Solution 1 The confidence interval is computed only if the test is significant, and this occurs if $|T| > \sigma z_{1-\alpha}$, an event with probability

$$\begin{split} \mathrm{P}(T < -\sigma z_{1-\alpha}) + \mathrm{P}(T > \sigma z_{1-\alpha}) &= \mathrm{P}(Z < -z_{1-\alpha} - \mu/\sigma) + \mathrm{P}(Z > z_{1-\alpha} - \mu/\sigma) \\ &= \mathrm{P}(Z < z_{\alpha} - \mu/\sigma) + \mathrm{P}(Z < z_{\alpha} + \mu/\sigma) \\ &= \Phi(z_{\alpha} + \mu/\sigma) + \Phi(z_{\alpha} - \mu/\sigma), \end{split}$$

where $Z = (T - \mu)/\sigma \sim \mathcal{N}(0, 1)$ and Φ and z_p are respectively the standard normal CDF and its p quantile, for 0 .

The confidence interval is computed only if $|T| > \sigma z_{1-\alpha}$, so the true coverage is the conditional probability

$$P(\mu \in \mathcal{I}_{1-2\alpha} \mid |T| > \sigma z_{1-\alpha}) = \frac{P(\{T - \sigma z_{1-\alpha} \le \mu \le T + \sigma z_{1-\alpha}\} \cap \{|T| > \sigma z_{1-\alpha}\})}{P(|T| > \sigma z_{1-\alpha})}.$$

The numerator event here is

$$\{z_{\alpha} \le Z \le z_{1-\alpha}\} \cap (\{Z < z_{\alpha} - \mu/\sigma\} \cup \{Z > z_{1-\alpha} - \mu/\sigma\}) = \{z_{\alpha} \le Z \le z_{1-\alpha}\} \cap \{Z > z_{1-\alpha} - \mu/\sigma\},$$

because $\mu > 0$. This is $\{z_{\alpha} \leq Z \leq z_{1-\alpha}\}$ if $z_{1-\alpha} - \mu/\sigma < z_{\alpha}$, but otherwise is $\{z_{1-\alpha} - \mu/\sigma \leq Z \leq z_{1-\alpha}\}$, and hence has probability

$$P\{\max(z_{\alpha}, z_{1-\alpha} - \mu/\sigma) \le Z \le z_{1-\alpha}\} = \Phi(z_{1-\alpha}) - \Phi\{\max(z_{\alpha}, z_{1-\alpha} - \mu/\sigma)\},$$

as required.

When $\mu=0$ the coverage is zero, since the interval is computed only when the hypothesis $\mu=0$ is rejected, which is equivalent to the interval not containing μ . When μ is small and positive, the interval is again unlikely to contain μ , because the event $|T|>\sigma z_{1\alpha}$ pushes T outside the upper rejection limit $\sigma z_{1\alpha}$. As μ increases the interval is more likely to contain μ , because the event $|T|>\sigma z_{1\alpha}$ corresponds increasingly to $T>\sigma z_{1\alpha}$. Finally there is a cusp in the probability when $z_{\alpha}=z_{1-\alpha}-\mu/\sigma$, i.e., $\mu/\sigma=2z_{1-\alpha}$, after which only the denominator probability increases, thereby reducing the coverage to its correct value of $1-2\alpha$.

Solution 2

(a) Clearly U is normal with mean θ and variance $1 + p^2$, and cov(T, U) = var(T) = 1, so T is conditionally normal with mean and variance

$$E(T \mid U = u) = \theta + (u - \theta)/(1 + p^2), \quad var(T \mid U = u) = 1 - 1^2/(1 + p^2) = p^2/(1 + p^2).$$

(b) We have $f(t;\theta) = f(u;\theta)f(t \mid u;\theta)$, so taking logs, differentiation and then taking expectations will lead to the given expression for $i(\theta)$.

In the particular case of the normal model, and ignoring additive constants, the two terms of the log likelihood are

$$-\frac{(u-\theta)^2}{2(1+p^2)}, \quad -\frac{\{t-\theta-(u-\theta)/(1+p^2)\}^2}{2p^2/(1+p^2)},$$

and differentiation of these expressions twice gives

$$-\frac{1}{1+p^2}$$
, $-\frac{p^2}{1+p^2}$

so the two terms in the information decomposition sum to the overall information $i(\theta) = 1$. If p is small, then the first term, corresponding to U, comprises almost all the overall information, but that for inference (the second term) is small, and conversely when $p \approx 1$.

Solution 3

(a) The marginal MGF of X is

$$E_{Y}\left[E\left\{\exp\left(\sum_{k=1}^{K}t_{k}X_{k}\right)\middle|Y=y\right\}\right] = \sum_{y=0}^{\infty}\left(\sum_{k=1}^{K}p_{k}e^{t_{k}}\right)^{y}\theta^{y}e^{-\theta}/y!$$

$$= \exp\left\{-\theta + \theta\sum_{k=1}^{K}p_{k}e^{t_{k}}\right\}$$

$$= \prod_{k=1}^{K}\exp\left\{p_{k}\theta(e^{t_{k}}-1)\right\},$$

which is the MGF of K independent Poisson variables with with means $p_1\theta, \ldots, p_K\theta$. Here we wrote $\theta = \theta(P_1 + \cdots + p_K)$.

