
Statistical Inference: Examination

30 January 2024

Instructions: The time allotted for the examination is 180 minutes. You may answer in either
English or French. No written material may be brought into the examination, but a simple
calculator may be used if necessary. Full marks may be obtained with complete answers to
four questions. The final mark will be based on the best four solutions.
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1 /10 points
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Some formulae

Definition 1 The moment-generating and cumulant-generating functions of a real-valued ran-
dom variable X are

MX(t) = E
(
etX

)
, KX(t) = logMX(t), t ∈ T ,

where T = {t ∈ R : MX(t) < ∞}.

Definition 2 A Bernoulli random variable with parameter p ∈ (0, 1) has probability mass
function

f(x; p) = px(1 − p)1−x, x ∈ {0, 1}.

Definition 3 A geometric random variable with parameter p ∈ (0, 1) has probability mass
function

f(x; p) = (1 − p)x−1p, x ∈ {1, 2, . . .}.

Definition 4 A Poisson variable with parameter λ > 0 has probability mass function

f(x;λ) =
λx

x!
e−λ, x ∈ {0, 1, . . .}.

Definition 5 A normal (or Gaussian) random variable X ∼ N (µ, σ2) has probability density
function

f(x;µ, σ2) =
1

σ
φ

(
x− µ

σ

)
, x ∈ R, µ ∈ R, σ2 > 0,

where φ(u) = (2π)−1/2e−u2/2 for u ∈ R, and we also define Φ(x) =
∫ x

−∞
φ(u) du.

Definition 6 A gamma random variable with shape parameter α > 0 and rate parameter
β > 0, X ∼ Gamma(α, β), has probability density function

f(x;α, β) =





βα

Γ(α)
xα−1e−βx, x ≥ 0,

0, x < 0,

where Γ(α+ 1) = αΓ(α), Γ(α) = (α− 1)! when α is a positive integer, and Γ(1/2) =
√
π.

Definition 7 An exponential random variable X with rate parameter β, X ∼ exp(β), has the
gamma distribution with α = 1.

Definition 8 A chi-squared random variable V with ν degrees of freedom, V ∼ χ2
ν, has the

gamma distribution with α = ν/2 and β = 1/2, and can be expressed as V
D
= Z2

1 + · · · + Z2
ν ,

where Z1, . . . , Zν
iid∼ N (0, 1).
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Solution 1

(a) [3, seen] Slides 28, 79, 80

(b) [3, unseen] We are told that the Xj are independent and identically distributed, so
E(Xj) = p and var(Xj) = p(1 − p), and

E(T ) =
n

n
E{X2j−1(1 −X2j)} = E(X2j−1)E(1 −X2j) = p(1 − p),

and as X2
j = Xj and (1 −Xj)

2 = 1 −Xj ,

var(T ) = n−1var{X2j−1(1 −X2j)}
= n−1

[
E

{
X2

2j−1(1 −X2j)
2
}

− E{X2j−1(1 −X2j)}2
]

= n−1
[
E {X2j−1(1 −X2j)} − E{X2j−1(1 −X2j)}2

]
,

and this equals p(1 − p){1 − p(1 − p)}/n.

Alternatively we could note that Ij = X2j−1(1 − X2j) = I(X2j−1 = 1,X2j = 0) are
independent indicator variables with success probability p(1 − p), giving the same result.

(c) [2, unseen] We have

E(X) = p, var(X) = E(X
2
) − E(X)2 = p(1 − p)/(2n),

so

E
{
X(1 −X)

}
= E(X) − E(X

2
) = p−

{
p(1 − p)/(2n) + p2

}
= (2n − 1)p(1 − p)/(2n),

so S = 2nX(1 −X)/(2n − 1) is unbiased for θ.

(d) [2, unseen]X is minimal sufficient for p, and therefore for θ, and it is complete because the
Bernoulli model is an exponential family. Therefore S is the unique minimum variance
unbiased estimator of θ, using the Rao–Blackwell theorem, so it has the smallest possible
variance among T and any other unbiased estimators.

Solution 2

(a) [4, unseen] The likelihood is defined for β, γ > 0 and ψ ≥ 0, and is

L(ψ, β, γ) = f(y1;ψ, β, γ)f(y2;β)f(y3; γ) =
1

y1!y2!y3!
(β+γψ)y1e−(β+γψ)(βu)y2e−βu(γt)y3e−γt,

which reduces to
m(y) exp {y1ϕ1 + y2ϕ2 + y3ϕ3 − k(ϕ)}

with canonical statistic s(y) = (y1, y2, y3) and canonical parameter ϕ = (ϕ1, ϕ2, ϕ3),
where

ϕ1 = log(β + γψ), ϕ2 = log β, ϕ3 = log γ, k(ϕ) = eϕ1 + ueϕ2 + teϕ3 ,

and m(y) absorbs the multiplicative constants.
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(b) [4, seen/unseen] With γ = αβ we have an exponential family of the form above with

ϕ′

1 = log(1 + αψ), ϕ′

2 = log β, ϕ′

3 = log α, y′

1 = y1, y′

2 = y1 + y2 + y3, y′

3 = y3,

say, so the distribution of (y1, y2, y3) conditional on w = y1 + y2 + y3 does not depend on
log β (or equivalently on β). Now w has a Poisson distribution with mean β(1+αψ+u+tα)
(i.e., the sum of the means of y1, y2, y3), so the conditional density is

(y1 + y2 + y3)!

y1!y2!y3!

