Problem 1 A random sample $y_1, \ldots, y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with average \overline{y} is to be used to test the null hypothesis $H_0: \mu = \mu_0$ against the alternative $\mu = \mu_1$; below σ^2 is known and $z_p = \Phi^{-1}(p)$.

(a) Show that if $\mu_1 > \mu_0$ then the most powerful critical region of size α is

$$\mathcal{Y}_{\alpha}^{+} = \left\{ y \in \mathbb{R}^{n} : \overline{y} \ge \mu_{0} + \sigma n^{-1/2} z_{1-\alpha} \right\},\,$$

and find the corresponding most powerful critical region \mathcal{Y}_{α}^{-} when $\mu_{1} < \mu_{0}$.

- (b) Are \mathcal{Y}_{α}^{+} and \mathcal{Y}_{α}^{-} uniformly most powerful against their respective alternatives? Explain.
- (c) Now consider the two-sided alternative $H: \mu_1 \neq \mu_0$. Compute the size of the critical region

$$\mathcal{Y}_{\beta} = \left\{ y \in \mathbb{R}^n : n^{1/2} | \overline{y} - \mu_0 | / \sigma \ge z_{1-\beta} \right\}$$

and hence give a two-sided critical region of size α . Is this uniformly most powerful against H?

Problem 2 Consider the order statistics $0 < Y_{(1)} < \cdots < Y_{(n)}$ of a random sample $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \exp(\lambda)$.

(a) Show that $\min(Y_1, \dots, Y_r) \sim \exp(r\lambda)$, and that each Y_i has the lack-of-memory property

$$P(Y - x > y \mid Y > x) = P(Y > y), \quad x, y > 0.$$

(b) Show that $Y_j \stackrel{\mathrm{D}}{=} E_j/\lambda$ with $E_1, \ldots, E_n \stackrel{\mathrm{iid}}{\sim} \exp(1)$, and hence obtain the Renyi representation

$$Y_{(r)} \stackrel{\text{D}}{=} \frac{1}{\lambda} \sum_{j=1}^{r} \frac{E_j}{n+1-j}, \quad r = 1, \dots, n.$$

(c) Find the means and covariances of $Y_{(1)}, \ldots, Y_{(n)}$.

Problem 3 Below we consider different ways to combine evidence from independent P-values P_1, \ldots, P_n from testing the same null hypothesis.

- (a) Find the distributions of $-\log P_j$ and hence of $S_F = -\sum_j \log P_j$ (Fisher's statistic) and $S_P = -\sum_j \log(1-P_j)$ (Pearson's statistic). Give the size α critical regions for tests based on S_F and S_P .
- (b) Give the size α critical region for a test based on $S_T = \min_j P_j$ (Tippett's statistic).
- (c) Suppose that the alternative is such that $P(P \le x) = x^{1/\gamma}$ for $x \in (0,1)$ and some $\gamma > 1$. Which of S_F , S_P and S_T is preferable, and why?
- (d) If P has density $x^{a-1}(1-x)^{b-1}/B(a,b)$, where $0 < x < 1, 0 < a < 1, b \ge 1$ and $a \ne b$, show that the uniformly most powerful test involves $wS_F + (1-w)S_P$, where w = (1-a)/(b-a).
- (e) What would you do if it is believed that the null hypothesis holds in a proportion 1-q of the tests and the alternative in (c) holds in the remaining ones, with both q and γ unknown?