## Solution 1

(a) The sample space is  $\Omega = \{\{R, R\}, \{R, W\}, \{W, W\}\}\}$ , since there is no mention of order in the sampling.

The elements of  $\Omega$  are not equiprobable:

$$P\{\{R,R\}\} = \frac{\binom{3}{0}\binom{2}{2}}{\binom{5}{2}} = \frac{1}{10}, \quad P\{\{R,W\}\} = \frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}} = \frac{6}{10}, \quad P\{\{R,R\}\} = \frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}} = \frac{3}{10}.$$

Let A and B denote the events 'both balls red' and 'at least one red' respectively. So,  $A = \{\{R, R\}\}\$  and  $B = \{\{R, W\}, \{R, R\}\}\$ , and since  $A \subset B$ ,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{1/10}{1/10 + 6/10} = \frac{1}{7}.$$

(b) For  $y \in (0,1]$ ,  $F_Y(y) = P(Y \le y) = P(1/X \le y) = P(X \ge 1/y) = y^2$ . So,

$$f_Y(y) = \frac{\partial F_Y(y)}{\partial y} = 2y, \quad 0 < y \le 1.$$

(c) Let  $y_{0.5}$  be the median. Then as  $X \sim U(a, b)$ ,

$$\frac{1}{2} = P(Y \le y_{0.5}) = P(X \le \log y_{0.5}) = P\{X \le (a+b)/2\},\$$

so  $y_{0.5} = \exp\{(a+b)/2\}.$ 

(d)  $Y = \cos X$  takes values only in the range  $-1 \le y \le 1$ , so

$$F_Y(y) = \begin{cases} 0, & y < -1 \\ 1, & y \ge 1. \end{cases}$$

A sketch of  $\cos x$  for  $x \ge 0$  shows that in the range  $0 < x < 2\pi$ , and for -1 < y < 1, we have  $\cos X \le y \Leftrightarrow \cos^{-1} y \le X \le 2\pi - \cos^{-1} y$ . Since the cosine function is periodic, we therefore have

$$\cos X \le y \quad \Leftrightarrow \quad X \in \bigcup_{j=0}^{\infty} \{x : 2\pi j + \cos^{-1} y \le x \le 2\pi (j+1) - \cos^{-1} y\},$$

and thus

$$P(Y \le y) = \sum_{j=0}^{\infty} P\left\{2\pi j + \cos^{-1} y \le X \le 2\pi (j+1) - \cos^{-1} y\right\}$$

$$= \sum_{j=0}^{\infty} \left(\exp[-\lambda \{2\pi j + \cos^{-1} y\}] - \exp[-\lambda \{2\pi (j+1) - \cos^{-1} y\}]\right)$$

$$= \frac{\exp(-\lambda \cos^{-1} y) - \exp(\lambda \cos^{-1} y - 2\pi \lambda)}{1 - \exp(-2\pi \lambda)},$$

where we noticed that the summation is proportional to a geometric series.

If y = 1, then  $\cos^{-1} y = 0$ , and so  $P(Y \le 1) = 1$ , and if y = -1, then  $\cos^{-1} y = \pi$ , and then  $P(Y \le -1) = 0$ , as required. Here we used values of  $\cos^{-1} y$  in the range  $[0, \pi]$ .

The density function is found by differentiation: since  $\cos(\cos^{-1} y) = y$ , we have

$$\frac{d\cos^{-1}y}{du} = -\frac{1}{\sin(\cos^{-1}u)},$$

and this gives

$$f_Y(y) = \frac{\lambda}{\sin(\cos^{-1} y)} \times \frac{\exp(-\lambda \cos^{-1} y) + \exp(\lambda \cos^{-1} y - 2\pi \lambda)}{1 - \exp(-2\pi \lambda)}, \quad y \in (-1, 1).$$

(e) We have

$$P(X < 3) = P(X = 0) + P(0 < X < 3 \mid X > 0)P(X > 0) = (1 - p) + p(1 - e^{-3\lambda});$$

equivalently  $P(X < 3) = 1 - P(X \ge 3) = 1 - pe^{-3\lambda}$ . Hence  $P(X = 0 \mid X < 3) = (1 - p)/(1 - pe^{-3\lambda})$ . The mean and variance of X,  $p/\lambda$  and  $(2 - p)p/\lambda^2$ , can be computed by noting that

$$E(X^r) = E(X^r \mid X = 0)P(X = 0) + E(X^r \mid X > 0)P(X > 0) = 0^r(1-p) + \lambda^{-r}\Gamma(r+1)p,$$

or via the moment-generating function,

$$M_X(t) = E(e^{tX}) = E(e^{tX} \mid X = 0)P(X = 0) + E(e^{tX} \mid X > 0)P(X > 0) = 1 - p + p\frac{\lambda}{\lambda - t}, \quad t < \lambda.$$

(f) Since all the entries of the table must sum to 1, we must have c = 1/12. Hence

$$E(X) = 1 \cdot \frac{4}{12} + 3 \cdot \frac{4}{12} + 5 \cdot \frac{4}{12} = \frac{36}{12} = 3,$$

and the conditional expectation is

$$E(X \mid Y = 4) = \frac{1 \times 3/12 + 3 \times 2/12 + 5 \times 1/12}{6/12} = \frac{14}{6}.$$

The random variables X and Y are clearly dependent, since  $P(X = 1 \mid Y = 2) \neq P(X = 1)$ .