(1 + αψ)y1uy2(tα)y3

(1 + αψ + u+ tα)y1+y2+y3

,

corresponding to observing a trinomial variable (y1, y2, y3) with probabilities

π1 =
1 + αψ

1 + αψ + u+ tα
, π2 =

u

1 + αψ + u+ tα
, π3 =

tα

1 + αψ + u+ tα
.

The transformation is interest-respecting, because ψ is unchanged.

(c) [2, unseen] No; it is a (3K, 2K + 1) curved exponential family.

Solution 3

(a) [3, seen] Slides 91–98, 107–108

(b) [3, seen] Slides 109–110

(c) [4, unseen] The density function is

f(y;α, λ) =
αyα−1

λα
exp {−(y/λ)α} , y > 0,

so the log likelihood based on a random sample y1, . . . , yn is

ℓ(α, λ) = n logα+ (α− 1)
n∑

j=1

log yj − nα log λ− λ−α
n∑

j=1

yαj ,

which thus gives S(α) =
∑n
j=1 y

α
j . Differentiation with respect to λ gives

∂ℓ(α, λ)

∂λ
= −nα

λ
+ αλ−α−1S(λ),

∂2ℓ(α, λ)

∂λ2
=
nα

λ2
− α(α+ 1)λ−α−2S(λ),

so λ̂α = {n−1S(λ)}1/α is the root of the first equation, and inserting this into the second
derivative gives

nα

λ̂α
− α(α + 1)λ̂−α−2

α S(λ) = −nα2/λ̂2
α < 0,

so λ̂α is the MLE of λ for fixed α. Substitution of this into ℓ(α, λ) gives the stated
expression after a little algebra; call this ℓp(α).

To verify if α = 1, we would find the MLE α̂ and then compare Wp(1) = 2{ℓp(α̂)−ℓp(1)}
with the χ2

1 distribution. The results in (b) imply that large values of Wp(1) relative to
the χ2

1 distribution would be suggestive that α 6= 1.

Solution 4

(a) [4, seen] Slides 124–130

(b) [3, seen] Slides 181–182
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(c) [3, seen] If S is minimal sufficient for θ, then the marginal density of Y is

f(y) =

∫
f(y | θ)π(θ) dθ =

∫
f(y | s)f(s | θ)π(θ) dθ = f(y | s)Eθ {f(s | θ)} .

Hence the ratio of marginal densities for y under two different priors is

f1(y)

f0(y)
=
f(y | s)E1 {f(s | θ)}
f(y | s)E0 {f(s | θ)} =

E1 {f(s | θ)}
E0 {f(s | θ)} ,

as required.

The comparison is of different prior densities for θ, so the conditional density of Y given
S, which does not depend on θ, is irrelevant. So this is not surprising.

Solution 5

(a) [2, unseen] If we assume that the times to death have common distribution F , then
the probability of death by time c is F (c), and the probability of being alive is thus
1 − F (c). Hence if d is the indicator that the individual is alive, the corresponding
likelihood contribution, F (c)1−d{1 − F (c)}d, yields the given likelihood if the outcomes
are independent.

(b) [3, unseen] Writing p(λ) = exp(−λc) and with s =
∑
j dj survivors, the log likelihood

can be written as

ℓ(λ) = (n− s) log{1 − p(λ)} + s log p(λ), λ > 0,

so p(λ̂) = s/n, which yields λ̂ = c−1 log(n/s). For the Fisher information we note that
S ∼ B{n, p(λ)}, and then after a little work obtain

E

{
−∂2ℓ(λ)

∂λ2

}
= −E

{(
∂p

∂λ

)2 ∂2ℓ

∂p2
+
∂2p

∂λ2

∂ℓ

∂p

}
=
nc2p(λ)

1 − p(λ)
,

because ∂p(λ)/∂λ = −cp(λ), E(∂ℓ/∂p) = 0 and E(S) = np(λ).

(c) [2, unseen] If an individual failure time is observed exactly up to c and and right-censored,
then the likelihood contribution will be f(y) if y ≤ c, i.e., D = 0, and will be 1 − F (c) if
y > c, i.e., D = 1. The likelihood contribution is then f(y)1−d{1 −F (c)}d, and the given
formula is the product of these terms over the n independent individuals.

(d) [3, unseen] In this case the likelihood contribution for an individual is (λe−λy)1−d(e−λc)d,
so with s =

∑
j dj the overall log likelihood is

n∑

j=1

(1 − dj)(log λ− λyj) − λcs, λ > 0.

This has second derivative −(n− s)/λ2, leading to Fisher information {n− E(S)}/λ2 =
n{1 − p(λ)}/λ2 so the asymptotic relative efficiency of using current status data is

nc2p(λ)

1 − p(λ)
÷ n{1 − p(λ)}

λ2
=

λ2c2p(λ)

{1 − p(λ)}2
=
p(λ){log p(λ)}2

{1 − p(λ)}2
.

——————— END OF THE EXAM PAPER ———————
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