
MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) The sample space is Ω = {{R, R}, {R, W }, {W, W }}, since there is no mention of order in the
sampling.

The elements of Ω are not equiprobable:

P{{R, R}} =

(3
0

)(2
2

)

(5
2

) =
1

10
, P{{R, W }} =

(3
1

)(2
1

)

(5
2

) =
6

10
, P{{R, R}} =

(3
2

)(2
0

)

(5
2

) =
3

10
.

Let A and B denote the events ‘both balls red’ and ‘at least one red’ respectively. So, A = {{R, R)}}
and B = {{R, W }, {R, R}}, and since A ⊂ B,

P(A | B) =
P(A ∩ B)

P(B)
=

P(A)

P(B)
=

1/10

1/10 + 6/10
=

1

7
.

(b) For y ∈ (0, 1], FY (y) = P(Y ≤ y) = P(1/X ≤ y) = P(X ≥ 1/y) = y2. So,

fY (y) =
∂FY (y)

∂y
= 2y, 0 < y ≤ 1.

(c) Let y0.5 be the median. Then as X ∼ U(a, b),

1
2 = P(Y ≤ y0.5) = P(X ≤ log y0.5) = P{X ≤ (a + b)/2},

so y0.5 = exp{(a + b)/2}.

(d) Y = cos X takes values only in the range −1 ≤ y ≤ 1, so

FY (y) =

{

0, y < −1

1, y ≥ 1.

A sketch of cos x for x ≥ 0 shows that in the range 0 < x < 2π, and for −1 < y < 1, we have
cos X ≤ y ⇔ cos−1 y ≤ X ≤ 2π − cos−1 y. Since the cosine function is periodic, we therefore have

cos X ≤ y ⇔ X ∈
∞
⋃

j=0

{x : 2πj + cos−1 y ≤ x ≤ 2π(j + 1) − cos−1 y},

and thus

P(Y ≤ y) =
∞
∑

j=0

P
{

2πj + cos−1 y ≤ X ≤ 2π(j + 1) − cos−1 y
}

=
∞
∑

j=0

(

exp[−λ{2πj + cos−1 y}] − exp[−λ{2π(j + 1) − cos−1 y}]
)

=
exp(−λ cos−1 y) − exp(λ cos−1 y − 2πλ)

1 − exp(−2πλ)
,

where we noticed that the summation is proportional to a geometric series.

If y = 1, then cos−1 y = 0, and so P(Y ≤ 1) = 1, and if y = −1, then cos−1 y = π, and then
P(Y ≤ −1) = 0, as required. Here we used values of cos−1 y in the range [0, π].

The density function is found by differentiation: since cos(cos−1 y) = y, we have

d cos−1 y

dy
= − 1

sin(cos−1 y)
,

and this gives

fY (y) =
λ

sin(cos−1 y)
× exp(−λ cos−1 y) + exp(λ cos−1 y − 2πλ)

1 − exp(−2πλ)
, y ∈ (−1, 1).
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(e) We have

P(X < 3) = P(X = 0) + P(0 < X < 3 | X > 0)P(X > 0) = (1 − p) + p(1 − e−3λ);

equivalently P(X < 3) = 1−P(X ≥ 3) = 1−pe−3λ. Hence P(X = 0 | X < 3) = (1−p)/(1−pe−3λ).

The mean and variance of X, p/λ and (2 − p)p/λ2, can be computed by noting that

E(Xr) = E(Xr | X = 0)P(X = 0) + E(Xr | X > 0)P(X > 0) = 0r(1 − p) + λ−rΓ(r + 1)p,

or via the moment-generating function,

MX(t) = E(etX) = E(etX | X = 0)P(X = 0) + E(etX | X > 0)P(X > 0) = 1 − p + p
λ

λ − t
, t < λ.

(f) Since all the entries of the table must sum to 1, we must have c = 1/12. Hence

E(X) = 1 · 4
12 + 3 · 4

12 + 5 · 4
12 = 36

12 = 3,

and the conditional expectation is

E(X | Y = 4) =
1 × 3/12 + 3 × 2/12 + 5 × 1/12

6/12
=

14

6
.

The random variables X and Y are clearly dependent, since P(X = 1 | Y = 2) 6= P(X = 1).

(g) We can write

Xn×1 = (X1, . . . , Xn)T = (Y + Z1, . . . , Y + Zn)T = Bn×(n+1)(Y, Z1, . . . , Zn)T,

where (Y, Z1, . . . , Zn)T ∼ Nn+1{(µ, a1, . . . , an)T, diag(σ2, 1, . . . , 1)}. Hence X has a joint normal
distribution (see slide 18), and it is easy to check that E(X) = (µ+a1, . . . , µ+an)T and var(X) = In+
σ21n1T

n. This distribution is finitely exchangeable if we have constant var(Xj), constant cov(Xj , Xk)
for j 6= k, which are both true, and equal means; the latter occurs if and only if all the aj are equal.

(h) Since X1, . . . , XN
iid∼ Poiss(λ), each indicator variable I(Xj = 0) is Bernoulli with success proba-

bility q = e−λ. So, conditional on N = n, T ∼ Bin(n, q), which gives E(T | N = n) = nq and
var(T | N = n) = nq(1 − q). As N has a geometric distribution with success probability p, we have
(by direct calculation or looking online . . . ) E(N) = 1/p and var(N) = (1 − p)/p2, and thus

E(T ) = ENE(T | N) = EN (Nq) = q/p,

var(T ) = ENvar(T | N) + varNE(T | N)

= EN{Nq(1 − q)} + varN (Nq) = q(1 − q)/p + q2(1 − p)/p2.

