Solution 1 The log likelihood contribution from a single observation,

$$\ell(\alpha, \lambda) = \alpha \log \lambda + (\alpha - 1) \log y - \lambda y - \log \Gamma(\alpha), \quad \alpha, \gamma > 0,$$

has first derivatives $\ell_{\alpha} = \log \lambda + \log y - \Psi(\alpha)$, $\ell_{\lambda} = \alpha/\lambda - y$ and second derivatives $\ell_{\alpha\alpha} = -\Psi'(\alpha)$, $\ell_{\alpha\lambda} = 1/\lambda$, $\ell_{\lambda\lambda} = -\alpha/\lambda^2$, so the observed information matrix equals the expected information matrix,

$$i(\alpha, \lambda) = n i_1(\alpha, \lambda) = n \begin{pmatrix} \Psi'(\alpha) & -1/\lambda \\ -1/\lambda & \alpha/\lambda^2 \end{pmatrix}.$$

(a) The score statistic is ℓ_{α} for the sample divided by the square root of its asymptotic variance $n\Psi'(\alpha)$, all evaluated at $\alpha = 1$; this gives

$$\frac{\sum_{j=1}^{n} \log(\lambda Y_j) - n\Psi(1)}{\{n\Psi'(1)\}^{1/2}} \stackrel{\cdot}{\sim} \mathcal{N}(0,1).$$

(b) The score statistic is $\ell_{\alpha}^{\mathrm{T}} \hat{\jmath}^{\alpha\alpha} \ell_{\alpha}$, evaluated at the maximum likelihood estimator when $\alpha = 1$, i.e., at $(\alpha, \widehat{\lambda}_{\alpha})|_{\alpha=1} = (1, 1/\overline{Y})$, and with

$$j^{\alpha\alpha} = (\hat{\jmath}_{\alpha\alpha} - \hat{\jmath}_{\alpha\lambda}\hat{\jmath}_{\lambda\lambda}^{-1}\hat{\jmath}_{\lambda\alpha})^{-1} = (\hat{\imath}_{\alpha\alpha} - \hat{\imath}_{\alpha\lambda}\hat{\imath}_{\lambda\lambda}^{-1}\hat{\imath}_{\lambda\alpha})^{-1} = \frac{1}{n\{\Psi'(\alpha) - 1/\alpha\}}$$

evaluated at $\alpha = 1$. Hence the score statistic is

$$\left\{ \sum_{j=1}^{n} \log(Y_j/\overline{Y}) - n\Psi(1) \right\}^2 / \left[n\{\Psi'(1) - 1\} \right] \sim \chi_1^2;$$

in fact here, since the interest parameter is scalar, we might use the approximation

$$\frac{\sum_{j=1}^{n} \log(Y_j/\overline{Y}) - n\Psi(1)}{[n\{\Psi'(1) - 1\}]^{1/2}} \stackrel{\cdot}{\sim} \mathcal{N}(0, 1).$$

(c) (i) The log likelihood function in terms of $\mu = \alpha/\lambda$ is obtained by setting $\lambda = \alpha/\mu$, and is

$$\ell^*(\alpha, \mu) \equiv \alpha \log \alpha - \alpha \log \mu + (\alpha - 1) \log y - \alpha y/\mu - \log \Gamma(\alpha), \quad \alpha, \mu > 0,$$

giving $\ell_{\alpha\mu}^* = y/\mu^2 - 1/\mu$, which has expectation zero; hence μ and α are orthogonal. This could also be found by using the Jacobian J for the transformation $(\alpha, \mu) \mapsto (\alpha, \lambda)$ to compute $i^*(\alpha, \mu) = Ji(\alpha, \lambda)J$. (ii) The original log likelihood function can be written as $\ell(\alpha, \lambda) \equiv \alpha \log y - \lambda y + \alpha \log \lambda - \log \Gamma(\alpha) - \log y$, so the complementary mean parameter for α , $E(Y) = \alpha/\lambda = \mu$, is orthogonal to α by Example 57.

In the orthogonal parametrisation $\ell_{\alpha}^* = 1 + \log(y/\mu) - y/\mu + \log \alpha - \Psi(\alpha)$ and $\ell_{\alpha\alpha}^* = 1/\alpha - \Psi'(\alpha)$. Now $\widehat{\mu}_{\alpha} = \overline{Y}$, and owing to the orthogonality $\widehat{\jmath}^{\alpha\alpha} = \widehat{\jmath}_{\alpha\alpha}^{-1} = 1/[n\{\Psi'(\alpha) - 1/\alpha\}]$, which gives $1/[n\{\Psi'(1) - 1\}]$ when $\alpha = 1$. The numerator of the score statistic is $\sum_{j=1}^{n} \{1 + \log(Y_j/\mu) - Y_j/\mu + \log \alpha - \Psi(\alpha)\}$ evaluated at $\alpha = 1$ and $\mu = \widehat{\mu}_1 = \overline{Y}$, and the upshot is that the statistic is the same as in (b).