(b) We aim to generate a set of Poisson variables Y_1^*, \ldots, Y_n^* to be used for selection and an independent set of Poisson variables $Y_1^{\dagger}, \ldots, Y_n^{\dagger}$ to be used for inference.

The result from (a) suggests that we might choose $p \in (0,1)$ and then generate $Y_j^* \sim B(Y_j,p)$, which will be independent with means $p\theta_j$, also taking $Y_j^{\dagger} = Y_j - Y_j^*$, which will be independent (and independent of the Y_j , unconditionally), with means $(1-p)\theta_j$. If $p \approx 1$, then selection based on the Y^* s will be close to selection based on the Ys, but the Y^{\dagger} s will be small, so there will be little power for inference, and conversely if $p \approx 0$.

Solution 4

(a) If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f$ are continuous random variables then the joint density of the corresponding order statistics $X_{(1)} \leq \cdots \leq X_{(n)}$ is

$$f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n) = n! f(x_1) \cdots f(x_n) I(x_1 \le \dots \le x_n),$$

so the joint density of $U_{(1)} \leq \cdots \leq U_{(n)}$ is

$$f_{U_{(1)},\dots,U_{(n)}}(u_1,\dots,u_n) = n!I(0 \le u_1 \le \dots \le u_n \le 1).$$

Moreover

$$P(U_{(n)} \le u_n) = P(U_1 \le u_n, \dots, U_n \le u_n) = \prod_{j=1}^n P(U_j \le u_n) = u_n^n, \quad 0 \le u_n \le 1,$$

so the density of $U_{(n)}$ is nu_n^{n-1} , for $0 \le u_n \le 1$. Hence the joint conditional density is

$$f_{U_{(1)},\dots,U_{(n-1)}|U_{(n)}}(u_1,\dots,u_{n-1}|u_n) = \frac{f_{U_{(1)},\dots,U_{(n)}}(u_1,\dots,u_n)}{f_{U_{(n)}}(u_n)}$$
$$= \frac{n!}{nu_n^{n-1}}I(0 \le u_1 \le \dots \le u_{n-1} \le u_n \le 1),$$

and the change of variables $U'_{(1)} = U_{(1)}/u_n, \dots, U'_{(n-1)} = U_{(n-1)}/u_n$ yields

$$f_{U'_{(1)},\dots,U'_{(n-1)}|U_{(n)}}(u'_1,\dots,u'_{n-1}|u_n) = (n-1)!I(u'_1 \le \dots \le u'_{n-1} \le 1),$$

which is of the same form as the joint density of $U_{(1)} \leq \cdots \leq U_{(n)}$ but with n-1 instead of n.

(b) As $P_{(1)} = P_1$ for a sample of size m = 1 and $P_1 \sim U(0, 1)$, we have

$$A_1(\alpha) = P(P_{(1)} > \alpha) = P(P_1 > \alpha) = 1 - \alpha,$$

i.e., the result is true for m=1. To establish the induction, suppose it is true for some $m\geq 1$. Then

$$A_{m+1}(\alpha) = P\{P_{(k)} > k\alpha/(m+1), k = 1, \dots, m+1\}$$

$$= \int_{\alpha}^{1} P\{P_{(k)} > k\alpha/(m+1), k = 1, \dots, m \mid P_{(m+1)} = u\} (m+1)u^{m} du$$

$$= \int_{\alpha}^{1} P\left(P'_{(k)} > (k/m)[\alpha m/\{(m+1)u], k = 1, \dots, m\right) (m+1)u^{m} du$$

$$= \int_{\alpha}^{1} A_{m} \left[\alpha m/\{(m+1)u\}\right] (m+1)u^{m} du$$

$$= \int_{\alpha}^{1} \left[1 - \alpha m/\{(m+1)u\}\right] (m+1)u^{m} du$$

$$= \int_{\alpha}^{1} \left\{(m+1)u^{m} - \alpha mu^{m-1}\right\} du$$

$$= \left[u^{m+1} - \alpha u^{m}\right]_{\alpha}^{1} = 1 - \alpha,$$

where the $P'_{(k)} = P_{(k)}/u$ are the order statistics of a uniform sample of size m, using part (a). This establishes the induction and gives FWER = $1 - A_m(\alpha) = \alpha$ for any m.

(c) Both procedures have FWER less than or equal to α and respective rejection regions $\mathcal{Y}_B = \{P_{(m)} \leq \alpha/m\}$ and $\mathcal{Y}_S = \{P_{(m)} \leq \alpha/m, \dots, P_{(1)} \leq \alpha\}$. As $\mathcal{Y}_B \subset \mathcal{Y}_S$ the Simes procedure must be more powerful (there are more ways to reject H_0). Hence the Simes procedure should always be preferred when the P-values are independent. The proof in (b) shows that it has exact FWER α , whereas the Bonferroni FWER is less than or equal to α , and this results in a loss of power. On the other hand the Bonferroni argument works also when the tests are dependent.