
MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) The most powerful test against any fixed value of µ 6= µ0 is obtained from the Neyman–Pearson
lemma. The likelihood ratio for testing µ = µ0 against µ = µ1 with σ known is

f1(y1, . . . , yn)

f0(y1, . . . , yn)
=

(2πσ2)−n/2 exp{− 1
2σ2

∑n
j=1(yj − µ1)2}

(2πσ2)−n/2 exp{− 1
2σ2

∑n
j=1(yj − µ0)2}

= exp

[

1

2σ2

{

2ny(µ1 − µ0) − µ2
1 + µ2

0

}

]

.

This is monotone increasing in y for any fixed µ1 > µ0, and so the critical region rejects H0 when
y ≥ tα, with tα chosen to give a test of size α. The null distribution of Y is N (µ0, σ2/n), so

α = P0(Y ≥ tα) = P0

{

n1/2(Y − µ0)/σ ≥ n1/2(tα − µ0)/σ
}

= 1 − Φ
{

n1/2(tα − µ0)/σ
}

,

which implies that n1/2(tα − µ0)/σ = z1−α, giving tα = µ0 + σn−1/2z1−α and thus Y+
α , as required.

When µ1 < µ0, a similar computation leads to

Y−

α =
{

(y1, . . . , yn) : y ≤ µ0 + σn−1/2zα

}

.

(b) The critical region Y+
α is most powerful for any µ1 > µ0, so it is uniformly most powerful for

µ1 > µ0, and likewise for Y−

α against the alternatives µ < µ0.

(c) Symmetry of the distribution of Y − µ0 under the null hypothesis implies that Yβ has size

P0(Y ∈ Yβ) = P0

(

n1/2|Y − µ0|/σ ≥ z1−β

)

= 2P0

{

n1/2(Y − µ0)/σ ≥ z1−β

}

= 2β,

so we should choose β = α/2 to achieve size α. Yα/2 is not uniformly most powerful of size α,
because if µ1 > µ0 then Y+

α also has size α but has higher power (because z1−α ≤ z1−α/2).

Solution 2

(a) As min(Y1, . . . , Yr) > x if and only if Y1 > x, . . . , Yr > x, we have

P{min(Y1, . . . , Yr) ≤ x} = 1 − P{min(Y1, . . . , Yr) > x} = 1 − P(Y1 > x)r = 1 − exp(−rλx), x > 0,

and for x, y > 0, P(Y − x > y | Y > x) equals

P(Y − x > y, Y > x)

P(Y > x)
=

P(Y > y + x)

P(Y > x)
= exp{−λ(x + y)}/ exp(−λx) = exp(−λy),

as required.

(b) As P(Ej/λ ≤ x) = P(Ej ≤ λx) = 1 − exp(−λx) = P(Yj ≤ x), we have Yj
D
= Ej/λ. We argue as

follows:

• Y(1) is the smallest of n independent exponential variables, so it is exponential with parameter

nλ and therefore we can write Y(1)
D
= E1/(nλ);

• the remaining n − 1 variables have the lack of memory property, so given that Y(1) = x the
remaining Yj − x have exponential distributions with parameter λ. Thus Y(2) − Y(1) is the

minimum of n − 1 exponential variables, i.e., Y(2) − Y(1)
D
= E2/{(n − 1)λ};

• iterating the argument by successively conditioning on Y(2), . . . , Y(n−1) and obtaining the dis-
tributions of Y(3) − Y(2), . . . , Y(n) − Y(n−1) gives the stated representation.
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(c) A standard exponential variable has mean and variance both equal to 1, so

E(Y(r)) =
1

λ

r
∑

j=1

1

n + 1 − j
, cov(Y(r), Y(s)) =

1

λ2

m
∑

j=1

1

(n + 1 − j)2
, r, s, ∈ {1, . . . , n},

with m = min(s, r) and the second formula giving the variance when r = s. Note the simple
approximate integral formulae

E(Y(r))
.
=

1

λ

∫ n+
1
2

n−r+
1
2

dx

x
= λ−1 log{(n + 1

2)/(n − r + 1
2 )},

cov(Y(r), Y(s))
.
=

1

λ2

∫ n+
1
2

n−m+
1
2

dx

x2
= λ−2 m

(n + 1
2)(n − m + 1

2 )
.

Solution 3

(a) Clearly if P is small then − log P is large, and

P(− log P ≤ x) = P(P ≥ e−x) = 1 − e−x, x > 0,

so − log P has a standard exponential distribution. Thus SF , a sum of independent exponential
variables, has a gamma distribution, with upper tail probability

P0(SF ≤ s) =

∫ s

0

xn−1

n!
e−x dx,

and quantiles sα, say. The critical region is {(p1, . . . , pn) ∈ (0, 1)n : −
∑n

j=1 log pj ≥ s1−α}.

(b) Here P0(ST > s) = P(P1 > s, . . . , Pn > s) = (1 − s)n for s ∈ (0, 1), and the critical region is
{(p1, . . . , pn) ∈ (0, 1)n : minj pj ≤ 1 − (1 − α)1/n}.

(c) Under this alternative we have

P(− log P ≤ x) = P(P ≥ e−x) = 1 − (e−x)1/γ = 1 − e−x/γ ,

so − log P ∼ exp(1/γ) with γ > 1. This is an exponential family and we are comparing the simple
null and alternative hypotheses γ = 1 and γ > 1, so Example 30 of the notes applies. The likelihood
ratio for p1, . . . , pn is

f1(p)

f0(p)
=

γ−n ∏n
j=1 p

1/γ−1
j

∏n
j=1 1

= exp







−
n

∑

j=1

log pj(1 − 1/γ) − n log γ







,

which is an exponential family with ϕ = −1/γ < 0, s∗ = −
∑

j log pj, k(ϕ) = n log γ = −n log(−ϕ)
and log m∗(p) = −

∑

j log pj . Since ϕ is a monotone increasing function of γ, the computation in
the example implies that the most powerful test has a critical region of the form s∗ > s1−α, and
therefore SF is the best test statistic in this situation. As we always have γ > 1 or equivalently
ϕ < −1 under the alternative, it is also uniformly most powerful.

(d) This extends (c), with the log likelihood ratio turning out to be

(a − 1)
∑

log pj + (b − 1)
∑

log(1 − pj) = (b − a) {wSF + (1 − w)SP } .

(e) In this situation the cumulative distribution function for P is (1 − q)x + qx1/γ , so the density is
(1 − q) + (q/γ)x1/γ−1, for x ∈ (0, 1). As γ > 1, this implies that that the density is unbounded as
x → 0, which may not be so plausible, but in any case the obvious approach would be to estimate
q and γ (for example using maximum likelihood) and hence decide whether q = 0 or γ > 1. In
this case ST seems attractive, because it seems likely that it would be able to profit from the spike
under the alternative.

2