Solution 2

The log likelihood for a sample y_1, \ldots, y_n from the $\mathcal{N}(\mu, \sigma^2)$ distribution is

$$\ell(\mu, \sigma^2) \equiv -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{j=1}^n (y_j - \mu)^2 = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \left\{ \sum_{j=1}^n (y_j - \overline{y})^2 + n(\overline{y} - \mu)^2 \right\}.$$

(a) With $\mu = \theta$ and $\sigma^2 = 1$ the formula above reduces to

$$\ell(\theta) \equiv -\frac{n}{2}(\overline{y} - \theta)^2 \equiv n\overline{y}\theta - n\theta^2/2, \quad \theta \in \mathbb{R}.$$

and $\widehat{\theta} = \overline{y}$, so

$$r(\theta) = \operatorname{sign}(\widehat{\theta} - \theta) \sqrt{2\{\ell(\widehat{\theta}) - \ell(\theta)\}} = \operatorname{sign}(\overline{y} - \theta) \sqrt{n(\overline{y} - \theta)^2} = \sqrt{n}(\overline{y} - \theta).$$

The log likelihood has second derivative -n, so $\hat{j} = n$, and therefore $t(\theta) = \hat{j}^{1/2}(\hat{\theta} - \theta) = r(\theta)$. Hence $\log\{q(\theta)/r(\theta)\} = 0$, so $r^*(\theta) = r(\theta)$, i.e., inferences based on either will be the same. This is not surprising, because $r(\theta) \sim \mathcal{N}(0,1)$ exactly.

(b) For the second model $\mu = 0$ and $\sigma^2 = 1/\theta$, giving log likelihood

$$\ell(\theta) = \frac{n}{2}\log\theta - \frac{\theta}{2}\sum_{j=1}^{n}y_j^2 = \frac{n}{2}(\log\theta - \theta\overline{s}), \quad \theta > 0,$$

say. This has second derivative $-n/(2\theta^2)$ and gives $\hat{\theta} = 1/\bar{s}$, so $\hat{\jmath} = n\bar{s}^2/2$. Hence

$$r(\theta) = \operatorname{sign}(\widehat{\theta} - \theta) \sqrt{2\{\ell(\widehat{\theta}) - \ell(\theta)\}} = \operatorname{sign}(1 - \overline{s}\theta) \sqrt{n \{\overline{s}\theta - \log(\overline{s}\theta) - 1\}},$$

because $\overline{s} > 0$, and $q(\theta) = t(\theta) = \sqrt{n/2}(1 - \overline{s}\theta)$. As \overline{s} is an average of n variables each with mean $1/\theta$ and variance $2/\theta^2$, the mean and variance of $q(\theta)$ are 0 and 1, as we would expect.

This is the same as in Example 45 but with n replaced by n/2, so the accuracy will be as high as it was there (i.e., $r^*(\theta)$ gives nearly perfect inferences, when n=2 here, or n=1 in Example 45).

Solution 3

(a) The modified likelihood root depends on $r(\psi)$ and $q(\psi)$, and we need only consider how $q(\psi)$ is affected by this change, which does not affect the information matrices. But

$$\varphi(\widehat{\theta}) - \varphi(\widehat{\theta}_{\psi}) \mapsto B\{\varphi(\widehat{\theta}) - \varphi(\widehat{\theta}_{\psi})\}, \quad \varphi_{\lambda}(\widehat{\theta}_{\psi}) \mapsto B\varphi_{\lambda}(\widehat{\theta}_{\psi}), \quad \varphi_{\theta}(\widehat{\theta}_{\psi}) \mapsto B\varphi_{\theta}(\widehat{\theta}_{\psi}),$$

so

$$\frac{\mid \varphi(\widehat{\theta}) - \varphi(\widehat{\theta}_{\psi}) \mid \varphi_{\lambda}(\widehat{\theta}_{\psi}) \mid}{\mid \varphi_{\theta}(\widehat{\theta}) \mid} \mapsto \frac{\mid B\varphi(\widehat{\theta}) - B\varphi(\widehat{\theta}_{\psi}) \mid B\varphi_{\lambda}(\widehat{\theta}_{\psi}) \mid}{\mid B\varphi_{\theta}(\widehat{\theta}) \mid} = \frac{\mid B \mid \times \mid \varphi(\widehat{\theta}) - \varphi(\widehat{\theta}_{\psi}) \mid \varphi_{\lambda}(\widehat{\theta}_{\psi}) \mid}{\mid B \mid \times \mid \varphi_{\theta}(\widehat{\theta}) \mid},$$

which leaves $q(\psi)$ unchanged, because |B| cancels from top and bottom.

