MATH-562: Statistical Inference Anthony Davison

Solution 1 The log likelihood contribution from a single observation,
U, N) = alog\+ (a—1)logy — Ay —logT'(a), a,v >0,

has first derivatives ¢, = log\ + logy — ¥(a), £y = a/A — y and second derivatives ln, = —V'(a),

Loy = 1/, £yy = —a/ A2, so the observed information matrix equals the expected information matrix,
_ _ (V) —=1/A
z(a,)\)—ml(a,)\)—n<_1/)\ a/32 )

(a) The score statistic is £, for the sample divided by the square root of its asymptotic variance n¥’(«),
all evaluated at o = 1; this gives

", log(AY;) — n(1)
¥/ (1)}172

L N(0,1).

(b) The score statistic is £} 7**¢,, evaluated at the maximum likelihood estimator when oo = 1, i.e., at
(@, Aa)|a=1 = (1,1/Y), and with

ax 1

N SO N RPN e -1
7% = (oo = JexTnra) ™ = (laa —2aniyBa) ™ = n{¥(a) - 1/a}

evaluated at &« = 1. Hence the score statistic is

2
{Zlog(Yj/Y) —n\l’(l)} / [n{¥'(1) —1}] ~ x5;

=1
in fact here, since the interest parameter is scalar, we might use the approximation

j=110g(Y;/Y) — n¥(1)

[n{W'(1) — 1}]1/2 ~ N(0,1).

(¢) (i) The log likelihood function in terms of 1 = /A is obtained by setting A = a/p, and is
(o, p) = aloga —alog u+ (a— 1) logy — ay/p —logI'(a), a,pu>0,

giving 7, = y/p? — 1/u, which has expectation zero; hence pu and « are orthogonal. This
could also be found by using the Jacobian J for the transformation (a, p) — (a, A) to compute
(o, ) = Ju(a, A)J. (ii) The original log likelihood function can be written as ¢(a, \) = alogy —
Ay + alog A —logI'(a) — log y, so the complementary mean parameter for o, E(Y) = a/\ = p, is
orthogonal to o by Example 57.

In the orthogonal parametrisation £}, = l—l—log(y/u) y/pu+loga—V(a)and £, = 1/a—V'(«). Now
fia =Y, and owing to the orthogonality 7°* = 7,1 = 1/[n{¥’(a)—1/a}], which gives 1/[n{¥’(1)—1}]
when a = 1. The numerator of the score statistic is 37 {1 + log(Y;/u) — Y;/p +loga — ¥(a)}
evaluated at o = 1 and p = i1 = Y, and the upshot is that the statistic is the same as in (b).

Solution 2
The log likelihood for a sample y1, ..., y, from the A'(i,o?) distribution is

1 & 1 [&
U(n,0%) = — log o 272 ——210g02—20{Z(yj—y)2+n(y—u)2}-

=1

1\33



(a)

With p = 0 and 02 = 1 the formula above reduces to

. n

“o) =3

(7 — 0)> =ngh —nb*/2, 6cR.
and 0 = Y, SO

r(0) = sign(6 — 0)\/2{(6) — £(6)} = sign(y — 0)\/n(7 — 0)* = Vn(y - 0).

The log likelihood has second derivative —n, so 7 = n, and therefore t(6) = 7%/2( — 6) = r(6). Hence
log{q(0)/r(0)} = 0, so r*(0) = r(0), i.e., inferences based on either will be the same. This is not
surprising, because 7(0) ~ N(0,1) exactly.

For the second model ;= 0 and o2 = 1/6, giving log likelihood

n 0~ 5 n _
€(9)—210g9—2;yj—2(log9—65)7 0 >0,

say. This has second derivative —n/(262) and gives § = 1/3, so 7= n52/2. Hence

() = sign(8 — 0)\/2{¢(9) — £(A)} = sign(1 — 59)\/71 {s6 — log(s6) — 1},
because 5 > 0, and ¢(0) = t(0) = /n/2(1 —50). As 5 is an average of n variables each with mean
1/6 and variance 2/62, the mean and variance of ¢(#) are 0 and 1, as we would expect.

This is the same as in Example 45 but with n replaced by n/2, so the accuracy will be as high as it
was there (i.e., r*(0) gives nearly perfect inferences, when n = 2 here, or n = 1 in Example 45).

Solution 3

(a)

The modified likelihood root depends on r(¢)) and ¢(1), and we need only consider how ¢(1) is
affected by this change, which does not affect the information matrices. But

0(0) — (0y) — B{p(0) — 0(B)},  ©r(0s) = Boa(Oy),  ¢a(By) — Bya(By),

SO

~

[ 0(8) = ¢(8y) 2(0y) | = | Bo(6) = Bo(y) Bea(By) | |BIx | o(6) = ¢(By) a(By) |

=~ = =~ 5

| 0g(0) | | By (0) | |B[x | ¢o(0) |

which leaves ¢(¢) unchanged, because |B| cancels from top and bottom.

If h is normal, then log h(u) = —u?/2, so (log R){(§ =)/} = —(vy§ — n)/7%, and in the notation
of the example (recall that e = (y§ —7°)/7°) this gives

o) = (im LS = )/ )

i=1 j=1
= (mn/7° —a/7% bn/T* —c/77)"

- (o))
b c)\1/7?

_ (v

- (i)

fora= -3 y7, b=> €] and c = — > yje] that depend only on the data y° and are easily computed,

and B is non-singular with probability one.

In view of (a) we can therefore take ©(6) = (n/72,1/72)T for computing ¢(#). This invariance can
also greatly simplify computations in other examples.



Solution 4 The log likelihood in the non-orthogonal parametrization is

(1, y) = logy — yy1 + log(vy) — yya = 2logy +log vy — y(y1 + Yy2), ~,¢ >0,

so its observed and Fisher information matrices have elements —£1, =2/ Y2, —0, =y2and =€, =1 J?,
and 1, = 2/92, vy = 1/(v) and 2, = 1 /1%. Hence the partial differential equation giving the
orthogonal parametrization is

0 . . ? 1
% = —1771(%7)%@[:(%7) = _%% = _ﬁ’ ’Yaw > O’

as required.
To check that A = y!/2 is orthogonal to v, we write v = Ap~/2 so the log likelihood becomes

0, ) = 2log A — M2 (yy + ),

and note that £y, = (y1 — ¥y2)/(2¢%?) has expectation {y~! — v/(v¢)}/(2¢%2) = 0. Hence X is
orthogonal to 1, as required.

The question only asks you to check that the given solution provides an orthogonal transformation, so
the material below is included only to show how the PDE

Iy

2@5% = -7

would be solved if the solution had not been given in the question. Now (e.g., Theorem 2, page 50 of
Sneddon, Elements of Partial Differential Equations, 1957),

“The general solution of the linear partial differential equation

0z

pZe
ox +

0z
Q5 =

is F(u,v) = 0, where F' is an arbitrary function and u(z,y,z) = ¢; and v(z,y, z) = ¢z form a
solution of the equations

de_dy _ dz~
P Q@ R
In the present setting z =y, z =, P =2¢, = 0 and R = —~, so we need to solve
d d
2Z+7:0 —  flogy+logy=c = w'=q
gl

and thus according to the theorem, the general solution is any function of v1/2, such as ANY,v) = Aipt/2,



