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Bayesian Models

Every statistical investigation takes place in a context. Information about
what question is to be addressed will suggest what data are needed to give
useful answers. Before the data are available, one role for this information is to
suggest suitable probability models. There may also be information about the
values of unknown parameters, and if this can be expressed as a probability
density, an approach to inference based on Bayes’ theorem is possible. Many
statisticians make the stronger claim that this theorem provides the only
entirely consistent basis for inference, and insist on its use.

This chapter outlines some aspects of the Bayesian approach to modelling.
We first give an account of basic uses of Bayes’ theorem and of the role and
construction of prior densities. We then turn to inference, dealing with ana-
logues of confidence intervals, tests, approaches to model criticism, and model
uncertainty. Until recently computational difficulties placed realistic Bayesian
modelling largely out of reach, but over the last 20 years there has been rapid
progress and complex models can now be fitted routinely. Section 11.3 gives an
account of Bayesian computation, first of analytical approaches based on inte-
gral approximations, and then of Monte Carlo methods. The chapter concludes
with brief introductions to hierarchical and empirical Bayesian procedures.

11.1 Introduction

11.1.1 Bayes’ theorem

Let A1, . . . , Ak be events that partition a sample space, and let B be an
arbitrary event on that space for which Pr(B) > 0. Then Bayes’ theorem is

Pr(Aj | B) =
Pr(B | Aj)Pr(Aj)

∑k
i=1 Pr(B | Ai)Pr(Ai)

.
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632 11 · Bayesian Models

This reverses the order of conditioning by expressing Pr(Aj | B) in terms
of Pr(B | Aj) and the marginal probability Pr(B) in the denominator. For
continuous random variables Y and Z,

fZ|Y (z | y) =
fY |Z(y | z)fZ(z)

∫
fY |Z(y | z)fZ(z) dz

, (11.1)

provided the marginal density f(y) > 0, with integration replaced by summa-
tion for discrete variables.

Inference

To see how Bayes’ theorem is used for inference, suppose that there is a
probability model f(y | θ) for data y. In earlier chapters we have written
f(y | θ) = f(y; θ), but here we use the conditional notation to emphasize that
the probability model is a density for the data given the value of θ. Suppose
also that we are able to summarize our beliefs about θ in a prior density,
π(θ), constructed separately from the data y. This implies that we think of
the unknown value θ that underlies our data as the outcome of a random
variable whose density is π(θ), just as our probability model is that the data
y are the observed value of a random variable Y with density f(y | θ). Once the
data have been observed, our beliefs about θ are contained in its conditional
density given that Y = y,

π(θ | y) =
π(θ)f(y | θ)∫
π(θ)f(y | θ) dθ

. (11.2)

This is the posterior density for θ given y. Note that f(y | θ) is the likelihood
for θ based on y, so that in terms of θ, we have posterior ∝ prior × likelihood.

Frequentist inference treats θ as an unknown constant, whereas the Bayesian
approach treats it as a random variable. We make this distinction explicit by
using π to denote a density for θ, which thus has prior and posterior densities
π(θ) and π(θ | y), rather than f(θ) and f(θ | y).

It is useful to note that any quantity that does not depend on θ cancels
from the denominator and numerator of (11.2). This implies that if we can
recognise which density is proportional to (11.2), regarded solely as a function
of θ, we can read off the posterior density of θ. Furthermore, the factorization
criterion (4.15) implies that the posterior density depends on the data solely
through any minimal sufficient statistic for θ.

Example 11.1 (Bernoulli trials) Suppose that conditional on θ, the data
y1, . . . , yn are a random sample from the Bernoulli distribution, for which
Pr(Yj = 1) = θ and Pr(Yj = 0) = 1− θ, where 0 < θ < 1. The likelihood is

L(θ) = f(y | θ) =
n∏

j=1

θyj (1− θ)1−yj = θr(1 − θ)n−r, 0 < θ < 1,
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where r =
∑

yj .
A natural prior here is the beta density with parameters a and b,

π(θ) =
1

B(a, b)
θa−1(1− θ)b−1, 0 < θ < 1, a, b > 0, (11.3)

where B(a, b) is the beta function Γ(a)Γ(b)/Γ(a + b). Figure 5.4 shows (11.3)Γ(a) =∫∞

0
ua−1e−u du is

the gamma function;
see Exercise 2.1.3.

for various values of a and b.
The posterior density of θ conditional on the data is given by (11.2), and is

π(θ | y) =
θr+a−1(1 − θ)n−r+b−1/B(a, b)

∫ 1
0 θ

r+a−1(1 − θ)n−r+b−1 dθ/B(a, b)

∝ θr+a−1(1− θ)n−r+b−1, 0 < θ < 1. (11.4)

As (11.3) has unit integral for all positive a and b, the constant normalizing
(11.4) must be B(a + r, b + n− r). Therefore

π(θ | y) =
1

B(a + r, b + n− r)
θr+a−1(1 − θ)n−r+b−1, 0 < θ < 1.

Thus the posterior density of θ has the same form as the prior: acquiring data
has the effect of updating (a, b) to (a+r, b+n−r). As the mean of the B(a, b)
density is a/(a+b), the posterior mean is (r+a)/(n+a+b), and this is roughly
r/n in large samples. Hence the prior density inserts information equivalent
to having seen a sample of a + b observations, of which a were successes. If
we were very sure that θ

.
= 1/2, for example, we might take a = b very large,

giving a prior density tightly concentrated around θ = 1/2, whereas taking
smaller values of a and b would increase the prior uncertainty.