(b) If h is normal, then $\log h(u) \equiv -u^2/2$, so $(\log h)'\{(y_j^{\rm o} - \eta)/\tau\} = -(y_j^{\rm o} - \eta)/\tau^2$, and in the notation of the example (recall that $e_j^{\rm o} = (y_j^{\rm o} - \widehat{\eta}^o)/\widehat{\tau}^{\rm o}$) this gives

$$\begin{split} \varphi(\theta) &= \left(\sum_{j=1}^{n} (\eta - y_{j}^{\mathrm{o}})/\tau^{2}, \sum_{j=1}^{n} (\eta - y_{j}^{\mathrm{o}})/\tau^{2} \times e_{j}^{\mathrm{o}}\right)^{\mathrm{T}} \\ &= (n\eta/\tau^{2} - a/\tau^{2}, b\eta/\tau^{2} - c/\tau^{2})^{\mathrm{T}} \\ &= \left(n - a \choose b - c\right) \left(\frac{\eta/\tau^{2}}{1/\tau^{2}}\right) \\ &= B\left(\frac{\eta/\tau^{2}}{1/\tau^{2}}\right) \end{split}$$

for $a=-\sum y_j^{\rm o},\,b=\sum e_j^{\rm o}$ and $c=-\sum y_j^{\rm o}e_j^{\rm o}$ that depend only on the data $y^{\rm o}$ and are easily computed, and B is non-singular with probability one.

In view of (a) we can therefore take $\varphi(\theta) = (\eta/\tau^2, 1/\tau^2)^T$ for computing $q(\theta)$. This invariance can also greatly simplify computations in other examples.

Solution 4 The log likelihood in the non-orthogonal parametrization is

$$\ell^*(\psi,\gamma) = \log \gamma - \gamma y_1 + \log(\gamma \psi) - \gamma \psi y_2 = 2\log \gamma + \log \psi - \gamma (y_1 + \psi y_2), \quad \gamma, \psi > 0.$$

so its observed and Fisher information matrices have elements $-\ell_{\gamma\gamma}^* = 2/\gamma^2$, $-\ell_{\gamma\psi}^* = y_2$ and $-\ell_{\psi\psi}^* = 1/\psi^2$, and $i_{\gamma\gamma}^* = 2/\gamma^2$, $i_{\gamma\psi}^* = 1/(\gamma\psi)$ and $i_{\psi\psi}^* = 1/\psi^2$. Hence the partial differential equation giving the orthogonal parametrization is

$$\frac{\partial \gamma}{\partial \psi} = -i_{\gamma \gamma}^{*-1}(\psi, \gamma) i_{\gamma \psi}^*(\psi, \gamma) = -\frac{\gamma^2}{2} \frac{1}{\gamma \psi} = -\frac{\gamma}{2 \psi}, \quad \gamma, \psi > 0,$$

as required.

To check that $\lambda = \gamma \psi^{1/2}$ is orthogonal to ψ , we write $\gamma = \lambda \psi^{-1/2}$ so the log likelihood becomes

$$\ell(\psi, \lambda) = 2\log \lambda - \lambda \psi^{-1/2} (y_1 + \psi y_2),$$

and note that $\ell_{\lambda\psi} = (y_1 - \psi y_2)/(2\psi^{3/2})$ has expectation $\{\gamma^{-1} - \psi/(\gamma\psi)\}/(2\psi^{3/2}) = 0$. Hence λ is orthogonal to ψ , as required.

The question only asks you to check that the given solution provides an orthogonal transformation, so the material below is included only to show how the PDE

$$2\psi \frac{\partial \gamma}{\partial \psi} = -\gamma$$

would be solved if the solution had not been given in the question. Now (e.g., Theorem 2, page 50 of Sneddon, Elements of Partial Differential Equations, 1957),

"The general solution of the linear partial differential equation

$$P\frac{\partial z}{\partial x} + Q\frac{\partial z}{\partial y} = R$$

is F(u,v) = 0, where F is an arbitrary function and $u(x,y,z) = c_1$ and $v(x,y,z) = c_2$ form a solution of the equations

$$\frac{\mathrm{d}x}{P} = \frac{\mathrm{d}y}{Q} = \frac{\mathrm{d}z}{R}$$
."

In the present setting $z = \gamma$, $x = \psi$, $P = 2\psi$, Q = 0 and $R = -\gamma$, so we need to solve

$$\frac{\mathrm{d}\psi}{2\psi} + \frac{\mathrm{d}\gamma}{\gamma} = 0 \quad \implies \quad \tfrac{1}{2}\log\psi + \log\gamma = c \quad \implies \quad \gamma\psi^{1/2} = c,$$

and thus according to the theorem, the general solution is any function of $\gamma \psi^{1/2}$, such as $\lambda(\psi, \gamma) = \gamma \psi^{1/2}$.