MATH-562: Statistical Inference Anthony Davison

Solution 1 The confidence interval is computed only if the test is significant, and this occurs if |T'| >
021—_q, an event with probability

P(T < —-02z1—0)+P(T>021-0) = P(Z<—21_q—p/o)+P(Z>z21_q — pjo)
= P(Z<zqg—p)o)+P(Z < 2o+ pf0)
= (20 + p/0) + 2(2a — p/o),

where Z = (T — p)/o ~ N(0,1) and ® and z, are respectively the standard normal CDF and its p
quantile, for 0 < p < 1.
The confidence interval is computed only if |T'| > 0z1_,, so the true coverage is the conditional
probability
PH{T —o0z1—a S p <T+oz1_o} N{|T| > 02z1-0a})

P € Trogo | |T| > 021-0) = P(T] > 021_a) '
—Q

The numerator event here is
{za < Z<z1_a}N{Z <24 —p)o}U{Z > 210 —p/o}) ={2a < Z < z21_0}N{Z > 214 — p/c},

because > 0. This is {zo < Z < 214} if 214 — /0 < 24, but otherwise is {z1_o — p/o0 < Z < z1_4},
and hence has probability

P{max(zq,21—a — p/0) < Z < z1_o} = P(21-0) — P{max(z4, 210 — 1/0)},

as required.

When p = 0 the coverage is zero, since the interval is computed only when the hypothesis 1 = 0 is
rejected, which is equivalent to the interval not containing p. When p is small and positive, the interval
is again unlikely to contain p, because the event |T'| > 021, pushes T outside the upper rejection limit
021q. As p increases the interval is more likely to contain u, because the event |T| > oz, corresponds
increasingly to 7' > 0z14. Finally there is a cusp in the probability when z, = z1_o — p/o, ie., pu/o =
221 _q, after which only the denominator probability increases, thereby reducing the coverage to its correct
value of 1 — 2a.

Solution 2

(a) Clearly U is normal with mean 6§ and variance 1 + p?, and cov(T,U) = var(T) = 1, so T is
conditionally normal with mean and variance

E(T|U=u) =0+ (u—-0)/1+p?), var(T|U=u)=1-1%/(1+p* =p*/(1+p?).

(b) We have f(t;0) = f(u;0)f(t | u;6), so taking logs, differentiation and then taking expectations will
lead to the given expression for ¢(6).

In the particular case of the normal model, and ignoring additive constants, the two terms of the
log likelihood are
C(w=0? {t—0-(u—0)/(1+p*)}?
2(1+p?)’ 2p?/(1 +p?) ’

and differentiation of these expressions twice gives

1 p2
1+p2’ 1+p2’

so the two terms in the information decomposition sum to the overall information () = 1. If p
is small, then the first term, corresponding to U, comprises almost all the overall information, but
that for inference (the second term) is small, and conversely when p ~ 1.



Solution 3

(a)

The marginal MGF of X is

Ey lE {exp (ﬁ thk> | Y = yH = g (i pketk>y9ye€/y!

k=1 k=1

K
= exp{—@—l—HZpketk}

k=1

= ﬁ exp {pkﬁ(et’“ - 1)} ,

k=1

which is the MGF of K independent Poisson variables with with means p16,...,pg60. Here we
wrote 0 = (P, + - -+ + pk).

We aim to generate a set of Poisson variables Y*,...,Y," to be used for selection and an independent
set of Poisson variables YlT, ..., YT to be used for inference.

The result from (a) suggests that we might choose p € (0,1) and then generate Y;* ~ B(Y},p),
which will be independent with means pf;, also taking YjT =Y; — Y/, which will be independent
(and independent of the Yj, unconditionally), with means (1 — p)6#;. If p ~ 1, then selection based
on the Y*s will be close to selection based on the Y's, but the YTs will be small, so there will be
little power for inference, and conversely if p = 0.

Solution 4

(a)

If Xq,...,X, id f are continuous random variables then the joint density of the corresponding
order statistics X(l) << X(n) is

fX(l),...,X(n) (xla L 73771) - n'f(xl) T f(l'n)l(xl S e S xn)a
so the joint density of Uyy < -+ < Uy, is
fU(l),...,U(n) (ul, - ,un) = n'I(O <u <---<u, < 1)

Moreover

P(Upy < tn) =P(Ur S tp,... ,Un <) = [[PU; S up) =, 0<u, <1,
j=1

so the density of Uy, is nul1, for 0 < u, < 1. Hence the joint conditional density is

fU(l)v---vU(n) (Ut un)
FUy Uy UGy (UL - -5 Un—1 | i) = v (un)

n!
= —I(0<u; < <up_y <up <1),
nun

and the change of variables U(/1) =Uwy/tn, -, U('n_l) = U(n—1)/un yields

fU(ll)""’U(ln—l)|U(”) (u/l’ s >u;171 | un) = (TL - 1)'](2/1 << ugmfl < 1)a

which is of the same form as the joint density of Uyy < --- < U,) but with n — 1 instead of n.



(b) As Py = P for a sample of size m = 1 and P; ~ U(0,1), we have
Al(a) = P(P(l) > Oé) = P(P1 > Oé) =1-aq,

i.e., the result is true for m = 1. To establish the induction, suppose it is true for some m > 1.
Then

Amy1(a) = P{Py >ka/(m+1),k=1,...,m+1}

1
_ / P{Pyy > ka/(m+ 1),k =1,...,m | Py = u} (m + 1)u™ du

= /lP (P(’k) > (k/m)[am/{(m + 1)u], k = 1,...,m) (m+ 1)u™ du

—

A, [am/{(m + Du}] (m+ 1)u™ du

[1—am/{(m+ 1u}] (m+ 1)u™ du

|
Q\HQ\Q

—

= {(m + Du™ — amum_l} du

Q

1
= {umﬂ — aum} =1-a,
(0%

where the P(/k) = P /u are the order statistics of a uniform sample of size m, using part (a). This
establishes the induction and gives FWER =1 — A,,(a) = a for any m.

(c) Both procedures have FWER less than or equal to a and respective rejection regions Vg = {P(m) <
a/m} and Vg = {P(m) < a/m,... ,Pay < a}. As Yp C Vs the Simes procedure must be more
powerful (there are more ways to reject Hp). Hence the Simes procedure should always be preferred
when the P-values are independent. The proof in (b) shows that it has exact FWER «, whereas
the Bonferroni FWER is less than or equal to «, and this results in a loss of power. On the other
hand the Bonferroni argument works also when the tests are dependent.