To illustrate this, suppose that a = b = 1, so that the initial density of θ is
the uniform prior shown in the upper right panel of Figure 5.4, representing
ignorance about θ. Then data with n = 23 and r =

∑
yj = 14 update the

prior density to the posterior density in the lower right panel.

The use of the beta density as prior for a model whose likelihood is propor-
tional to θr(1 − θ)s leads to a posterior density that is also beta. This is an
example of a conjugate prior, an idea to be discussed in Section 11.1.3.

When the parameter takes one of a finite number of values, labelled 1, . . . , k,
with prior probabilities π1, . . . ,πk, the posterior density is the probability
mass function

Pr(θ = j | y) =
πjf(y | θ = j)

∑k
i=1 πif(y | θ = i)

. (11.5)

Example 11.2 (Diagnostic tests) A disease occurs with prevalence γ
in a population, and θ indicates that an individual has the disease. Hence
Pr(θ = 1) = γ, Pr(θ = 0) = 1 − γ. A diagnostic test gives a result Y ,
whose distribution is F1(y) for a diseased individual and F0(y) otherwise.
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The commonest type of test declares that a person is diseased if Y > y0, say,
where y0 is fixed on the basis of past data. The probability that a person is
diseased, given a positive test result, is

Pr(θ = 1 | Y > y0) =
γ{1− F1(y0)}

γ{1− F1(y0)} + (1 − γ){1− F0(y0)}
;

this is sometimes called the positive predictive value of the test. Its sensitivity
and specificity are 1−F1(y0) and F0(y0). These are the probabilities of correct
classification of diseased and non-diseased persons, while the false negative and
false positive ratios are F1(y0) and 1 − F0(y0). One aims to construct tests
whose sensitivity and specificity are as high as possible.

Prediction

Prediction of the value of a future random variable, Z, is straightforward when
there is a prior density for the parameters. The joint density of Z and the data
Y may be written

f(y, z) =

∫
f(z | y, θ)f(y | θ)π(θ) dθ,

and hence once Y has taken the value y, inference for Z is based on its posterior
predictive density,

f(z | y) =

∫
f(z | y, θ)π(θ | y)dθ =

∫
f(z | y, θ)f(y | θ)π(θ) dθ∫

f(y | θ)π(θ) dθ
. (11.6)

This is (11.1) expanded to make explicit the integration over the posterior
density of θ.

Example 11.3 (Bernoulli trials) Heads occurs r times among the first n
tosses in a sequence of independent throws of a coin. What is the probability
of a head on the next throw?

Let θ be the unknown probability of a head and let Z = 1 indicate the
event that the next toss yields a head. Conditional on θ, Pr(Z = 1 | y, θ) =
θ independent of the data y so far. If the prior density for θ is beta with
parameters a and b, then

Pr(Z = 1 | y) =

∫ 1

0
Pr(Z = 1 | θ, y)π(θ | y) dθ

=

∫ 1

0
θ
θa+r−1(1 − θ)b+n−r−1

B(a + r, b + n− r)
dθ

=
B(a + r + 1, b + n− r)

B(a + r, b + n− r)
=

a + r

a + b + n
,

on using results for beta functions; see Example 11.1 and Exercise 2.1.3. As
n, r → ∞, this tends to the sample proportion of heads r/n, so the prior
information is drowned by the sample.
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11.1.2 Likelihood principle

There have been many attempts to justify the use of Bayes’ theorem as a basis
for inference. One line of argument rests on axioms that individuals can use
to make optimal decisions in the face of uncertain events, and leads to the
view that probability is a measure of personal belief about the world, to be
updated by additional knowledge using Bayes’ theorem. An account of this
would take us too far afield, and instead we outline another argument, which
centres on principles intended to guide inference. The force of this is that two
basic principles — the sufficiency and conditionality principles — together
imply a third — the likelihood principle — which is difficult to apply except
through Bayes’ theorem. Many statisticians do subscribe to the first two, at
least implicitly, thus setting them on the path to Bayesian inference.

We begin by introducing the notion of an experiment E, which yields data
y, on which we wish to base inference about θ through the evidence Ev(E, y).
The form of this function need not be specified; we merely suppose that it
exists and contains all the information about θ based on E and y.

Sufficiency and conditionality principles

The form of the sufficiency principle we shall use is that if an experiment E
could give rise to y1 and y2, but that there is a statistic s(·) sufficient for θ
such that s(y1) = s(y2), then any inference for θ should be the same whether
y1 or y2 is observed, that is Ev(E, y1) = Ev(E, y2). This is widely accepted,
as the factorization criterion (4.15) implies that given the sufficient statistic,
the data contain no further information about θ.

A second principle can be motivated by the following classic example.

Example 11.4 (Measuring machines) Suppose that a physical quantity
θ can be measured by two machines, both giving normal measurements Y
with mean θ. A measurement from the first machine has unit variance, but
one from the second has variance 100. The more precise machine is often busy,
while the second is used only if the first is unavailable; the upshot is that each
is equally likely to be used. Thus if A takes value 1 or 2 depending on the
machine used, Pr(A = 1) = Pr(A = 2) = 1

2 .
Suppose that an observation obtained is from machine 1. Then clearly any

inference about θ should not take into account that machine 2 might have
been used, when it is known that it was not. Mathematically this is expressed
by saying that the revelant distribution for inference about θ is the conditional
distribution of Y given A, rather than the unconditional distribution of Y .
For example, the conditional 95% confidence interval for θ given that A = 1
is y ± 1.96, whereas the unconditional interval is y ± 16.45, which is clearly
much too long if it is known that y came from the N(θ, 1) distribution.

