
{

(Y − η)2/τ4 − 2/τ2
}

= τ−4
{

E
{

(Y − µ+ µ− η)2
}
− 2τ2

}
= τ−4

{
σ2 + (µ− η)2 − 2τ2

}
,

which is clearly minimised by taking η = µ and then setting τ2 = σ2. The empirical estimators
minimise

τ−4
n∑
j=1

(Yj − η)2 − 2n/τ2 = τ−4
n∑
j=1

(Yj − Y )2 + τ−4n(Y − η)2 − 2n/τ2,

so η̃ = Y and τ̃2 = n−1∑n
j=1(Yj − Y )2; these are the maximum likelihood estimators.

(ii) Here the log likelihood is log λ′−yλ′ for λ′ > 0, so the two derivatives are −λ′ and 0 and thus the
objective function is (λ′)2, which is minimised by taking λ̃ = 0. This is not a sensible solution, and it
arises because the argument from the original expression to that above fails (the integration by parts
involves another, non-zero, term). The original expression would be E{[−λ′ − (−λ)}2] = (λ− λ′)2,
which is minimised by taking λ′ = λ.
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(c) On writing

{∇y log f(y; θ)−∇y log g(y)}2 = {∇y log f(y; θ)}2 − 2∇y log f(y; θ)∇y log g(y) + {∇y log g(y)}2 ,

we see that the population version of the estimator is

θg = argminθ
∫
{∇y log f(y; θ)}2w(y)g(y) dy − 2

∫
{∇y log f(y; θ)∇y log g(y)}w(y)g(y) dy,

and the previous argument and integration by parts shows that the second integral here is

[w(y)∇y log f(y; θ)g(y)]y+
y−
−
∫
∇y{w(y)∇y log f(y; θ)}g(y) dy,

which leads to (1) if w(y) ensures that the first term here equals zero. This is the case with w(y) = y,
g(y) = λe−λy and ∇y log f(y; θ) = −λ′, and then as E(Y ) = 1/λ, (1) becomes (λ′)2/λ − 2λ′,
minimisation of which with respect to λ′ gives λ′ = λ, as expected.
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