Solution 1

(a) The most powerful test against any fixed value of $\mu \neq \mu_0$ is obtained from the Neyman–Pearson lemma. The likelihood ratio for testing $\mu = \mu_0$ against $\mu = \mu_1$ with σ known is

$$\frac{f_1(y_1, \dots, y_n)}{f_0(y_1, \dots, y_n)} = \frac{(2\pi\sigma^2)^{-n/2} \exp\{-\frac{1}{2\sigma^2} \sum_{j=1}^n (y_j - \mu_1)^2\}}{(2\pi\sigma^2)^{-n/2} \exp\{-\frac{1}{2\sigma^2} \sum_{j=1}^n (y_j - \mu_0)^2\}} \\
= \exp\left[\frac{1}{2\sigma^2} \left\{2n\overline{y}(\mu_1 - \mu_0) - \mu_1^2 + \mu_0^2\right\}\right].$$

This is monotone increasing in \overline{y} for any fixed $\mu_1 > \mu_0$, and so the critical region rejects H_0 when $\overline{y} \geq t_{\alpha}$, with t_{α} chosen to give a test of size α . The null distribution of \overline{Y} is $\mathcal{N}(\mu_0, \sigma^2/n)$, so

$$\alpha = P_0(\overline{Y} \ge t_\alpha) = P_0\left\{n^{1/2}(\overline{Y} - \mu_0)/\sigma \ge n^{1/2}(t_\alpha - \mu_0)/\sigma\right\} = 1 - \Phi\left\{n^{1/2}(t_\alpha - \mu_0)/\sigma\right\},$$

which implies that $n^{1/2}(t_{\alpha} - \mu_0)/\sigma = z_{1-\alpha}$, giving $t_{\alpha} = \mu_0 + \sigma n^{-1/2}z_{1-\alpha}$ and thus \mathcal{Y}_{α}^+ , as required. When $\mu_1 < \mu_0$, a similar computation leads to

$$\mathcal{Y}_{\alpha}^{-} = \left\{ (y_1, \dots, y_n) : \overline{y} \le \mu_0 + \sigma n^{-1/2} z_{\alpha} \right\}.$$

- (b) The critical region \mathcal{Y}_{α}^{+} is most powerful for any $\mu_{1} > \mu_{0}$, so it is uniformly most powerful for $\mu_{1} > \mu_{0}$, and likewise for \mathcal{Y}_{α}^{-} against the alternatives $\mu < \mu_{0}$.
- (c) Symmetry of the distribution of $\overline{Y} \mu_0$ under the null hypothesis implies that \mathcal{Y}_{β} has size

$$P_0(Y \in \mathcal{Y}_{\beta}) = P_0\left(n^{1/2}|\overline{Y} - \mu_0|/\sigma \ge z_{1-\beta}\right) = 2P_0\left\{n^{1/2}(\overline{Y} - \mu_0)/\sigma \ge z_{1-\beta}\right\} = 2\beta,$$

so we should choose $\beta = \alpha/2$ to achieve size α . $\mathcal{Y}_{\alpha/2}$ is not uniformly most powerful of size α , because if $\mu_1 > \mu_0$ then \mathcal{Y}_{α}^+ also has size α but has higher power (because $z_{1-\alpha} \leq z_{1-\alpha/2}$).

Solution 2

(a) As $\min(Y_1, \dots, Y_r) > x$ if and only if $Y_1 > x, \dots, Y_r > x$, we have

$$P\{\min(Y_1, \dots, Y_r) \le x\} = 1 - P\{\min(Y_1, \dots, Y_r) > x\} = 1 - P(Y_1 > x)^r = 1 - \exp(-r\lambda x), \quad x > 0,$$
 and for $x, y > 0$, $P(Y - x > y \mid Y > x)$ equals

$$\frac{P(Y - x > y, Y > x)}{P(Y > x)} = \frac{P(Y > y + x)}{P(Y > x)} = \exp\{-\lambda(x + y)\} / \exp(-\lambda x) = \exp(-\lambda y),$$

as required.

- (b) As $P(E_j/\lambda \le x) = P(E_j \le \lambda x) = 1 \exp(-\lambda x) = P(Y_j \le x)$, we have $Y_j \stackrel{D}{=} E_j/\lambda$. We argue as follows:
 - $Y_{(1)}$ is the smallest of n independent exponential variables, so it is exponential with parameter $n\lambda$ and therefore we can write $Y_{(1)} \stackrel{\mathrm{D}}{=} E_1/(n\lambda)$;
 - the remaining n-1 variables have the lack of memory property, so given that $Y_{(1)} = x$ the remaining $Y_j x$ have exponential distributions with parameter λ . Thus $Y_{(2)} Y_{(1)}$ is the minimum of n-1 exponential variables, i.e., $Y_{(2)} Y_{(1)} \stackrel{\mathrm{D}}{=} E_2/\{(n-1)\lambda\}$;
 - iterating the argument by successively conditioning on $Y_{(2)}, \ldots, Y_{(n-1)}$ and obtaining the distributions of $Y_{(3)} Y_{(2)}, \ldots, Y_{(n)} Y_{(n-1)}$ gives the stated representation.