The lesson of this is formalized as follows. Suppose that an experiment
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E can be thought of as arising in two stages. In the first stage we observe
that a random variable A with known distribution independent of θ takes
value a, and in the second stage we observe ya from a component experiment
Ea. This is a mixture experiment, for which the data are (a, ya). Then one
form of the conditionality principle says that Ev{E, (a, ya)} = Ev(Ea, ya): the
evidence concerning θ based on the compound experiment E is equal to the
evidence from the component experiment Ea actually performed, the results
of other possible components being irrelevant. The key point is that since
the distribution of A does not depend on θ, conditioning on A does not lead
to a loss of information about θ, but selects the relevant component of the
mixture experiment. This principle is widely, even if sometimes unconsciously,
accepted; we discuss its implications in more detail in Chapter 12.

Likelihood principle

Suppose that two experiments relating to θ, E1 and E2, give rise to data y1

and y2 such that the corresponding likelihoods are proportional, that is, for
all θ,

L(θ; y1, E1) = cL(θ; y2, E2).

Then according to one expression of the likelihood principle, Ev(E1, y1) =
Ev(E2, y2): inference should be based on the observed likelihood alone. Full
acceptance of this means rejecting frequentist tools such as significance tests,
as the following example shows.

Example 11.5 (Bernoulli trials) Suppose that E1 consists of observing
the number y1 of successes in a fixed number n1 of independent Bernoulli
trials. The likelihood is then

L1(θ) =

(
n1

y1

)
θy1(1− θ)n1−y1 , 0 < θ < 1,

corresponding to the binomial number of successful trials.

Experiment E2 consists of conducting Bernoulli trials independently until y2

successes occur, at which point there have been n2 trials. Here the likelihood,

L2(θ) =

(
n2 − 1

y2 − 1

)
θy2(1 − θ)n2−y2 , 0 < θ < 1,

corresponds to the negative binomial number of trials up to y2 successes.

Now suppose that it happens that n1 = n2 = n and y1 = y2 = y, giving
L1(θ) ∝ L2(θ). Then according to the likelihood principle, inferences based on
the two experiments should be the same. But consider testing the hypothesis
H0 : θ = 1

2 against the alternative that θ < 1
2 . In E1, the test statistic would
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be the random number of successes, Y , and the P-value would be

Pr(Y ≤ y | θ = 1
2 ) =

y∑

r=0

(
n

r

)
2−n, (11.7)

while in E2 the test statistic would be the total number of trials, N , with
P-value

Pr(N ≥ n | θ = 1
2 ) =

∞∑

m=n

(
m− 1

y − 1

)
2−m. (11.8)

The catch is that (11.7) and (11.8) need not be equal. For example, if y = 3
and n = 12, the P-values are respectively 0.073 and 0.033, conveying different
evidence against H0. In particular, use of the fixed significance level 0.05 would
lead to acceptance or rejection of H0 depending on the experiment performed.
The reason for this is that (11.7) and (11.8) involve summation over portions
of two different sample spaces. This conflicts with the likelihood principle,
according to which only the data actually observed should contribute to the
inference.

Construction of tail probabilities such as (11.7) or (11.8), or of confidence
intervals, involves consideration of data not actually observed, and thereby
disobeys the likelihood principle. This poses a problem for frequentist pro-
cedures, because a rational statistician who rejects the likelihood principle
should also reject one of the apparently reasonable sufficiency and condition-
ality principles, which together entail the likelihood principle.

To see this, suppose that we accept the sufficiency and conditionality prin-
ciples, and that experiments E1 and E2 have yielded data y1 and y2 such that
L(θ; y1, E1) = cL(θ; y2, E2) for some c > 0 and all θ. Consider the mixture ex-
periment E that consists of observing (Ea, ya), where a is the observed value
of the binary random variable such that

Pr(A = 1) =
1

c + 1
, Pr(A = 2) =

c

c + 1
;

the distribution of A is independent of θ. The outcomes for E are (E1, y1) and
(E2, y2), and the decomposition Pr(Ea, ya; θ) = Pr(ya | Ea; θ)Pr(Ea) shows
that the corresponding likelihoods,

1

c + 1
L(θ; y1, E1),

c

c + 1
L(θ; y2, E2),

are equal for all θ. Since the likelihood function is itself a minimal sufficient
statistic for θ (Exercise 4.2.11), the sufficiency principle implies

Ev{E, (E1, y1)} = Ev{E, (E2, y2)}. (11.9)
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But the conditionality principle implies

Ev{E, (E1, y1)} = Ev(E1, y1), Ev{E, (E2, y2)} = Ev(E2, y2),

and combined with (11.9) we get Ev(E1, y1) = Ev(E2, y2). Thus acceptance
of the sufficiency and conditionality principles implies acceptance of the like-
lihood principle. The converse is also true (Problem 11.6). In fact it can be
shown that a stronger version of the conditionality principle on its own implies
the likelihood principle.

