MATH-562: Statistical Inference Anthony Davison

Solution 1

(a)

The sample space is Q = {{R,R},{R,W},{W,W}}, since there is no mention of order in the
sampling.

The elements of € are not equiprobable:
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Let A and B denote the events ‘both balls red’ and ‘at least one red’ respectively. So, A = {{R, R)}}
and B = {{R, W}, {R, R}}, and since A C B,
(ANnB) P(A) 1/10 1

P
P(A]B) = P(B) P([B) 1/10+6/10 7

P{{R,R}} =

For y € (0,1], Fy(y) =P(Y <y) =P(1/X <y) = P(X > 1/y) = y*. So,

OF
fr) =2 2y o<y <,

Let yo.5 be the median. Then as X ~ U(a,b),

2 =P(Y <yos5) =P(X <logyos) = P{X < (a+1b)/2},
so yo.5 = exp{(a +b)/2}.
Y = cos X takes values only in the range —1 <y <1, so

0, y<-1
1, y>1

Fy(y) = {

A sketch of cosz for > 0 shows that in the range 0 < x < 27, and for —1 < y < 1, we have
cos X <y« cos ly <X <27 —cos™y. Since the cosine function is periodic, we therefore have

o
cosX <y & Xe U{x:27Tj—|—cos_1y§a3§27T(j—i—1)—cos_1y},
=0

and thus

Mz

PY <y) = P {271']' +cosly< X <om(j+1)— Cosfly}
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= Z (exp[—)\{2ﬂ'j 4 cos Ly} — exp[-A{27(j +1) — cos™? y}])
j=0
Ly) —exp(Acos™ Ly — 27))
1 —exp(—27A\) ’
where we noticed that the summation is proportional to a geometric series.
If y = 1, then cos™'y = 0, and so P(Y < 1) = 1, and if y = —1, then cos™'y = =, and then
P(Y < —1) = 0, as required. Here we used values of cos™! y in the range [0, 7).
1

exp(—Acos™

The density function is found by differentiation: since cos(cos™" y) = y, we have

dcos™ly B 1
dy  sin(cos™1y)’
and this gives
A exp(—Acos™ly) + exp(Acos™ly — 27N)
- —-1,1).
fry) sin(cos™1y) % 1 — exp(—27)\) , ye(=L1)
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(e)

(h)

We have
P(X<3):P(X:0)+P(O<X<3\X>0)P(X>0):(1—p)+p(1—e’3’\);

equivalently P(X <3) =1-P(X >3) =1—-pe 3} Hence P(X =0 | X < 3) = (1—p)/(1—pe3}).
The mean and variance of X, p/A and (2 — p)p/A?, can be computed by noting that

E(X")=E(X" | X =0)P(X =0)+E(X" | X > 0)P(X >0) =0"(1 —p) + A "T(r + 1)p,

or via the moment-generating function,

Mx(t) =E(EX) =E@EX | X =0)P(X =0) +E(¥ | X >0)P(X >0) =1 —p+p%, t< A

Since all the entries of the table must sum to 1, we must have ¢ = 1/12. Hence
_ 1.4 4 4 _ 36 _
EX)=1-5+3-5+5 15 =195 =3,
and the conditional expectation is

1x3/12+43x2/12+5x1/12 14

E(X|Y =4) = 5712 -

The random variables X and Y are clearly dependent, since P(X =1|Y =2) #P(X =1).
We can write
Xn><1 = (Xl, .. ,Xn)T = (Y + Zl, .. ,Y + Zn)T = an(n+1)(Y, Zl, ce Zn)T,

where (Y, Z1,...,2,)" ~ Npii{(p,a1,...,a,)%, diag(c?,1,...,1)}. Hence X has a joint normal
distribution (see slide 18), and it is easy to check that E(X) = (u+ay, ..., u+a,)” and var(X) = I,,+
021,1F. This distribution is finitely exchangeable if we have constant var(X;), constant cov(X;, Xj)
for j # k, which are both true, and equal means; the latter occurs if and only if all the a; are equal.

Since X1,..., XN Y Poiss()), each indicator variable I(X; = 0) is Bernoulli with success proba-
bility ¢ = e™*. So, conditional on N = n, T ~ Bin(n, ¢), which gives E(T | N = n) = nq and
var(T' | N =n) =nq(l —q). As N has a geometric distribution with success probability p, we have
(by direct calculation or looking online ...) E(N) = 1/p and var(N) = (1 — p)/p?, and thus

E(T) = ENE(T|N)=En(Ng)=q/p,
var(T) = Epnvar(T | N)+ varyE(T | N)
= En{Nq(1-q)}+varn(Nq) = q(1 —q)/p+ ¢*(1 — p)/p".