(c) A standard exponential variable has mean and variance both equal to 1, so

$$E(Y_{(r)}) = \frac{1}{\lambda} \sum_{j=1}^{r} \frac{1}{n+1-j}, \quad cov(Y_{(r)}, Y_{(s)}) = \frac{1}{\lambda^2} \sum_{j=1}^{m} \frac{1}{(n+1-j)^2}, \quad r, s, \in \{1, \dots, n\},$$

with $m = \min(s, r)$ and the second formula giving the variance when r = s. Note the simple approximate integral formulae

$$E(Y_{(r)}) \doteq \frac{1}{\lambda} \int_{n-r+\frac{1}{2}}^{n+\frac{1}{2}} \frac{dx}{x} = \lambda^{-1} \log\{(n+\frac{1}{2})/(n-r+\frac{1}{2})\},$$

$$cov(Y_{(r)}, Y_{(s)}) \doteq \frac{1}{\lambda^2} \int_{n-m+\frac{1}{2}}^{n+\frac{1}{2}} \frac{dx}{x^2} = \lambda^{-2} \frac{m}{(n+\frac{1}{2})(n-m+\frac{1}{2})}.$$

Solution 3

(a) Clearly if P is small then $-\log P$ is large, and

$$P(-\log P \le x) = P(P \ge e^{-x}) = 1 - e^{-x}, \quad x > 0,$$

so $-\log P$ has a standard exponential distribution. Thus S_F , a sum of independent exponential variables, has a gamma distribution, with upper tail probability

$$P_0(S_F \le s) = \int_0^s \frac{x^{n-1}}{n!} e^{-x} dx,$$

and quantiles s_{α} , say. The critical region is $\{(p_1,\ldots,p_n)\in(0,1)^n:-\sum_{j=1}^n\log p_j\geq s_{1-\alpha}\}$.

- (b) Here $P_0(S_T > s) = P(P_1 > s, ..., P_n > s) = (1 s)^n$ for $s \in (0, 1)$, and the critical region is $\{(p_1, ..., p_n) \in (0, 1)^n : \min_i p_i \le 1 (1 \alpha)^{1/n}\}.$
- (c) Under this alternative we have

$$P(-\log P \le x) = P(P \ge e^{-x}) = 1 - (e^{-x})^{1/\gamma} = 1 - e^{-x/\gamma},$$

so $-\log P \sim \exp(1/\gamma)$ with $\gamma > 1$. This is an exponential family and we are comparing the simple null and alternative hypotheses $\gamma = 1$ and $\gamma > 1$, so Example 30 of the notes applies. The likelihood ratio for p_1, \ldots, p_n is

$$\frac{f_1(p)}{f_0(p)} = \frac{\gamma^{-n} \prod_{j=1}^n p_j^{1/\gamma - 1}}{\prod_{j=1}^n 1} = \exp\left\{-\sum_{j=1}^n \log p_j (1 - 1/\gamma) - n \log \gamma\right\},\,$$

which is an exponential family with $\varphi = -1/\gamma < 0$, $s^* = -\sum_j \log p_j$, $k(\varphi) = n \log \gamma = -n \log(-\varphi)$ and $\log m^*(p) = -\sum_j \log p_j$. Since φ is a monotone increasing function of γ , the computation in the example implies that the most powerful test has a critical region of the form $s^* > s_{1-\alpha}$, and therefore S_F is the best test statistic in this situation. As we always have $\gamma > 1$ or equivalently $\varphi < -1$ under the alternative, it is also uniformly most powerful.

(d) This extends (c), with the log likelihood ratio turning out to be

$$(a-1)\sum \log p_j + (b-1)\sum \log (1-p_j) = (b-a)\left\{wS_F + (1-w)S_P\right\}.$$

(e) In this situation the cumulative distribution function for P is $(1-q)x + qx^{1/\gamma}$, so the density is $(1-q) + (q/\gamma)x^{1/\gamma-1}$, for $x \in (0,1)$. As $\gamma > 1$, this implies that that the density is unbounded as $x \to 0$, which may not be so plausible, but in any case the obvious approach would be to estimate q and γ (for example using maximum likelihood) and hence decide whether q = 0 or $\gamma > 1$. In this case S_T seems attractive, because it seems likely that it would be able to profit from the spike under the alternative.