Statisticians attempting to weaken the force of this argument have criticized
its central notions of evidence and mixture experiments, or have insisted that
the sufficiency and conditionality principles apply only in a more limited way.
They can then accept some form of these principles but not the conclusion
of the argument, and continue to use such tools as confidence intervals and
P-values. Others deny the validity of the argument on the grounds that it
applies only to models known to be true, and this is rare in practice.

Statisticians who embrace the likelihood principle find themselves in an
awkward position: their inference should be based on the observed likelihood,
L(θ), but how should it be expressed? In particular, what can be inferred
about a scalar component of vector θ? The obvious solution of profiling over
the other components of θ can go badly awry, as we shall see in Chapter 12,
and the alternative of integrating them out does not give a unique answer
(Problem 11.7). Thus the idea of multiplying L(θ) by a prior density and
applying the simple recipe of Bayes’ theorem starts to appear very attactive.
Moreover, we see from (11.2) that given a particular prior π(θ), Bayesian
inference for θ does conform to the likelihood principle, because any constants
in f(y | θ) do not appear in the posterior density.

11.1.3 Prior information

Despite its conformity to the likelihood principle, inference based on Bayes’
theorem has often been seen as controversial. This is not due to the result
itself, which simply states mathematically how the probability density of one
random variable changes when another has been observed, but because its use
in statistical inference for θ requires the investigator to treat θ as a random
variable, and to specify a prior density π(θ) separate from the data. A key
issue is the interpretation and choice of π.

In some circumstances it is uncontroversial to treat θ as random. At one
extreme the data at hand may be the latest in a stream of similar datasets,
each having an underlying parameter that may be supposed to be drawn from
a distribution. For example, an accountant may wish to estimate the level of
errors in a company’s books, θ, based on a sample of transactions that reveals
y errors. It will be sensible to treat θ as randomly chosen from a density π(θ)
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of error rates based on experience with previous firms. Then inference on θ
will use both y and π(θ). An example in the use of forensic evidence is when
there is a close match between DNA profile data from the scene of a crime
and a suspect. Then a database of prior profiles may help to establish whether
DNA found at the scene of the crime could plausibly have come from someone
else. In these applications the prior information has a frequentist basis, so newDespite this, the

London Court of
Appeal (Regina vs.
Adams, 1996, 1997)
ruled that
‘introducing Bayes’
theorem . . . into a
criminal trial
plunges the jury into
inappropriate and
unnecessary realms
of complexity,
deflecting them from
their proper task’.

issues of interpretation do not arise.

At the other end of the range of possibilities is the situation where the
data are to be used to make subjective decisions such as ‘should I bet on
the outcome of this race?’ Although likely to depend on how facts such as
‘Flatfoot has not won a race this season’ are viewed, both model and prior
information here reflect a personal judgement. Here Bayes’ theorem provides
the mechanism for updating prior beliefs in the light of whatever data is
available, but the inference is a personal assessment of the evidence and has
no claim to objective force.

The debate arises when the prior information does not have a frequency
interpretation, but the inference required is not purely personal. Many statis-
ticians regard the information in data as being qualitatively different from
their prior beliefs about model parameters, and hence find it unacceptable to
use Bayes’ theorem to combine the two. They argue that although the choice of
probability model is usually a matter of individual judgement, that judgement
can be checked by comparing the data and fitted model, while by definition
prior information cannot be checked directly. To which a Bayesian might reply
that the epistemological distinction between data, model, and prior is unclear,
because collection of any data must be based on some prior belief, which will
often include information about possible models and the likely values of their
parameters. Furthermore Bayes’ theorem provides a single recipe for infer-
ence about unknowns, while frequentist notions such as confidence intervals
can violate what seem reasonable principles of inference. Much has been writ-
ten on this, but we shall avoid getting embroiled, simply noting that in many
situations the Bayesian approach is simpler and more direct than frequentist
alternatives, and that when they can be compared, the inferences produced
by Bayesian and good frequentist procedures are often rather similar, so that
the practical consequences of choosing between them are usually not critical.
When a frequentist inference differs strongly from any conceivable Bayesian
one, it seems wise to pause and reflect awhile.

Whatever its interpretation, a prior must be specified in order for Bayesian
analysis to proceed. We now consider aspects of this.

Conjugate densities

In Example 11.1 the combination of a beta prior density for a probability
and the likelihood for several Bernoulli trials led to a beta posterior density.
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Although too inflexible to encompass the range of prior knowledge that arises
in applications, such conjugate combinations of prior and likelihood are useful
because of their simple closed forms. They are closely tied to exponential
family models.

Example 11.6 (Exponential family) Suppose that y1, . . . , yn is a random
sample from the exponential family (5.12)

f(y | ω) = exp {s(y)Tθ(ω)− b(ω)} f0(y),

so that in terms of s =
∑

s(yj), the likelihood is proportional to

exp {sTθ(ω)− nb(ω)} . (11.10)

If the prior density for ω depends on the quantities ξ and ν and has form

π(ω) = exp {ξTθ(ω)− νb(ω) + c(ξ, ν)} ,

then the posterior density is proportional to

exp {(ξ + s)Tθ(ω)− (ν + n)b(ω)} .

Provided this is integrable the posterior density therefore must be

π(ω | y) = exp {(ξ + s)Tθ(ω)− (ν + n)b(ω) + c(ξ + s, ν + n)} .

