Problem 1 Let $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, let $\overline{Y} = n^{-1} \sum_{j=1}^n Y_j$ and $S^2 = (n-1)^{-1} \sum_{j=1}^n (Y_j - \overline{Y})^2$. First check that $(n-1)S^2 = \sum_{j=1}^n Y_j^2 - n\overline{Y}^2$.

- (a) Show that $\operatorname{var}(\overline{Y}) = \sigma^2/n$, and by writing $\sum_{j=1}^n (Y_j \overline{Y})^2 = \sum_{j=1}^n \{Y_j \mu (\overline{Y} \mu)\}^2$ and expanding, show that $\operatorname{E}(S^2) = \sigma^2$.
- (b) Show that an alternative form for S^2 is $\{2n(n-1)\}^{-1}\sum_{i,k=1}^n(Y_i-Y_k)^2$.

Problem 2

- (a) If the estimators T_1, \ldots, T_n are uncorrelated with common mean θ and known variances v_1, \ldots, v_n , find the unbiased estimator $\widehat{\theta} = \sum_j a_j T_j$ that has minimum variance.
- (b) Show that if the T_j are normally distributed then $\widehat{\theta}$ is the maximum likelihood estimator, and discuss how it should be modified if $\operatorname{var}(T_i) = \sigma^2 v_j$ for each j, with σ^2 unknown.
- (c) How should the estimator of σ^2 in (b) be modified if it is believed that $\sigma^2 \geq 1$?

Problem 3

Eggs are thought to be infected with a bacterium salmonella enteriditis, so that the number of organisms, Y, in each egg has a Poisson distribution with mean μ . The value of Y cannot be observed directly, but after a period it becomes certain whether the egg is infected (Y > 0) or not (Y = 0). Out of m such eggs, r are found to be infected. Find the maximum likelihood estimator $\hat{\mu}$ of μ and its asymptotic variance. Is the exact variance of $\hat{\mu}$ defined?

Problem 4 The score-matching estimator of a parameter θ corresponds to the population expression

$$\theta_g = \operatorname{argmin}_{\theta'} \operatorname{E} \left[\left\{ \nabla_y \log f(Y; \theta') - \nabla_y \log g(Y) \right\}^2 w(Y) \right],$$

where w(y) is a positive weight function, ∇_y denotes $d \cdot / dy$ and $Y \sim g$.

- (a) Show that if $g(y) = f(y; \theta)$ and the density f is identifiable, i.e., no two parameter values give the same density, then the minimum is achieved when the expression above equals zero, and then $\theta_g = \theta$.
- (b) If $w(y) \equiv 1$, then find the parameters that minimise

$$\mathrm{E}\left[\left\{\nabla_{y}\log f(Y;\theta)\right\}^{2}+2\nabla_{y}^{2}\log f(Y;\theta)\right],$$

when (i) f is the $\mathcal{N}(\eta, \tau^2)$ density and and $Y \sim \mathcal{N}(\mu, \sigma^2)$, (ii) f is the $\exp(\lambda')$ density and $Y \sim \exp(\lambda)$. In the case of (i) also find the empirical estimators. Discuss.

(c) Show that if w(y) is chosen so that $w(y)g(y)\nabla_y\log f(y;\theta)=0$ at the limits of integration for y, then score-matching amounts to minimising

$$E\left[w(Y)\left\{\nabla_y \log f(Y;\theta)\right\}^2 + 2w(Y)\nabla_y^2 \log f(Y;\theta) + 2\nabla_y w(Y)\nabla_y \log f(Y;\theta)\right]$$
(1)

and give the empirical version of this expression. Does setting w(y) = y fix the problem in (b)(ii)?