If the Xj’s are dependent, E(T ) is unchanged because expectation is a linear operator.

(i) The central limit theorem implies that X
·∼ N (µ, µ/n), so applying the delta method with g(u) =

2
√

u, giving g′(u) = u−1/2, leads to

Y = g(X)
·∼ N

{

g(µ), g′(µ)2 × µ/n
}

= N (2
√

µ, 1/n), n → ∞.

Thus the variance of Y does not depend on µ, at least to this order of approximation: the square
root transformation is variance-stabilizing for the Poisson distribution. The related Anscombe

transformation Y = (4X + 3/2)1/2 is widely used in certain imaging settings.
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(j) As n → ∞, the weak law of large numbers gives (in the usual notation) X
P−→ µX and Y

P−→ µY ,

so as these convergences are also in distribution, Slutsky’s theorem gives T
D−→ µY /µX = θ. As

this is convergence in distribution to a constant, we also have T
P−→ θ. The (multivariate) central

limit theorem gives

n1/2

{(

X
Y

)

−
(

µX

µY

)}

D−→ N
{(

0
0

)

,

(

σ2
X ρσXσY

ρσXσY σ2
Y

)}

, n → ∞,

and as θ = g(µX , µY ) = µY /µX has derivatives g1(µX , µY ) = −µY /µ2
X = −θ/µX and g2(µX , µY ) =

1/µX , simplifying the variance expression

σ2
θ = µ−2

X (−θ, 1)

(

σ2
X ρσXσY

ρσXσY σ2
Y

)(

−θ
1

)

and an application of the delta method gives the result.

σ2
θ could be estimated by replacing µY by Y , σ2

Y by n−1∑

j(Yj−Y )2, ρσXσY by n−1∑

j(Xj−X)(Yj−
Y ), etc.; note that as the variances are finite, all these expressions will converge in probability to
the corresponding theoretical quantities.

(k) (i) The random variable T = X1 + X2 follows a normal distribution since a linear combination
of normal variables is normal, and E(T ) = E(X1 + X2) = E(X1) + E(X2) = 8 + 16 = 24 and
var(T ) = var(X1) + var(X2) = 9 + 16 = 25, so T ∼ N (24, 52).

(ii) The random variable Z = (T − 24)/5 ∼ N (0, 1), so

P(T > 30) = P
(

Z > 30−24
5

)

= 1 − P(Z ≤ 1.2) = 1 − Φ(1.2) = 1 − 0.88493 ≈ 0.115,

where Φ(·) denotes the standard normal CDF.

(iii) The probability that the total download time T exceeds 30 minutes given that X1 = 10 is

P(T > 30 | X1 = 10) = P(X1 + X2 > 30 | X1 = 10) = P(X2 > 20 | X1 = 10) = P(X2 > 20)

by the independence of X1 and X2. The random variable Z2 = (X2 − 16)/4 follows a standard
normal distribution, so

P(X2 > 20) = 1 − P
(

Z2 ≤ 20−16
4

)

= 1 − Φ(1) = 1 − 0.84134 ≈ 0.152.

(iv) Y = (X1, T )T = (X1, X1 +X2)T is a linear combination of normal variables, so it has a bivariate
normal distribution, with mean and covariance matrix

µ =

(

E(X1)
E(T )

)

=

(

8
24

)

, Ω =

(

var(X1) cov(X1, T )
cov(X1, T ) var(T )

)

=

(

9 9
9 25

)

,

since cov(X1, T ) = var(X1) = 9 by the independence of X1 and X2. Thus

(

X1

T

)

∼ N2

{(

8
24

)

,

(

9 9
9 25

)}

.

Now X1 | T = 30 ∼ N (µ, σ2) where µ = 8 + 9 × (30 − 24)/25 = 10.16 and σ2 = 9 − 92/25 = 2.42.
Thus, Z1 = (X1 − µ)/σ | T = 30 ∼ N (0, 1), so

P(X1 < 7 | T = 30) = P
(

Z1 < 7−10.16
2.4

)

≈ Φ(−1.32) = 1 − Φ(1.32) = 1 − 0.90658 ≈ 0.093.
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(l) Let X1, X2, X3 denote the arrival times after 19.00; as they arrive independently at random,

we can suppose that X1, X2, X3
iid∼ U(0, 1). The arrival times of the first and the last are U =

min(X1, X2, X3) and V = max(X1, X2, X3). The densities can be obtained directly or . . .

As the Xj have distribution function F (u) = u in 0 < u < 1, we obtain

P(U ≤ u) = 1 − P(X1 > u, X2 > u, X3 > u)

= 1 − P(X1 > u)P(X2 > u)P(X3 > u)

= 1 − (1 − u)3, 0 < u < 1,

and the density is fU (u) = 3(1 − u)2, for 0 < u < 1. Likewise

P(V ≤ v) = P(X1 ≤ v)P(X2 ≤ v)P(X3 ≤ v) = v3, 0 < v < 1,

and the density is fV (v) = 3v2, for 0 < v < 1.

For the final part, we seek E(V − U) = E(V ) − E(U), and

E(V ) =

∫ 1

0
vfV (v)dv = 3

4 , E(U) =

∫ 1

0
ufu(u)du =

∫ 1

0
3u(1 − u)2du = 1

4 ,

using integration by parts. Thus E(V − U) = 2/4, or 30 minutes.

4