Thus the prior parameters (ξ, ν) are updated to (ξ+s, ν+n) by the data. One
interpretation of the hyperparameters ξ and ν is that the prior information is
equivalent to ν prior observations summing to ξ.

For example, the Poisson density with mean ω has kernel exp(y logω − ω),
so the conjugate prior must have kernel exp(ξ logω − νω). For ξ, ν > 0, this
is proportional to the gamma density with mean ξ/ν, whose density is

π(ω) =
νξωξ−1

Γ(ξ)
e−νω, ω > 0,

and which is therefore the conjugate prior for the Poisson mean. As the data
update (ξ, ν) to (ξ + s, ν + n), the posterior density

π(ω | y) =
(ν + n)ξ+sωξ+s−1

Γ(ξ + s)
e−(ν+n)ω, ω > 0,

also has gamma form.

Example 11.7 (Normal distribution) Let y1, . . . , yn be a normal ran-
dom sample with mean µ and known variance σ2. The likelihood is y is the sample

average n−1
∑

yj .

1

(2πσ2)n/2
exp

⎧
⎨

⎩
− 1

2σ2

n∑

j=1

(yj − µ)2

⎫
⎬

⎭
∝ exp

(
µ

ny

σ2
− n

σ2
1
2µ2

)
,
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which is of form (11.10) with s = ny/σ2, k = n/σ2, a(µ) = µ, and κ(µ) = 1
2µ2.

Therefore the conjugate prior is proportional to

exp

(
µ

µ0

τ2
− 1

τ2
1
2µ2

)
,

and must be the normal density with mean µ0 and variance τ2. The effect
of the data is to update (µ0τ−2, τ−2) to (µ0τ−2 + sσ−2, τ−2 + nσ−2), so the
posterior density for µ is normal with mean and variance

ny/σ2 + µ0/τ2

n/σ2 + 1/τ2
,

1

n/σ2 + 1/τ2
. (11.11)

On writing the mean in (11.11) as

ny + (σ2/τ2)µ0

n + σ2/τ2
,

we see that the prior injects information equivalent to σ2/τ2 observations with
mean µ0, and shrinks the sample average, y, towards the prior mean by an
amount that depends on the ratio of τ2 to σ2/n. As n → ∞ or τ2 → ∞,
corresponding to increasing information in the data relative to the prior, the
posterior density becomes normal with mean y and variance σ2/n, so the
effect of the prior withers away. As τ2 → 0, corresponding to more definite
prior knowledge, the posterior approaches the normal density with mean µ0

and variance τ2, which is the prior.

Conjugate priors are often too restrictive for expression of realistic prior
information, but it is straightforward to establish that mixtures of conjugate
densities are also conjugate, and this considerably broadens the class of priors
with closed-form posterior densities (Problem 11.3).

Ignorance

Sometimes the prior density must express prior ignorance about a parameter.
One reason for this may be the need for a ‘baseline’ analysis as a basis for dis-
cussion. Another is the belief that a non-informative prior will allow the data
‘to speak for themselves’, though it seems optimistic to think that they will
spill their secrets without careful interrogation. Nevertheless it is important
to weigh how much an inference depends on the prior compared to the data.
One way to do this is to contrast inferences from a minimally informative
prior with those from the prior actually used.

When θ has bounded support, as in Example 11.1, a uniform prior density,
with π(θ) ∝ 1, seems an obvious choice. When the support of θ is unbounded,
such a prior has infinite integral and so is improper. An improper prior may
nevertheless lead to a proper posterior density. In Example 11.7, for example,
we can represent complete ignorance about the prior value of µ by letting



642 11 · Bayesian Models

τ2 → ∞, in which case the prior is π(µ) ∝ 1 with support on the entire
real line, and the posterior density of µ is normal with mean y and variance
σ2/n, which is proper. Prior ignorance about σ in models where the density
of the data is of form σ−1g(u/σ), u > 0, σ > 0, is usually represented by the
improper prior π(σ) ∝ σ−1, σ > 0. Non-informative priors of this sort exist for
more general situations, but there is a fundamental difficulty in representing
ignorance in a way that is independent both of the data to be collected and the
parametrization of the model (Problem 11.4). The key question is: ignorance
about what? The following classic example illustrates this.

Example 11.8 (Bernoulli probability) The probability of success in a
Bernoulli trial lies in the interval [0, 1], so if we are completely ignorant of its
true value, the obvious prior to use is uniform on the unit interval: π(θ) = 1,
0 ≤ θ ≤ 1. But if we are completely ignorant of θ, we are also completely
ignorant of ψ = log{θ/(1−θ)}, which takes values in the real line. The density
implied for ψ by the uniform prior for θ is

π(ψ) = π{ψ(θ)}×
∣∣∣∣
dθ

dψ

∣∣∣∣ =
eψ

(1 + eψ)2
, −∞ < ψ <∞ :

the standard logistic density. Far from expressing ignorance about ψ, this
density asserts that the prior probability of |ψ| < 3 is about 0.9.

Jeffreys priors
Sir Harold Jeffreys
(1891–1989) studied
first in Newcastle
and then in
Cambridge, where he
remained for the rest
of his life, becoming
Plumian Professor of
Astronomy. During
World War I he
worked in the
Cavendish
Laboratory, and
thereafter studied
and taught
hydrodynamics and
geophysics, being the
first to claim that
the core of the earth
is liquid. In an
important series of
books he championed
objective Bayesian
inference long before
it became popular
(Jeffreys, 1961), and
also wrote important
works on geophysics
and mathematical
physics. His
unassuming
character inspired
deep affection.

