Problem 1 Let X_1 and X_2 be independent with distribution $P(X = \theta - 1) = P(X = \theta + 1) = 1/2$.

- (a) Show that the set \mathcal{C} that equals $\{(X_1 + X_2)/2\}$ when $X_1 \neq X_2$ and equals $\{X_1 1\}$ when $X_1 = X_2$ contains θ with probability 3/4. Is \mathcal{C} a sensible 75% confidence set?
- (b) Sketch the sample space in this example and discuss possible reference sets. How would you construct 100% confidence sets for θ ?

Problem 2

- (a) Compute the likelihood quantities for the exponential model $\phi \exp(-\phi y)$, for y > 0, expressed in terms of $\phi > 0$ and the mean $\theta = 1/\phi$, and verify that they transform as described on slide 63.
- (b) A log-normal random variable is defined as $Y = e^X$, where $X \sim \mathcal{N}(\mu, \sigma^2)$. Given that X has moment-generating function $M_X(t) = \exp(t\mu + t^2\sigma^2/2)$, show that

$$E(Y) = \exp(\mu + \sigma^2/2) = \psi, \quad \text{var}(Y) = \exp(2\mu + \sigma^2)(e^{\sigma^2} - 1) = \psi^2 \lambda,$$

say and express μ and σ^2 in terms of ψ and λ . Find the maximum likelihood estimates of ψ and λ based on a log-normal random sample Y_1, \ldots, Y_n .

Problem 3 When independent positive continuous observations Y_1, \ldots, Y_n with density function f(y), survival function $\mathcal{F}(y) = \mathrm{P}(Y > y)$ and hazard function $h(y) = f(y)/\mathcal{F}(y)$ are right-censored at a constant c, the observed quantities are $(T_i, D_i) = (\min(Y_i, c), I(Y_i < c))$. This is Type I censoring.

- (a) An old name for h(t) is the force of mortality. Explain why, and show that the likelihood contribution based on (t, d) can be written in the form $h(t)^d \mathcal{F}(t)$.
- (b) When $Y_j \stackrel{\text{iid}}{\sim} \exp(\lambda)$, find the hazard and survival functions and hence show that the log likelihood can be written as $\sum_{j=1}^{n} (d_j \log \lambda \lambda t_j)$. Find the maximum likelihood estimate of λ , and show that the expected information is $n(1 e^{-\lambda c})/\lambda^2 = i(\lambda, c)$, say. Does this formula make sense?
- (c) Show that if the censoring time c is a realization of a random variable C with gamma density $f(c) = (\lambda \alpha)^{\nu} c^{\nu-1} \exp(-c\lambda \alpha)/\Gamma(\nu)$, for c > 0 and $\alpha, \nu > 0$, then the expected information for λ after averaging over C is $i(\lambda) = n\{1 (1 + 1/\alpha)^{-\nu}\}/\lambda^2$. Discuss the behaviour of $i(\lambda)$ when (i) $\alpha \to 0$, (ii) $\alpha \to \infty$, (iii) $\alpha = 1$, $\nu = 1$, (iv) $\alpha, \nu \to \infty$ with fixed $\mu = \nu/\alpha$.

Hint: $E(C) = \nu/(\lambda \alpha)$ and $var(C) = E(C)^2/\nu$.

Problem 4 In current status data all that is known about individuals is their status at a single time. For example, at time zero n skiers are struck by an avalanche, and when rescuers locate skier j at a later time c_j they find that s/he is either alive (1) or dead (0).

- (a) Show that the resulting likelihood can be written as $\prod_{j=1}^n F(c_j)^{1-d_j} \{1 F(c_j)\}^{d_j}$. On what assumptions does this depend?
- (b) If $F(x) = 1 \exp(-\lambda x)$, for $\lambda > 0$ and x > 0, and all the c_j are equal, then find the maximum likelihood estimator of λ and the corresponding Fisher information.
- (c) Find the asymptotic relative efficiency of the estimator in (b) relative to the maximum likelihood estimator when the observation is $(Y, D) = (\min(T, c), I(T > c))$, and $T \sim \exp(\lambda)$, i.e., the failure time is observed exactly up to time c, but is right-censored at c, and D is the indicator of survival beyond c.