
Solution 1 [10, seen] See parts of slides 22–39.
The essay should cover the repeated sampling, Bayesian and randomisation bases of infer-

ence, touching for example on

• repeating sampling/frequentist inference: observed data yo are regarded as sampled from
a hypothetical population with density f(y; θ); role of a relevant subset A from which
yo is supposed to be drawn; properties of estimator θ̂ due to sampling variation; role of
pivots in inference on θ. The probability comes from the notional repeated sampling, and
θ is regarded as a fixed unknown constant. One main difficulty is in plausible specification
of the sampling framework, and another is that the relevance of hypothetical datasets to
the data yo actually observed may be questioned;

• Bayesian inference: the unknown θ is regarded as random with prior density π(θ), which
is updated to a posterior density π(θ | yo) when yo is obtained. The probability comes
from the prior density, so θ is regarded as random and no comparison is made with
other hypothetical datasets. The main difficulty is the specification of the prior: Jeffreys
priors π(θ) ∝ ı(θ)1/2 are seen as objective but have difficulties in higher dimensions (Stein
paradox), and ‘non-informative’ priors are not transformation-invariant, so weak forms
of proper priors are commonly used;

• randomisation inference: the experimenter imposes a scheme whereby treatments are
allocated to experimental units, and the basis of the inference is the corresponding ran-
domisation distribution. Similar ideas are applied in sample surveys. Here there is a
physical basis for the randomisation inference, but this can only be used in specific set-
tings when the experiment is essentially under the control of the experimenter, and unless
the units have been sampled randomly from a population, the inference strictly applies
only to the units themselves.

Solution 2

(a) [2, seen] See slides 44–46.

(b) [4, seen] Slide 46.

(c) [4, unseen] The joint density of the two variables is

f(y1, y2; θ) = f(y1; θ)f(y2; θ) =
(mθ)y1

y1!
e−mθ×{m(1 − θ)}y2

y2!
e−m(1−θ) = θy1(1−θ)y2×h(y,y2),

where the second factor does not depend on θ. Hence S = s(Y ) = (Y1, Y2) is sufficient
for θ, by the factorisation theorem. It is also minimal sufficient, because the ratio

f(y′
1; θ)f(y′

2; θ)

f(y1; θ)f(y2; θ)
∝ θy′

1(1 − θ)y′

2

θy1(1 − θ)y2

is free of θ iff y1 = y′
1 and y2 = y′

2, i.e., iff s(Y ) = s(Y ′).

Now A = Y1 + Y2 has a Poisson distribution with mean mθ + m(1 − θ) = m, which is
known, so A is ancillary (slide 52) and in principle inferences should be conditioned on
the observed value a of A. This distribution is

f(y1, y2 | a; θ) =
f(y1; θ)f(y2; θ)

f(a)

=

(mθ)y1

y1! e−mθ × {m(1−θ)}y2

y2! e−m(1−θ)

ma

a! e−m

=
a!

y1!(a − y1)!
θy1(1 − θ)a−y1 ,
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where we have set y2 = a − y1. Hence conditional on A, Y1 ∼ B(a, θ), and inference for
θ would be based on this density.

Alternatively here one state Lemma 17 of the course and argue directly from that.

Solution 3

(a) [4, seen] Slide 63 and its note. In particular the observed P-value may be written as

pobs = P0(T ≥ tobs) = 1 − F (tobs)

in terms of the observed value tobs of T , so the corresponding random variables satisfy
Pobs = 1 − F (Tobs), and for x ∈ (0, 1) this gives

P0(P ≤ x) = P0{1 − F (Tobs) ≤ x} = P0{F −1(1 − x) ≤ Tobs} = 1 − F{F −1(1 − x)} = x,

as required.

(b) [4, unseen but related to Problem 5 of week 5].

If all the Hj are true, then P1, . . . , Pm
iid∼ U(0, 1), giving for 0 < x < 1 that

P(P ∗ ≤ x) = P
(

1 − {max
j

(1 − Pj)}m ≤ x
)

= P
{

(1 − x)1/m ≤ max
j

(1 − Pj)
}

= 1 − P
{

max
j

(1 − Pj) < (1 − x)1/m
}

= 1 − P
{

1 − Pj < (1 − x)1/m
}m

= 1 − {(1 − x)1/m}m

= x,

since Pj and 1 − Pj have U(0, 1) distributions under H0. Hence P ∗ ∼ U(0, 1) under H0.