Apparent paradoxes like that of Example 11.8 led to a widespread rejection
of Bayesian inference in the early twentieth century. The key difficulty is that
the representation of ignorance is not invariant under reparametrization. A
solution to this is to seek invariant priors. For scalar θ the best-known of these
is the Jeffreys prior

π(θ) ∝ |i(θ)|1/2, (11.12)

where i(θ) = −E{d2ℓ(θ)/dθ2} is the expected information for θ based on the
log likelihood ℓ(θ); i(θ) is positive in a regular statistical model. For a smooth
reparametrization θ = θ(ψ) in terms of ψ, the expected information for ψ is

i(ψ) = −E

[
d2ℓ{θ(ψ)}

dψ2

]
= −E

{
d2ℓ(θ)

dθ2

}
×
∣∣∣∣
dθ

dψ

∣∣∣∣
2

= i(θ)×
∣∣∣∣
dθ

dψ

∣∣∣∣
2

.

Consequently |i(θ)|1/2dθ = |i(ψ)|1/2dψ: with the choice (11.12), prior infor-
mation does behave consistently under reparametrization; furthermore such
priors give widely-accepted solutions in some standard problems. When θ is
vector, |i(θ)| is taken to be the determinant of i(θ).

This prior was initially proposed with the aim of giving an ‘objective’ ba-
sis for inference, but after further paradoxes emerged its use was suggested
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for convenience, a matter of scientific convention rather than as a logically
unassailable expression of ignorance about the parameter.

Example 11.9 (Bernoulli probability) The log likelihood for a single
Bernoulli trial with success probability θ is y log θ + (1 − y) log(1 − θ), and
the Fisher information is i(θ) = θ−1(1− θ)−1. Thus the Jeffreys prior is pro-
portional to θ−1/2(1 − θ)−1/2, and so equals the beta density (11.3) shown
in the top left panel of Figure 5.4, which while proper does not look uninfor-
mative. It can be interpreted as carrying information equivalent to one trial,
in which one-half of a success was observed. As the prior information for n
independent trials is ni(θ), the Jeffreys prior is the same because the constant
of proportionality is independent of θ.

Example 11.10 (Location-scale model) Suppose that y1, . . . , yn is a
random sample from a location model f(y; η) = g(y − η), for real y and η.
Then the log likelihood is ℓ(η) =

∑
log g(yj − η), so

i(η) = −n

∫ ∞

−∞

d2 log g(y − η)
dη2

g(y − η) dy.

The substitution u = y− η shows that i(η) is independent of η, and therefore
the Jeffreys prior is the constant non-informative prior π(η) ∝ 1 for all η.

A modification of this argument (Problem 11.2) shows that the Jeffreys
prior for f(y; τ) = τ−1g(y/τ), y, τ > 0, is π(τ) ∝ τ−1, which is also widely
accepted as non-informative. Both π(τ) and π(η) are improper.

A difficulty with this approach appears when we consider the location-
scale model f(y; η, τ) = τ−1g{(y − η)/τ}. Its information matrix has form
i(η, τ) = nτ−2A, where the 2× 2 matrix A is free of parameters, so π(η, τ) =
|i(η, τ)|1/2 ∝ τ−2. This does not equal the prior τ−1 arising from taking
independent Jeffreys priors for η and τ separately.

The approach is here unsatisfactory because the prior τ−2 is not widely
accepted as a non-informative statement of uncertainty about τ . More gener-
ally this example shows that a non-informative inference for a parameter of
interest, η, say, may depend on the model in which η is embedded, in the sense
that the inference may depend on the prior chosen for nuisance parameters,
even when these are a priori independent of η.

Jeffreys’ general solution to the difficulty raised in Example 11.10 was to
treat location parameters as fixed when computing i(θ). Let θ = (µ1, . . . , µp,ψ),
where the µr are location parameters and ψ contains all other parameters in
the problem. Then the prior he recommended is

π(µ1, . . . , µp,ψ) ∝
∣∣∣∣E
{
−∂

2ℓ(µ1, . . . , µp,ψ)

∂ψ∂ψT

}∣∣∣∣

1/2

,
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which produces π(θ) ∝ τ−1 in the location-scale model.
Numerous other approaches to representing prior ignorance have been pro-

posed, based for example on notions of invariance, of minimal information, or
of matching the coverage of Bayesian and frequentist confidence intervals. To a
large extent these are regarded as useful to the extent that they yield Jeffreys
priors, and we shall not consider them in detail. To be more explicit about links
with the frequentist approach, however, note that if a uniform prior is taken
in (11.11), corresponding to τ →∞, and we define Ay to be the interval with
limits y ± zαn−1/2σ, then the posterior probability Pr(θ ∈ Ay | y) = 1 − 2α.
Thus Ay has posterior coverage (1− 2α). But Ay also has the same coverage
for any fixed θ unconditional on y, so the uniform prior yields an interval
justifiable from both Bayesian and frequentist viewpoints. Exact results such
as this are unobtainable in more general settings, but nonetheless it can be
helpful to consider the extent to which Bayesian and frequentist procedures
agree.

Some further aspects of Jeffreys priors are outlined in Problem 11.4.

Exercises 11.1
1 In Example 11.3, calculate the predictive probability for k future heads out of

m tosses based on r heads observed in n tosses, using a beta prior density.

