Statistical Inference: Examination

30 January 2024

Instructions: The time allotted for the examination is 180 minutes. You may answer in either
English or French. No written material may be brought into the examination, but a simple
calculator may be used if necessary. Full marks may be obtained with complete answers to
four questions. The final mark will be based on the best four solutions.
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Exercise Points Indicative marks
1 /10 points
2 /10 points
3 /10 points
4 /10 points
5 /10 points
Total: /40 points




Some formulae

Definition 1 The moment-generating and cumulant-generating functions of a real-valued ran-
dom variable X are

Mx(t) =B (), Kx(t) =log Mx(t), teT,
where T ={t € R: Mx(t) < oo}.

Definition 2 A Bernoulli random variable with parameter p € (0,1) has probability mass
function
flasp) =p*(1—p)'~", we{0,1}.

Definition 3 A geometric random wvariable with parameter p € (0,1) has probability mass
function
flasp) = (1 =p)"'p, ze{l,2,...}.

Definition 4 A Poisson variable with parameter A > 0 has probability mass function
fz; ) = e €€ {0,1,...}.

Definition 5 A normal (or Gaussian) random variable X ~ N(u,0?) has probability density
function

1 —
f(l‘;u,UQ):—qb(x M), z€R, peR0®>0,
(o2 ag

where ¢(u) = (27)"2e~%*/2 for u € R, and we also define ®(x) = JZ o #(u) du.

Definition 6 A gamma random wvariable with shape parameter o > 0 and rate parameter
B >0, X ~ Gammal(a, ), has probability density function
50‘ xa—le—ﬁx,
flzia,8) = { T'(e)
0, z <0,

x>0,

where T'(a+ 1) = al'(«), T'(a) = (a — 1)! when « is a positive integer, and T'(1/2) = /=.

Definition 7 An exponential random variable X with rate parameter B, X ~ exp(B), has the
gamma distribution with o = 1.

Definition 8 A chi-squared random variable V with v degrees of freedom, V ~ X2, has the

gamma distribution with o = v/2 and = 1/2, and can be expressed as V D Z2 4.4 72,
where Z1, ..., 2, 9 N(0,1).



Solution 1
(a) [3, seen] Slides 28, 79, 80

(b) [3, unseen] We are told that the X; are independent and identically distributed, so
E(X;) = p and var(X;) = p(1 — p), and

E(T) = %E{ng_l(l — ng)} = E(XQj_l)E(l - X2j) - p(l - p),
and as ij = Xj and (1 — Xj)2 =1-Xj,
var(T) = n~'var{Xy_1(1 — Xs;)}
= n! {E {ng,l(l -~ X2j)2} — B{Xg (1 - ng)}Q]
= nt {E {Xoj-1(1 — Xg;5)} — E{Xg;1(1 - X2j)}2] )

and this equals p(1 — p){1 — p(1 —p)}/n.

Alternatively we could note that I; = Xo;_1(1 — Xy;) = I(Xgj—1 = 1,Xo; = 0) are
independent indicator variables with success probability p(1 — p), giving the same result.

(c) [2, unseen] We have

E(X)=p, var(X)=E(X") - E(X)?=p(l-p)/(2n),

E{X(1-X)} =E(X) - B(X") =p— {p(1 - p)/(2n) + p*} = (2n — \)p(1 - p)/(2n),
so S =2nX(1—X)/(2n — 1) is unbiased for 6.

(d) [2, unseen] X is minimal sufficient for p, and therefore for 6, and it is complete because the
Bernoulli model is an exponential family. Therefore S is the unique minimum variance
unbiased estimator of 8, using the Rao—Blackwell theorem, so it has the smallest possible
variance among 71" and any other unbiased estimators.

Solution 2

(a) [4, unseen] The likelihood is defined for 5,7 > 0 and ¢ > 0, and is

B 1

L, B,7) = fyr; 0, B,7) f (o3 B) f (y3;7) = yl!w!yg!(6+7¢)y16_(5+w) (Bu)2e P (yt)¥e ",

which reduces to
m(y) exp {y1p1 + Y22 + yzps — k(p)}

with canonical statistic s(y) = (y1,¥2,y3) and canonical parameter ¢ = (p1, 2, p3),
where

o1 =log(B+vY), w2 =logB, ¢3=Ilogy, k(p)=e""+ue? +te?,

and m(y) absorbs the multiplicative constants.



