
MATH-562: Statistical Inference Anthony Davison

Solution 1 The confidence interval is computed only if the test is significant, and this occurs if |T | >
σz1−α, an event with probability

P(T < −σz1−α) + P(T > σz1−α) = P(Z < −z1−α − µ/σ) + P(Z > z1−α − µ/σ)

= P(Z < zα − µ/σ) + P(Z < zα + µ/σ)

= Φ(zα + µ/σ) + Φ(zα − µ/σ),

where Z = (T − µ)/σ ∼ N (0, 1) and Φ and zp are respectively the standard normal CDF and its p
quantile, for 0 < p < 1.

The confidence interval is computed only if |T | > σz1−α, so the true coverage is the conditional
probability

P(µ ∈ I1−2α | |T | > σz1−α) =
P({T − σz1−α ≤ µ ≤ T + σz1−α} ∩ {|T | > σz1−α})

P(|T | > σz1−α)
.

The numerator event here is

{zα ≤ Z ≤ z1−α} ∩ ({Z < zα − µ/σ} ∪ {Z > z1−α − µ/σ}) = {zα ≤ Z ≤ z1−α} ∩ {Z > z1−α − µ/σ},

because µ > 0. This is {zα ≤ Z ≤ z1−α} if z1−α − µ/σ < zα, but otherwise is {z1−α − µ/σ ≤ Z ≤ z1−α},
and hence has probability

P {max(zα, z1−α − µ/σ) ≤ Z ≤ z1−α} = Φ(z1−α) − Φ{max(zα, z1−α − µ/σ)},

as required.
When µ = 0 the coverage is zero, since the interval is computed only when the hypothesis µ = 0 is

rejected, which is equivalent to the interval not containing µ. When µ is small and positive, the interval
is again unlikely to contain µ, because the event |T | > σz1α pushes T outside the upper rejection limit
σz1α. As µ increases the interval is more likely to contain µ, because the event |T | > σz1α corresponds
increasingly to T > σz1α. Finally there is a cusp in the probability when zα = z1−α − µ/σ, i.e., µ/σ =
2z1−α, after which only the denominator probability increases, thereby reducing the coverage to its correct
value of 1 − 2α.

Solution 2

(a) Clearly U is normal with mean θ and variance 1 + p2, and cov(T, U) = var(T ) = 1, so T is
conditionally normal with mean and variance

E(T | U = u) = θ + (u − θ)/(1 + p2), var(T | U = u) = 1 − 12/(1 + p2) = p2/(1 + p2).

(b) We have f(t; θ) = f(u; θ)f(t | u; θ), so taking logs, differentiation and then taking expectations will
lead to the given expression for ı(θ).

In the particular case of the normal model, and ignoring additive constants, the two terms of the
log likelihood are

−
(u − θ)2

2(1 + p2)
, −

{t − θ − (u − θ)/(1 + p2)}2

2p2/(1 + p2)
,

and differentiation of these expressions twice gives

−
1

1 + p2
, −

p2

1 + p2
,

so the two terms in the information decomposition sum to the overall information ı(θ) = 1. If p
is small, then the first term, corresponding to U , comprises almost all the overall information, but
that for inference (the second term) is small, and conversely when p ≈ 1.
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Solution 3

(a) The marginal MGF of X is

EY

[

E

{

exp

(

K
∑

k=1

tkXk

) ∣

∣

∣

∣

∣

Y = y

}]

=
∞
∑

y=0

(

K
∑

k=1

pketk

)y

θye−θ/y!

= exp

{

−θ + θ
K
∑

k=1

pketk

}

=
K
∏

k=1

exp
{

pkθ(etk − 1)
}

,

which is the MGF of K independent Poisson variables with with means p1θ, . . . , pKθ. Here we
wrote θ = θ(P1 + · · · + pK).

(b) We aim to generate a set of Poisson variables Y ∗
1 , . . . , Y ∗

n to be used for selection and an independent

set of Poisson variables Y †
1 , . . . , Y †

n to be used for inference.