2 Show that the limits of an unconditional confidence interval of level (1− 2α) in
Example 11.4 involve the solutions to the equation

1
2Φ {(y − θ)/10} + 1

2Φ(y − θ) = α, 1 − α.

Hence justify the approximate 0.95 interval given in the example.

3 (a) Let y1, . . . , yn be a Poisson random sample with mean θ, and suppose that
the prior density for θ is gamma,

π(θ) = g(θ;α, λ) =
λαθα−1

Γ(α)
exp(−λθ), θ > 0, λ,α > 0.

Show that the posterior density of θ is g(θ;α+
∑

yj ,λ+n), and find conditions
under which the posterior density remains proper as α ↓ 0 even though the
prior density becomes improper in the limit.
(b) Show that

∫
θg(θ;α, λ) dθ = α/λ. Find the prior and posterior means E(θ)

and E(θ | y), and hence give an interpretation of the prior parameters.
(c) Let Z be a new Poisson variable independent of Y1, . . . , Yn, also with mean
θ. Find its posterior predictive density. To what density does this converge as
n → ∞? Does this make sense?

4 How would you express prior ignorance about an angle? About the position of
a star in the firmament?

5 If Yij ∼ N(µi,σ
2) independently for i = 1, . . . , k and j = 1, . . . , m, show that

the Jeffreys prior for µ1, . . . , µk,σ equals σ−(k+1). Discuss the form of posterior
inferences on σ2 when m = 2. Is this prior reasonable? If not, suggest a better
alternative.
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Table 11.1

Conjugate prior
densities for
exponential family
samling
distributions.

f(y | θ) Parameter Prior

Binomial success probability beta
Poisson mean gamma
Exponential mean gamma
Normal mean (known variance) normal
Normal variance (known mean) inverse gamma
Multinomial probabilities Dirichlet

6 According to the principle of insufficient reason probabilities should be ascribed
uniformly to finite sets unless there is some definite reason to do otherwise. Thus
the most natural way to express prior ignorance for a parameter θ that inhabits
a finite parameter space θ1, . . . , θk is to set π(θ1) = · · · = π(θk) = 1/k. Let
πi = π(θi).
Consider a parameter space {θ1, θ2}, where θ1 denotes that there is life in orbit
around the star Sirius and θ2 that there is not. Can you see any reason not to
take π1 = π2 = 1/2?
Now consider the parameter space {ω1,ω2,ω3}, where ω1, ω2, and ω3 denote
the events that there is life around Sirius, that there are planets but no life, and
that there are no planets. With this parameter space the principle of insufficient
reason gives Pr(life around Sirius) = 1/3.
Discuss this partitioning paradox. What solutions do you see?
(Schafer, 1976, pp. 23–24)

7 Compute the prior and posterior means and variances for exponential family
data with the conjugate prior distribution, and discuss their interpretation.

8 Use Example 11.6 to verify the contents of Table 11.1.

9 Let θ be a randomly chosen physical constant. Such constants are measured on
an arbitrary scale, so transformations from θ to ψ = cθ for some constant c
should leave the density π(θ) of θ unchanged. Show that this entails π(cθ) =
c−1π(θ) for all c, θ > 0, and deduce that π(θ) ∝ θ−1.
Let θ̃ be the first significant digit of θ in some arbitrary units. Show that

Pr(θ̃ = d) ∝
∫ (d+1)10a

d10a

u−1 du, d = 1, . . . , 9,

and hence verify that Pr(θ̃ = d) = log10(1 + d−1). Check whether some set of
physical ‘constants’ (e.g. sizes of countries or of lakes) fits this distribution.

11.2 Inference

11.2.1 Posterior summaries

If the information regarding θ is contained in its posterior density given the
data y, π(θ | y), how do we get at it? In principle this is easy: we simply
use the posterior density to calculate the probability of any event of interest.
But some summary quantities may be useful. For example, if θ = (ψ,λ) is a
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vector, and we are interested in ψ, the marginal posterior density

π(ψ | y) =

∫
π(ψ,λ | y) dλ,

contains the marginal information in the model and prior concerning ψ. It is
most useful when ψ has dimension one or two, in which case it can be plotted.
It condenses further to moments, quantiles, or the mode of π(ψ | y).

Normal approximation

One simple approximate summary of a unimodal posterior rests on quadratic
series expansion of the log posterior density, analogous to expansion of the
log likelihood. In terms of ℓ̃(θ) = log L(θ) + log π(θ) and the posterior mode
θ̃, we have

ℓ̃(θ)
.
= ℓ̃(θ̃) + (θ − θ̃)T ∂ℓ̃(θ̃)

∂θ
+ 1

2 (θ − θ̃)T ∂
2ℓ̃(θ̃)

∂θ∂θT
(θ − θ̃)

= ℓ̃(θ̃)− 1
2 (θ − θ̃)TJ̃(θ̃)(θ − θ̃),

provided the mode lies inside the parameter space. Here J̃(θ) is the second
derivative matrix of −ℓ̃(θ). This expansion corresponds to a posterior multi-
variate normal density for θ, with mean θ̃ and variance matrix J̃(θ̃)−1, based
on which an equitailed (1− 2α) confidence interval for the rth component θr

of θ is θ̃r ± zαṽ1/2
rr , where ṽrr is the rth diagonal element of J̃(θ̃)−1.

