
MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) In case (i) the original likelihood is λe−λy1 × λψeλψy2 , so the integrated likelihood is

∫
∞

0

ψλ2 exp{−λ(y1 + ψy2)} dλ =
ψ

(y1 + ψy2)3
,

∫
∞

0

u2e−u du =
2ψ

(y1 + ψy2)3
, ψ > 0,

where we set u = λ(y1 +ψy2). In case (ii) the original likelihood is λ−1e−y1/λ × (ψ/λ)eψy2/λ, giving

∫
∞

0

ψλ−2 exp{−(y1 + ψy2)/λ} dλ =
ψ

y1 + ψy2

∫
∞

0

u2e−u u−2du =
ψ

y1 + ψy2

, ψ > 0,

where we set u = (y1 + ψy2)/λ. Hence the result depends on the nuisance parametrisation, which
is clearly unsatisfactory.

(b) In case (i) we now obtain

∫
L(ψ, λ)π(ψ, λ) dλ =

∫
∞

0

ψλ2 exp{−λ(y1 + ψy2)}π(ψ, λ) dλ,

but the prior corresponding to (ψ, µ = 1/λ) is π∗(ψ, µ) = π(ψ, 1/µ)µ−2, giving
∫

∞

0

L(ψ, 1/µ)π∗(ψ, µ) dµ =

∫
∞

0

ψµ−2 exp{−(y1 + ψy2)/µ}π(ψ, 1/µ)µ−2 dµ,

and this reduces to the result for (i) when we change the variable of integration to λ = 1/µ.

Solution 2

(a) The likelihood is
∏n
j=1 pj , and this equals zero if any of the pj = 0, so we should take pj > 0 for

each j. Moreover if we had an optimal solution with
∑
pj < 1, we could increase the likelihood just

by increasing (say) p1 until
∑
pj = 1, so we should take

∑
pj = 1. Hence we can maximise

∑
log pj

subject to
∑
pj = 1, and we can do this using Lagrange multipliers, by maximising

n∑

j=1

log pj + λ




n∑

j=1

pj − 1


 ,

differentiation of which with respect to pj gives p−1

j + λ = 0 for all j. As the pj are equal and sum

to unity, they must all equal n−1. The second derivative is negative, so the point is a maximum.

(b) Now we maximise the (slightly eccentrically expressed) Lagrangian

n∑

j=1

log pj − nλT




n∑

j=1

cj(θ)pj − 0


 − µ




n∑

j=1

pj − 1


 ,

with λ of dimension d×1 and µ scalar. Differentiation with respect to λ and µ gives the constraints,
and differentiation with respect to pj gives

p−1

j − nλTcj(θ) − µ = 0 =⇒ 1 = npjλ
Tcj(θ) + µpj,

addition of which over j gives µ = n, and consequently p−1

j = n{1 + λTcj(θ)}, where λ is chosen to
solve

n∑

j=1

cj(θ)pj =
n∑

j=1

cj(θ)

n{1 + λTcj(θ}
= 0,

as required.
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(c) We saw in (a) that ℓE is maximised when pj ≡ 1/n, and in this case 0 =
∑
pj(yj − θ) yields θ̂ = y.

The equation 0 =
∑
pj(yj − θ) and constraint

∑
pj = 1 imply that

∑
yjpj =

∑
yj/{1 +λ(yj − θ} =∑

θpj = θ, so the yj are reweighted so that their weighted average equals θ; this is only possible in
the convex hull (min yj,max yj) of the data.

Solution 3

(a) Under the null hypothesis we can write Yj
D
= Ej/λ, where E1, . . . , En

iid
∼ exp(1), so the test statistic

T =
n∑

j=1

log(Yj/Y )
D
=

n∑

j=1

log(Ej/E),

which does not depend on λ. Hence the statistic is invariant to λ. This could be simulated by

generating E1, . . . , En
iid
∼ exp(1) and hence computing a null distribution for T .

(b) Under the null hypothesis the data are exponential, so the minimal sufficient statistic is S =
Y1 + · · · + Yn, which has a gamma (n, λ) distribution. Hence the conditional density of the data
given S is

λn exp{−λ(y1 + · · · + yn)}

λnsn−1 exp(−λs)/Γ(n)
=

Γ(n)

sn−1
, 0 < y1, . . . , yn < s,

∑
yj = s.

This is the uniform distribution on an n-dimensional simplex, and of course it does not depend on λ.
The statistic T depends only on the Yj/Y = nYj/S, which is invariant to s, so the same simulation
algorithm as in (a) will work.

Solution 4

(a) For x ∈ (0, 1) and because the events P ≤ u and P ≥ 1 − u are disjoint for u < 1/2 we have

P(Q ≤ x) = P{min(P, 1 − P ) ≤ x/2} = P(P ≤ x/2) + P(P ≥ 1 − x/2) = x/2 + x/2 = x,

as required.

(b) These are computed using the R code

> ppois(1:7,lambda=2,lower.tail=FALSE)

[1] 0.593994150 0.323323584 0.142876540 0.052653017 0.016563608 0.004533806 0.001096719

> ppois(0:2,lambda=2)

[1] 0.1353353 0.4060058 0.6766764

The values are fairly limited in both cases, though the limitations for (ii) are not surprising.

For confidence intervals we would solve the equation P(Y ≥ 2;µ) = α for some specific values of α,
so the discreteness is not a major issue.

Solution 5 The Poisson distribution is an exponential family with canonical statistic y and canonical
parameter ϕ = logψ, and the test with a critical region Y1 = {y, y+1, . . .} is therefore the most powerful
critical region of size

α = P0(Y ∈ Y1) =
∞∑

x=y

λx0e
−λ0/x!

against any alternative λ > λ0. Hence (whether or not they knew it) the test used by the physicists could
not have been improved (provided of course that the underlying Poisson model is reasonable).
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