Problem 1 If $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{Poiss}(\lambda)$, justify why $S = \sum_{j=1}^n Y_j$ is a complete minimal sufficient statistic for λ , and state its distribution.

- (a) What is the conditional distribution of Y_1, \ldots, Y_n given that S = s?
- (b) One strategy to find an optimal unbiased estimator of some function $\psi(\lambda)$ is to find any unbiased estimator T of $\psi(\lambda)$, and then to compute $h(S) = \mathrm{E}(T \mid S)$. Another strategy is to find the function h(s) that satisfies $\mathrm{E}\{h(S)\} = \psi(\lambda)$ for all λ . Will these give the same estimator?
- (c) Find minimum variance unbiased estimators of (i) $e^{-\lambda}$ and (ii) $e^{-2n\lambda}$. Do you think these are reasonable? If not, suggest better estimators.

Problem 2 Let $M = \max(Y_1, \dots, Y_n)$ and \overline{Y} be the maximum and average of $Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} U(0, \theta)$. Recall from the lectures that M is a complete minimal sufficient statistic.

- (a) Show that $U = 2\overline{Y}$ is unbiased for θ and compute its variance.
- (b) Use the Rao-Blackwell theorem to get a better unbiased estimator. Compute its variance. Discuss.

Problem 3 Observations ..., $Y_1, ..., Y_n, ...$ arise in time order.

(a) Starting from

$$f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n) = f_{Y_n|Y_1,\ldots,Y_{n-1}}(y_n \mid y_1,\ldots,y_{n-1}) f_{Y_1,\ldots,Y_{n-1}}(y_1,\ldots,y_{n-1}),$$

establish the prediction decomposition

$$f_{Y_1,\dots,Y_n}(y_1,\dots,y_n) = f_{Y_1}(y_1) \prod_{j=2}^n f_{Y_j|Y_1,\dots,Y_{j-1}}(y_j \mid y_1,\dots,y_{j-1}).$$

(b) A stationary first-order Gaussian autoregressive process satisfies

$$Y_j \mid Y_1 = y_1, \dots, Y_{j-1} = y_{j-1} \sim \mathcal{N}\{\mu + \alpha(y_{j-1} - \mu), \sigma^2\}, \quad j = 1, \dots, n,$$

where $|\alpha| < 1$, $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Find the log likelihood for data y_0, y_1, \dots, y_n from this model if the initial value y_0 is treated (i) as a known constant and (ii) as coming from the stationary distribution, $\mathcal{N}\{\mu, \sigma^2/(1-\alpha^2)\}$.

(c) Give a minimal sufficient statistic in (b). Is the model an exponential family?

Problem 4 Consider discrete data Y with density $f(y;\theta)$ defined for $y \in \mathcal{Y}$ and let T = t(Y) be a statistic based on Y. Define the sets $\mathcal{T} = \{t(y) : y \in \mathcal{Y}\}$ and $\mathcal{C}_s = \{y \in \mathcal{Y} : t(y) = s\}$ for $s \in \mathcal{T}$.

- (a) Show that the phrase ' $y \sim y'$ if and only if $y, y' \in \mathcal{C}_s$ ' defines an equivalence relation, and that the same equivalence relation is given by taking any bijective function of t(y). Deduce that the equivalence classes form a partition \mathcal{P}_T of \mathcal{Y} .
- (b) If T is sufficient, show that the conditional distribution of Y given that $Y \in \mathcal{C}_s$ does not depend on θ ; then \mathcal{P}_T is called a *sufficient partition*.
- (c) If Y consists of n independent Poisson variables with mean θ , show that $T = (Y_1, Y_2 + \cdots + Y_n)$ is sufficient and give \mathcal{Y} , \mathcal{T} and the \mathcal{C}_s . Find a coarser sufficient partition, and check if it is minimal.