(g) We can write

$$X_{n\times 1} = (X_1, \dots, X_n)^{\mathrm{T}} = (Y + Z_1, \dots, Y + Z_n)^{\mathrm{T}} = B_{n\times (n+1)}(Y, Z_1, \dots, Z_n)^{\mathrm{T}},$$

where  $(Y, Z_1, \ldots, Z_n)^{\mathrm{T}} \sim N_{n+1}\{(\mu, a_1, \ldots, a_n)^{\mathrm{T}}, \operatorname{diag}(\sigma^2, 1, \ldots, 1)\}$ . Hence X has a joint normal distribution (see slide 18), and it is easy to check that  $\mathrm{E}(X) = (\mu + a_1, \ldots, \mu + a_n)^{\mathrm{T}}$  and  $\mathrm{var}(X) = I_n + \sigma^2 \mathbf{1}_n \mathbf{1}_n^{\mathrm{T}}$ . This distribution is finitely exchangeable if we have constant  $\mathrm{var}(X_j)$ , constant  $\mathrm{cov}(X_j, X_k)$  for  $j \neq k$ , which are both true, and equal means; the latter occurs if and only if all the  $a_j$  are equal.

(h) Since  $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} \operatorname{Poiss}(\lambda)$ , each indicator variable  $I(X_j = 0)$  is Bernoulli with success probability  $q = e^{-\lambda}$ . So, conditional on N = n,  $T \sim \operatorname{Bin}(n,q)$ , which gives  $\operatorname{E}(T \mid N = n) = nq$  and  $\operatorname{var}(T \mid N = n) = nq(1-q)$ . As N has a geometric distribution with success probability p, we have (by direct calculation or looking online ...)  $\operatorname{E}(N) = 1/p$  and  $\operatorname{var}(N) = (1-p)/p^2$ , and thus

$$\begin{split} \mathbf{E}(T) &= \mathbf{E}_N \mathbf{E}(T \mid N) = \mathbf{E}_N(Nq) = q/p, \\ \text{var}(T) &= \mathbf{E}_N \text{var}(T \mid N) + \text{var}_N \mathbf{E}(T \mid N) \\ &= \mathbf{E}_N \{ Nq(1-q) \} + \text{var}_N(Nq) = q(1-q)/p + q^2(1-p)/p^2. \end{split}$$

If the  $X_j$ 's are dependent,  $\mathrm{E}(T)$  is unchanged because expectation is a linear operator.

(i) The central limit theorem implies that  $\overline{X} \sim \mathcal{N}(\mu, \mu/n)$ , so applying the delta method with  $g(u) = 2\sqrt{u}$ , giving  $g'(u) = u^{-1/2}$ , leads to

$$Y = g(\overline{X}) \stackrel{\cdot}{\sim} \mathcal{N}\left\{g(\mu), g'(\mu)^2 \times \mu/n\right\} = \mathcal{N}(2\sqrt{\mu}, 1/n), \quad n \to \infty.$$

Thus the variance of Y does not depend on  $\mu$ , at least to this order of approximation: the square root transformation is variance-stabilizing for the Poisson distribution. The related Anscombe transformation  $Y = (4\overline{X} + 3/2)^{1/2}$  is widely used in certain imaging settings.

(j) As  $n \to \infty$ , the weak law of large numbers gives (in the usual notation)  $\overline{X} \xrightarrow{P} \mu_X$  and  $\overline{Y} \xrightarrow{P} \mu_Y$ , so as these convergences are also in distribution, Slutsky's theorem gives  $T \xrightarrow{D} \mu_Y/\mu_X = \theta$ . As this is convergence in distribution to a constant, we also have  $T \xrightarrow{P} \theta$ . The (multivariate) central limit theorem gives

$$n^{1/2} \left\{ \begin{pmatrix} \overline{X} \\ \overline{Y} \end{pmatrix} - \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix} \right\} \xrightarrow{D} \mathcal{N} \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix} \right\}, \quad n \to \infty,$$

and as  $\theta = g(\mu_X, \mu_Y) = \mu_Y/\mu_X$  has derivatives  $g_1(\mu_X, \mu_Y) = -\mu_Y/\mu_X^2 = -\theta/\mu_X$  and  $g_2(\mu_X, \mu_Y) = 1/\mu_X$ , simplifying the variance expression

$$\sigma_{\theta}^{2} = \mu_{X}^{-2}(-\theta, 1) \begin{pmatrix} \sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\ \rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2} \end{pmatrix} \begin{pmatrix} -\theta \\ 1 \end{pmatrix}$$

and an application of the delta method gives the result.