If P ∗ is small compared to its null distribution, then at least one of the Pj must have
been small compared to its distribution, so P ∗ can be expected to be unusually small if
at least one (but perhaps only one) of the Pj was exceptionally small, casting doubt on
the truth of the corresponding Hj.

(c) [2, unseen]

The Bonferroni method would take some α ∈ (0, 1) and reject H0 when

min
j

Pj ≤ α/m ⇐⇒ max
j

(1 − Pj) ≥ 1 − α/m

⇐⇒ 1 − {max
j

(1 − Pj)}m ≤ 1 − (1 − α/m)m

and if m is large and α is small, then 1 − (1 − α/m)m ≈ α. Hence in this case both
methods are similar if rejection at a fixed level α is required.

Solution 4

(a) [2, seen] See slide 115 etc.

(b) [2, seen] See slides 112–113.
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(c) [4, seen/unseen] This is a simplified version of Problem 4 of Week 9. The overall log
likelihood is

$(µ1, . . . , µm, σ2) ≡ −1
2




2m log σ2 +
1

σ2

m∑

j=1

(yj1 − µj)
2 + (yj2 − µj)

2




 ,

and differentiation with respect to µj yields µ̂j = (yj1 + yj2)/2. Inserting these into
$(µ1, . . . , µm, σ2) and simplifying using the fact that

(yj1 − µ̂j)
2 = (yj2 − µ̂j)

2 = (yj1 − yj2)2/4

yields the required expression for the profile log likelihood for σ2.

A further differentiation yields

σ̂2 =
1

4m

m∑

j=1

(yj1 − yj2)2,

and the hint implies that (yj1 − yj2)2 D
= 2σ2χ2

1, so σ̂2 D
= (2m)−1χ2

m
P−→ σ2/2 as m → ∞.

Hence σ̂2 is inconsistent.

(d) [2, unseen] If we maximise the log likelihood of zj = yj1 − yj2
iid∼ N (0, 2σ2), i.e.,

−1
2




m log(2σ2) +
1

2σ2

m∑

j=1

z2
j




 ,

then we obtain an unbiased (and consistent) marginal likelihood estimator σ̂2 = (2m)−1 ∑m
j=1 z2

j .

Solution 5

(a) [2, seen] See slides 224–231.

(b) [5, unseen] The joint density is [1]

n∏

j=1

f(yj | λj)π(λj | β) × π(β) =






n∏

j=1

λje−λjyj
βαλα−1

j

Γ(α)
e−βλj




 × τe−τβ , yj, λj , β > 0,

and integration over the λj gives [1]

f(y1, . . . , yn | β) =






n∏

j=1

Γ(α + 1)βα

Γ(α)(yj + β)α+1




 × τe−τβ, yj, β > 0,

and recalling that Γ(α + 1) = αΓ(α) for any α > 0 and a further integration over β gives
the expression above.

For Laplace approximation [3] we write the integrand as e−h(β), where

h(β) = τβ − nα log β − log τ + (α + 1)
n∑

j=1

log(yj + β), β > 0,

then find β̃ as the (positive) solution to the equation h′(β) = 0, set h2 = h′′(β̃), and

approximate the integral by e−h(β̃)(2π/h2)1/2. This has a relative error of order 1/n.
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(c) [3, unseen] The marginal density of λ1 is

f(λ1 | y1, . . . , yn) =
f(λ1, y1, . . . , yn)

f(y1, . . . , yn)
=

∫ ∞
0 e−h1(β,λ1) dβ
∫ ∞

0 e−h(β) dβ
,

say, where

h1(β, λ1) = λ1y1 − log λ1 + τβ − nα log β − log τ + (α + 1)
n∑

j=2

log(yj + β), β > 0.

Laplace approximation would now involve computing β̃(λ1) by minimising h1(β, λ1) for
each value of λ1 on a grid, and then computing the ratio of the two Laplace approxi-
mations (here and for (b)) at the points of the grid. We would expect this to be more
accurate than the approximation in (b), because the errors in the numerator and denom-
inator are both O(n−1) and might be expected to cancel to some extent.
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