Problem 1 A location-scale model is of the form $y = \eta + \tau \varepsilon$, where ε has a known distribution, with location and scale parameters $\eta \in \mathbb{R}$ and $\tau > 0$. Location and scale estimators based on a random sample $y = (y_1, \ldots, y_n)$ are said to be *equivariant* if they satisfy

$$m(a + by) = m(a + by_1, ..., a + by_n) = a + bm(y_1, ..., y_n) = a + bm(y),$$

 $s(a + by) = s(a + by_1, ..., a + by_n) = bs(y_1, ..., y_n) = bs(y), a \in \mathbb{R}, b > 0.$

- (a) Show that $q_1(y,\eta) = \{m(y) \eta\}/s(y)$ and $q_2(y,\tau) = s(y)/\tau$ are pivots, and explain how to use them to construct confidence intervals for η and τ .
- (b) Deduce that pivots can be formed by taking (i) $m_1(y) = \overline{y}$, $s_1(y) = \left\{\sum_j (y_j \overline{y})^2\right\}^{1/2}$ and (ii) $m_2(y) = \text{median}(y)$, $s_2(y) = \text{IQR}(y)$, whatever the distribution of ε . Discuss the corresponding confidence intervals.
- (c) How would you construct a prediction interval for a new observation in this model?

Problem 2

(a) An experiment consists of observing the number of success y_1 in a fixed number n_1 of independent Bernoulli trials with unknown success probability $\theta \in (0,1)$. Show that the corresponding density is

$$f(y_1 \mid \theta) = \binom{n_1}{y_1} \theta^{y_1} (1 - \theta)^{n_1 - y_1}, \quad y_1 \in \mathcal{S}_1 = \{0, 1, \dots, n_1\}.$$

If prior information on θ can be summarised by the beta density

$$f(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}, \quad 0 < \theta < 1, \quad a, b > 0,$$

show that the posterior density for θ given y_1 is

$$f(\theta \mid y_1) = \frac{\Gamma(n_1 + a + b)}{\Gamma(y_1 + a)\Gamma(n_1 - y_1 + b)} \theta^{y_1 + a - 1} (1 - \theta)^{n_1 - y_1 + b - 1}, \quad 0 < \theta < 1.$$

(b) Another experiment conducts independent Bernoulli trials until there are y_2 successes, at which point there have been n_2 trials. Show that the corresponding density is

$$f(n_2 \mid \theta) = \binom{n_2 - 1}{y_2 - 1} \theta^{y_2} (1 - \theta)^{n_2 - y_2}, \quad n_2 \in \mathcal{S}_2 = \{y_2, y_2 + 1, \ldots\}.$$

Without doing any calculations, write down the posterior density for θ based on the prior in (a).

- (c) Show that if $y_1 = y_2$ and $n_1 = n_2$, then Bayesian inferences based on either of the two experiments will be identical, i.e., they do not take into account the different reference sets S_1 and S_2 .
- (d) Consider testing the hypothesis that $\theta = \frac{1}{2}$ against the alternative that $\theta < \frac{1}{2}$. Explain why the respective significance levels for the experiments in (a) and (b) would be

$$\sum_{y=0}^{y_1} \binom{n_1}{y} 2^{-n_1}, \qquad \sum_{n=n_2}^{\infty} \binom{n-1}{y_2-1} 2^{-n},$$

and evaluate these when $n_1 = n_2 = 12$, $y_1 = y_2 = 3$. How does this compare with (c)?

Hint: Recall that for $\alpha > 0$ the gamma function is defined as $\Gamma(\alpha) = \int_0^\infty u^{\alpha-1} e^{-u} du$, and that $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$, $\Gamma(n+1) = n!$ for $n \in \{1, 2, ...\}$, and $\Gamma(1/2) = \sqrt{\pi}$.

Problem 3 Consider the shoe data example.

- (a) Show that the average \overline{D} has mean θ and variance $\sigma^2 = m^{-2} \sum_{j=1}^m c_j^2$.
- (b) Show that S^2 has mean σ^2 and hence can be used to estimate σ^2 .
- (c) Extend this discussion to a balanced design in which m is even, $I_j = \pm 1$ and $\sum_{j=1}^m I_j = 0$ but the allocation is otherwise completely at random. This ensures that materials A and B appear equally often on the left and right shoes.