The result from (a) suggests that we might choose p ∈ (0, 1) and then generate Y ∗
j ∼ B(Yj , p),

which will be independent with means pθj, also taking Y †
j = Yj − Y ∗

j , which will be independent
(and independent of the Yj, unconditionally), with means (1 − p)θj. If p ≈ 1, then selection based
on the Y ∗s will be close to selection based on the Y s, but the Y †s will be small, so there will be
little power for inference, and conversely if p ≈ 0.

Solution 4

(a) If X1, . . . , Xn
iid
∼ f are continuous random variables then the joint density of the corresponding

order statistics X(1) ≤ · · · ≤ X(n) is

fX(1),...,X(n)
(x1, . . . , xn) = n!f(x1) · · · f(xn)I(x1 ≤ · · · ≤ xn),

so the joint density of U(1) ≤ · · · ≤ U(n) is

fU(1),...,U(n)
(u1, . . . , un) = n!I(0 ≤ u1 ≤ · · · ≤ un ≤ 1).

Moreover

P(U(n) ≤ un) = P(U1 ≤ un, . . . , Un ≤ un) =
n
∏

j=1

P(Uj ≤ un) = un
n, 0 ≤ un ≤ 1,

so the density of U(n) is nun−1
n , for 0 ≤ un ≤ 1. Hence the joint conditional density is

fU(1),...,U(n−1)|U(n)
(u1, . . . , un−1 | un) =

fU(1),...,U(n)
(u1, . . . , un)

fU(n)
(un)

=
n!

nun−1
n

I(0 ≤ u1 ≤ · · · ≤ un−1 ≤ un ≤ 1),

and the change of variables U ′
(1) = U(1)/un, . . . , U ′

(n−1) = U(n−1)/un yields

fU ′

(1)
,...,U ′

(n−1)
|U(n)

(u′
1, . . . , u′

n−1 | un) = (n − 1)!I(u′
1 ≤ · · · ≤ u′

n−1 ≤ 1),

which is of the same form as the joint density of U(1) ≤ · · · ≤ U(n) but with n − 1 instead of n.
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(b) As P(1) = P1 for a sample of size m = 1 and P1 ∼ U(0, 1), we have

A1(α) = P(P(1) > α) = P(P1 > α) = 1 − α,

i.e., the result is true for m = 1. To establish the induction, suppose it is true for some m ≥ 1.
Then

Am+1(α) = P{P(k) > kα/(m + 1), k = 1, . . . , m + 1}

=

∫ 1

α
P{P(k) > kα/(m + 1), k = 1, . . . , m | P(m+1) = u} (m + 1)um du

=

∫ 1

α
P
(

P ′
(k) > (k/m)[αm/{(m + 1)u], k = 1, . . . , m

)

(m + 1)um du

=

∫ 1

α
Am [αm/{(m + 1)u}] (m + 1)um du

=

∫ 1

α
[1 − αm/{(m + 1)u}] (m + 1)um du

=

∫ 1

α

{

(m + 1)um − αmum−1
}

du

=
[

um+1 − αum
]1

α
= 1 − α,

where the P ′
(k) = P(k)/u are the order statistics of a uniform sample of size m, using part (a). This

establishes the induction and gives FWER = 1 − Am(α) = α for any m.

(c) Both procedures have FWER less than or equal to α and respective rejection regions YB = {P(m) ≤
α/m} and YS = {P(m) ≤ α/m, . . . , P(1) ≤ α}. As YB ⊂ YS the Simes procedure must be more
powerful (there are more ways to reject H0). Hence the Simes procedure should always be preferred
when the P-values are independent. The proof in (b) shows that it has exact FWER α, whereas
the Bonferroni FWER is less than or equal to α, and this results in a loss of power. On the other
hand the Bonferroni argument works also when the tests are dependent.

3