 $\sigma_{\theta}^2$  could be estimated by replacing  $\mu_Y$  by  $\overline{Y}$ ,  $\sigma_Y^2$  by  $n^{-1}\sum_j (Y_j - \overline{Y})^2$ ,  $\rho\sigma_X\sigma_Y$  by  $n^{-1}\sum_j (X_j - \overline{X})(Y_j - \overline{Y})$ , etc.; note that as the variances are finite, all these expressions will converge in probability to the corresponding theoretical quantities.

- (k) (i) The random variable  $T = X_1 + X_2$  follows a normal distribution since a linear combination of normal variables is normal, and  $E(T) = E(X_1 + X_2) = E(X_1) + E(X_2) = 8 + 16 = 24$  and  $var(T) = var(X_1) + var(X_2) = 9 + 16 = 25$ , so  $T \sim \mathcal{N}(24, 5^2)$ .
  - (ii) The random variable  $Z = (T 24)/5 \sim \mathcal{N}(0, 1)$ , so

$$P(T > 30) = P(Z > \frac{30-24}{5}) = 1 - P(Z \le 1.2) = 1 - \Phi(1.2) = 1 - 0.88493 \approx 0.115,$$

where  $\Phi(\cdot)$  denotes the standard normal CDF.

(iii) The probability that the total download time T exceeds 30 minutes given that  $X_1 = 10$  is

$$P(T > 30 \mid X_1 = 10) = P(X_1 + X_2 > 30 \mid X_1 = 10) = P(X_2 > 20 \mid X_1 = 10) = P(X_2 > 20)$$

by the independence of  $X_1$  and  $X_2$ . The random variable  $Z_2 = (X_2 - 16)/4$  follows a standard normal distribution, so

$$P(X_2 > 20) = 1 - P(Z_2 \le \frac{20 - 16}{4}) = 1 - \Phi(1) = 1 - 0.84134 \approx 0.152.$$

(iv)  $Y = (X_1, T)^T = (X_1, X_1 + X_2)^T$  is a linear combination of normal variables, so it has a bivariate normal distribution, with mean and covariance matrix

$$\mu = \begin{pmatrix} \mathrm{E}(X_1) \\ \mathrm{E}(T) \end{pmatrix} = \begin{pmatrix} 8 \\ 24 \end{pmatrix}, \quad \Omega = \begin{pmatrix} \mathrm{var}(X_1) & \mathrm{cov}(X_1, T) \\ \mathrm{cov}(X_1, T) & \mathrm{var}(T) \end{pmatrix} = \begin{pmatrix} 9 & 9 \\ 9 & 25 \end{pmatrix},$$

since  $cov(X_1, T) = var(X_1) = 9$  by the independence of  $X_1$  and  $X_2$ . Thus

$$\begin{pmatrix} X_1 \\ T \end{pmatrix} \sim \mathcal{N}_2 \left\{ \begin{pmatrix} 8 \\ 24 \end{pmatrix}, \begin{pmatrix} 9 & 9 \\ 9 & 25 \end{pmatrix} \right\}.$$

Now  $X_1 \mid T = 30 \sim \mathcal{N}(\mu, \sigma^2)$  where  $\mu = 8 + 9 \times (30 - 24)/25 = 10.16$  and  $\sigma^2 = 9 - 9^2/25 = 2.4^2$ . Thus,  $Z_1 = (X_1 - \mu)/\sigma \mid T = 30 \sim \mathcal{N}(0, 1)$ , so

$$P(X_1 < 7 \mid T = 30) = P\left(Z_1 < \frac{7 - 10.16}{2.4}\right) \approx \Phi(-1.32) = 1 - \Phi(1.32) = 1 - 0.90658 \approx 0.093.$$

(l) Let  $X_1, X_2, X_3$  denote the arrival times after 19.00; as they arrive independently at random, we can suppose that  $X_1, X_2, X_3 \stackrel{\text{iid}}{\sim} U(0,1)$ . The arrival times of the first and the last are  $U = \min(X_1, X_2, X_3)$  and  $V = \max(X_1, X_2, X_3)$ . The densities can be obtained directly or . . .

As the  $X_j$  have distribution function F(u) = u in 0 < u < 1, we obtain

$$P(U \le u) = 1 - P(X_1 > u, X_2 > u, X_3 > u)$$
  
= 1 - P(X\_1 > u)P(X\_2 > u)P(X\_3 > u)  
= 1 - (1 - u)^3, 0 < u < 1,

and the density is  $f_U(u) = 3(1-u)^2$ , for 0 < u < 1. Likewise

$$P(V \le v) = P(X_1 \le v)P(X_2 \le v)P(X_3 \le v) = v^3, \quad 0 < v < 1,$$

and the density is  $f_V(v) = 3v^2$ , for 0 < v < 1.

For the final part, we seek E(V - U) = E(V) - E(U), and

$$E(V) = \int_0^1 v f_V(v) dv = \frac{3}{4}, \quad E(U) = \int_0^1 u f_u(u) du = \int_0^1 3u (1-u)^2 du = \frac{1}{4},$$

using integration by parts. Thus  $\mathrm{E}(V-U)=2/4,$  or 30 minutes.