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Solution 1

(a) In this case

k(ϕ) = log
∫ 1

0
eϕy dy = log

(
eϕ − 1

ϕ

)
, ϕ ∈ N = R,

with k(0) = 0 defined by continuity as ϕ → 0. Hence the resulting exponential family is

f(y; ϕ) = eϕy−k(ϕ) =
ϕeϕy

eϕ − 1
, y ∈ Y, ϕ ∈ R.

(b) In this case

k(ϕ) = log
∫ 1

0
eϕ1 log y+ϕ2 log(1−y) dy = log

∫ 1

0
yϕ1(1 − y)ϕ2 dy

and we recognise this as a beta integral, defined for ϕ1, ϕ2 > −1, and then equal to Γ(1 + ϕ1)Γ(1 +
ϕ2)/Γ(2 + ϕ1 + ϕ2). The resulting density is therefore

f(y; ϕ) = Γ(2 + ϕ1 + ϕ2)
Γ(1 + ϕ1)Γ(1 + ϕ2)

yϕ1(1 − y)ϕ2 , y ∈ Y, ϕ = (ϕ1, ϕ2) ∈ (−1, ∞)2,

which is just a rewriting of the beta density, for which α = ϕ1 + 1 and β = ϕ2 + 1, and α, β > 0, in
the usual notation.

Solution 2 Using the results on linear combinations of normal variables, X
D= µ + σn−1/2Z, where

Z ∼ N (0, 1). Hence Y
D= 1/(µ + σn−1/2Z).

If we apply the delta method with g(u) = 1/u, we have g′(u) = −1/u2, provided u �= 0. If µ �= 0 and
as n → ∞, therefore,

Y = g(X) D= g(µ + σn−1/2Z) .= g(µ) + σn−1/2Zg′(µ) ·∼ N
{

g(µ), g′(µ)2 × σ2/n
}

= N {1/µ, σ2/(nµ4)}.

Note that if X has units of length (say), then its mean and its variance have units of length and length2,
so 1/X has units of 1/length and its variance has units of 1/length2, agreeing with the distribution here.

If µ = 0, then for any n,

P(X < 0) = P(X > 0) = P(µ + σn−1/2Z > 0) = P(Z > 0) = 1/2,

and if y > 0 we can write

P(Y > y | X > 0) = P{1/(µ + σn−1/2Z) > y | Z > 0}
= P{Z < n1/2/(σy) | Z > 0}
= 2

[
Φ

{
n1/2/(yσ)

}
− 1/2

]
→ 1, n → ∞,

so as this is true for any positive y, the distribution of Y will concentrate at ±∞ with equal probabilities.

Solution 3

(a) Clearly τ = 0 is one possible solution for any R0 > 0. The slopes of 1 − τ and e−R0τ at τ = 0 are
respectively −1 and −R0, and it is clear from a plot of these two functions against τ that there is
a second, positive, solution to the equation within the interval τ ∈ (0, 1) if R0 > 1. The intuition
is that if R0 ≤ 1, then the epidemic is certain to be of negligible size, but that if R0 > 1 then it
may be of negligible size (if by chance it dies out immediately) but otherwise will affect a positive
fraction of the population.
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(b) The equation 1 − τ = e−R0τ gives R0 = −τ−1 log(1 − τ) = g(τ), say, which is a smooth function
of τ for τ ∈ (0, 1). Hence the delta method applies, and R̂0 = g(τ̂ ) is asymptotically normal with
mean g(τ) = R0 and with variance given using

g′(τ) = log(1 − τ)/τ2 + 1/{τ(1 − τ)} = −R0/τ + 1/{τ(1 − τ)} = {1 − R0(1 − τ)}/{τ(1 − τ)};

the delta method variance formula σ2
R = g′(τ)2σ2 gives the required result.

(c) The variance of a constant is zero, so if the constant itself is non-zero, c2 = 0/T = 0. If T ∼ U(0, d)
then E(T ) = d/2 and var(T ) = d2/12, leading to c2 = 1/3. An exponential variable with mean µ
has variance µ2, giving c2 = 1. The exponential distribution has high coefficient of variation (for
example, the gamma distribution has c = α−1/2, where α is the shape parameter, and taking α > 1
gives a unimodal distribution that seems potentially suitable for T ), so taking c = 1 should give an
upper bound for σ2 and hence for σ2

R.

Solution 4

(a) The density is

f(y) =
αθα

(θ + y)α+1 = exp {−(α + 1) log(θ + y) + log α + α log θ} , y > 0, α, θ > 0.

This is not of exponential family form, because no term in the log density can be written as s(y)Tϕ(θ)
for some function s(y) that depends only on y.

(b) The method-of-moments estimator satisfies Y = θ̃/(α − 1), i.e., θ̃ = (α − 1)Y , and this is easily
checked to be unbiased using the given formula for E(Y ) and the fact that E(Y ) = E(Y ).
Moreover var(Y ) = var(Y )/n, so

var(θ̃) = (α − 1)2var(Y ) = (α − 1)2

n
var(Y ) = θ2α

n(α − 2)
.

(c) The bias of of θ̃c is

b(θ̃c; θ) = E(θ̃c) − θ = c
θ

α − 1
− θ = (α − 1 − c)θ

α − 1
,

and var(θ̃c) = c2var(Y ), so (after a little algebra) the mean squared error of θ̃c is

b(θ̃c; θ)2 + c2var(Y ) = θ2

n(α − 1)2(α − 2)

{
n(α − 2)(α − 1 − c)2 + c2α

}
.

This is minimised by differentiating the expression {·} here with respect to c, giving

d{·}
dc

= −2n(α − 2)(α − 1 − c) + 2cα = 0,

which results in
c =

n(α − 1)(α − 2)
n(α − 2) + α

→ α − 1, n → ∞.

Note that for any finite n the estimator is biased, but it is asymptotically unbiased, and that the
second derivative d2{·}/dc2 = 2n(α − 1)(α − 2) + 2α is positive — which is obvious because the
MSE is a sum of positive quadratic expressions in c.
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