If the X;’s are dependent, E(T') is unchanged because expectation is a linear operator.

The central limit theorem implies that X ~ N(u, p/n), so applying the delta method with g(u) =
2\/u, giving ¢'(u) = u~/2, leads to

Y =g(X) ~ /\/{g(u),g’(u)2 x u/n} =N(@2yp,1/n), n— oo

Thus the variance of Y does not depend on u, at least to this order of approximation: the square
root transformation is variance-stabilizing for the Poisson distribution. The related Anscombe
transformation Y = (4X + 3/2)'/? is widely used in certain imaging settings.



()

As n — 0o, the weak law of large numbers gives (in the usual notation) X L, pux and Y L, 0wy,
so as these convergences are also in distribution, Slutsky’s theorem gives T 2N py /ux = 6. As

this is convergence in distribution to a constant, we also have T’ £, 9. The (multivariate) central
limit theorem gives

nl/2 X — (X DN 0 oX pOXIY n — 0o
Y wy 0/’ \poxoy 012/ ’ ’

and as 0 = g(px, py) = py /pux has derivatives g1 (ux, py) = —py /pk = —0/px and ga(px, py) =
1/px, simplifying the variance expression

2
2 _ 2/ ox  pPoOXOy —0
79 = px (=0,1) (,oaxay ol ) ( 1 )
and an application of the delta method gives the result.
o3 could be estimated by replacing py by Y, o3 by n™! > (Y5 ~Y)?, poxoy by n~! > (X —X)(Y;—

Y), etc.; note that as the variances are finite, all these expressions will converge in probability to
the corresponding theoretical quantities.

(i) The random variable T' = X; + X3 follows a normal distribution since a linear combination
of normal variables is normal, and E(T) = E(X; + X3) = E(X1) + E(X2) = 8+ 16 = 24 and
var(T) = var(X;) + var(Xy) = 9 + 16 = 25, so T ~ N(24,52).

(ii) The random variable Z = (T' —24)/5 ~ N(0,1), so
P(T>30) =P (Z>%2) =1-P(Z<1.2) =1-®(1.2) = 1 - 0.88493 ~ 0.115,

where ®(-) denotes the standard normal CDF.
(iii) The probability that the total download time 7" exceeds 30 minutes given that X; = 10 is

P(T>30‘X1:10):P(X1+X2>30’X1:10):P(X2>20‘X1:10):P(X2>20)

by the independence of X; and X3. The random variable Zy = (X3 — 16)/4 follows a standard
normal distribution, so

P(Xy>20) =1-P (2, < 2316) =1 - ®(1) = 1 - 0.84134 ~ 0.152.

(iv) Y = (X1, T)" = (X1, X1+ X2)" is a linear combination of normal variables, so it has a bivariate
normal distribution, with mean and covariance matrix

_(E(X1)) (8 O- var(Xy) cov(Xy,T)\ (9 9
o= E(T) ) \24)° ~ N\eov(Xy,T)  var(T) ~\9 257
since cov(X1,T) = var(X;) = 9 by the independence of X; and X5. Thus
X; 8 9 9

Now Xi | T =30 ~ N(p1,0%) where = 8 +9 x (30 — 24)/25 = 10.16 and 0% = 9 — 92/25 = 2.42.
Thus, Z; = (X1 —p)/o | T =30 ~ N(0,1), so

P(X;<7|T=30)=P (21 < %) ~ O(—1.32) =1 — ®(1.32) = 1 — 0.90658 ~ 0.093.



(1) Let X1, X9, X3 denote the arrival times after 19.00; as they arrive independently at random,
we can suppose that X7, Xo, X3 i U(0,1). The arrival times of the first and the last are U =

min(X1, X2, X3) and V = max(X1, X2, X3). The densities can be obtained directly or ...
As the X; have distribution function F'(u) = v in 0 < u < 1, we obtain

PU<wu) = 1-P(X1>u,Xo>u,X3>u)
= 1- P(Xl > U)P(XQ > u)P(Xg > u)
= 1-(1-u)? 0<u<l,

and the density is fy(u) = 3(1 — u)?, for 0 < u < 1. Likewise

P(V <v)=P(X; <v)P(Xy <v)P(Xz3<v)=0®, 0<v<l1
and the density is fy (v) = 302, for 0 < v < 1.
For the final part, we seek E(V — U) = E(V) — E(U), and

1 1 1
BV) = [ ofv(ide =4, BO) = [ ufidu= [ 3u(1—widu=1

using integration by parts. Thus E(V — U) = 2/4, or 30 minutes.