(b) [4, seen/unseen] With v = o we have an exponential family of the form above with

oy =log(1+arp), ¢h=1loghB, ¢h=loge, yi=uy1, Yo=u1+y2+ys, Ys3=2us,

say, so the distribution of (y1,y2,ys3) conditional on w = y; + y2 + y3 does not depend on
log B (or equivalently on 3). Now w has a Poisson distribution with mean (14 aty+u+ta)
(i.e., the sum of the means of y1,ys2,y3), so the conditional density is

(1 +y2+y3)! (14 ) u¥2(ta)¥s
y1lyalys! (1 + anh + u + ta)yrtvetys’

corresponding to observing a trinomial variable (y1,y2,y3) with probabilities

1+ ) U ta
= o — Ty = .
l+ap+utta’ 2 1+aptutta > 1+ap+u+tta

m
The transformation is interest-respecting, because 1 is unchanged.
(c) [2, unseen] Noj; it is a (3K,2K + 1) curved exponential family.
Solution 3
(a) [3, seen] Slides 91-98, 107-108
(b) [3, seen] Slides 109-110

(¢) [4, unseen| The density function is

a—1

oy o
Flysa,d) = —g—exp{=(y/A)"}, y>0,
so the log likelihood based on a random sample 1, ..., ¥y, is

Lo, A) =nloga+ (o — 1)Zlogyj —nalog A — )\*O‘Zyjo-‘,

= =1
which thus gives S(a) = }°7_; yj'. Differentiation with respect to A gives
ol(a, ) no 0*l(a,\)  na

o —a—1
E Y + al S(N),

VSV ala +1DAT2S(N),

0 Aq = {n"1S(A)}/ is the root of the first equation, and inserting this into the second
derivative gives

7;_0[ — oo+ DA 28(N) = —na?/A2 < 0,

«

S0 Aq is the MLE of X for fixed . Substitution of this into £(a, \) gives the stated
expression after a little algebra; call this ¢, ().

To verify if @ = 1, we would find the MLE @ and then compare W),(1) = 2{¢, (&) —¢,(1)}
with the x? distribution. The results in (b) imply that large values of W,(1) relative to
the x? distribution would be suggestive that « # 1.

Solution 4
(a) [4, seen] Slides 124-130

(b) [3, seen] Slides 181-182



(c) [3, seen] If S is minimal sufficient for @, then the marginal density of Y is

$w) = [ 10O d0= [ 1195 (s|0)m(6)a0 = f(y | B {£(s | 6)}
Hence the ratio of marginal densities for y under two different priors is

Ny) _ flyls)E{f(s][0)}  Ei{f(s][0)}
foly)  flyls)E{f(s|0)} Eo{f(s[0)}

as required.

The comparison is of different prior densities for 6, so the conditional density of Y given
S, which does not depend on 0, is irrelevant. So this is not surprising.

Solution 5

(a) [2, unseen] If we assume that the times to death have common distribution F, then
the probability of death by time ¢ is F(c), and the probability of being alive is thus
1 — F(c). Hence if d is the indicator that the individual is alive, the corresponding
likelihood contribution, F(c)!=%{1 — F(c)}¢, yields the given likelihood if the outcomes
are independent.

(b) [3, unseen] Writing p(\) = exp(—Ac) and with s = 37, d; survivors, the log likelihood
can be written as

L(A) = (n—s)log{l —p(\)} +slogp(\), >0,

so p(A\) = s/n, which yields A = ¢~ 'log(n/s). For the Fisher information we note that
S ~ B{n,p(A\)}, and then after a little work obtain

B BONY g0y yon)ach
o2 [ oX) Op2  ON2op | 1—p())’

because Ip(\)/OA = —cp(N), E(9¢/0p) = 0 and E(S) = np(N).

(¢) [2, unseen] If an individual failure time is observed exactly up to ¢ and and right-censored,
then the likelihood contribution will be f(y) if y < ¢, i.e., D =0, and will be 1 — F(¢) if
y > ¢, i.e., D = 1. The likelihood contribution is then f(y)!~4{1— F(c)}?, and the given
formula is the product of these terms over the n independent individuals.
(d) [3, unseen] In this case the likelihood contribution for an individual is (Ae ™)1 =4 (e=A¢)d
so with s =}, d; the overall log likelihood is

)

Z(l —dj)(log A — Ay;) — Aes, A > 0.
j=1

This has second derivative —(n — s)/A2, leading to Fisher information {n — E(S)}/A? =
n{l — p(\)}/\? so the asymptotic relative efficiency of using current status data is

ne’p(\) | n{l-p(N)} _ N¢p(N) _ p(W){logp(N)}?
1—p(A) A2 {1 =p(N)}? {1-p(N)}*

END OF THE EXAM PAPER