In large samples the log likelihood contribution is typically much greater
than that from the prior, so θ̃ and J̃(θ̃) are essentially indistinguishable from
the maximum likelihood estimate θ̂ and observed information J(θ̂). Thus
likelihood-based confidence intervals may be interpreted as giving approxi-
mate Bayesian inferences, if the sample is large. This approximation will usu-
ally be better if applied to the marginal posterior of a low-dimensional subset
of θ, because of the averaging effect of integration over the other parameters.
The same caveats apply when using this approximation as to use of normal
approximations for the maximum likelihood estimator; in particular, it may
be more suitable for a transformed parameter. We describe a more refined
approach in Section 11.3.1.

Other distributions may be used to approximate posterior densities, for
example by matching first and second moments.

Posterior confidence sets

The mean and mode of the posterior density are point summaries of π(θ | y),
but confidence regions or intervals are usually more useful. The Bayesian
analogue of a (1 − 2α) confidence interval is a (1 − 2α) credible set, defined
to be a set, C, of values of θ, whose posterior probability content is at least
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Table 11.2

Mortality rates r/m
from cardiac surgery
in 12 hospitals
(Spiegelhalter et al.,
1996b, p. 15). Shown
are the numbers of
deaths r out of m
operations.

A 0/47 B 18/148 C 8/119 D 46/810 E 8/211 F 13/196
G 9/148 H 31/215 I 14/207 J 8/97 K 29/256 L 24/360

1− 2α. When θ is continuous this is

1− 2α = Pr(θ ∈ C | y) =

∫

C
π(θ | y) dθ.

When θ is discrete, the integral is replaced by
∑

θ∈C π(θ | y). For scalar θ, such
a set is equi-tailed if it has form (θL, θU ), where θL and θU are the posterior
α and 1− α quantiles of θ, that is, Pr(θ < θL | y) = Pr(θ > θU | y) = α.

Often C is chosen so that the posterior density for any θ in C is higher than
for any θ not in C. That is, if θ ∈ C, π(θ | y) ≥ π(θ′ | y) for any θ′ /∈ C. Such
a region is called a highest posterior density credible set, or more concisely a
HPD credible set.

Example 11.11 (Cardiac surgery data) Table 11.2 contains data on the
mortality levels for cardiac surgery on babies at 12 hospitals. A simple model
treats the number of deaths r as binomial with mortality rate θ and denom-
inator m. At hospital A, for example, m = 47 and r = 0, giving maximum
likelihood estimate θ̂A = 0/47 = 0, but it seems too optimistic to suppose that
θA could be so small when the other rates are evidently larger. If we take a
beta prior density with a = b = 1, the posterior density is beta with parame-
ters a+r = 1 and b+m−r = 48, as shown in the left panel of Figure 11.1. The
0.95 HPD credible interval is (0, 6.05)%, while the equitailed credible interval
uses the 0.025 and 0.975 quantiles of π(θA | y) and is (0.05, 7.40)%.

The right panel of Figure 11.1 shows the posterior density for the overall
mortality rate θ, obtaining by merging all the data, giving r = 208 deaths in
m = 2814 operations. Here the prior parameters a and b have essentially no
effect on the posterior, and hence

θ̃ =
a + r − 1

a + b + m− 2
.
=

r

m
, J̃(θ̃)−1 =

(a + r − 1)(b + m− r − 1)

(a + b + m− 2)3
.
=

r(m− r)

m3
.

The figure shows the corresponding normal approximation to π(θ | y). Evi-
dently inferences from exact and approximate posterior densities will be equiv-
alent for practical purposes.

Both separate and pooled analyses of mortality rates seem unsatisfactory,
because although some variation among hospitals is plausible they are likely
also to have elements in common. Example 11.26 describes an approach in-
termediate between those used here.

Example 11.12 (Normal distribution) Consider a normal random sam-
ple y1, . . . , yn with mean µ and variance σ2 both unknown. We shall give
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Figure 11.1

Cardiac surgery
data. Left panel:
osterior density for
, showing

oundaries of 0.95
highest posterior
credible interval

ertical lines) and
region between
osterior 0.025 and

0.975 quantiles of
(θA | y) (shaded).

Right panel: exact
osterior beta

density for overall
mortality rate θ
(solid) and normal
approximation
(dots).
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them independent prior densities. As the posterior for (µ,σ2) depends on y
only through the minimal sufficient statistic (y, s2), we have y = n−1

∑
yj and

s2 =
(n−1)−1

∑
(yj −y)2

are the sample
average and
variance.

π(µ,σ2 | y, s2) ∝ f(y, s2 | µ,σ2)π(µ,σ2)

= f(y | µ,σ2)f(s2 | µ,σ2)π(µ,σ2)

= f(y | µ,σ2)f(s2 | σ2)π(µ)π(σ2)

∝ π(µ | y,σ2)f(s2 | σ2)π(σ2), (11.13)

where the first step follows from Bayes’ theorem, the second from the con-
ditional independence of y and σ2 given µ and σ2, the third from the prior
independence of µ and σ2 and the independence of s2 and µ, and the fourth
on using Bayes’ theorem to get the posterior density for µ conditional on y
and σ2. Integration of (11.13) with respect to µ shows that π(σ2 | y, s2) ∝
f(s2 | σ2)π(σ2): the marginal posterior density of σ2 depends only on s2.
However, as σ2 appears in all three terms, integration of (11.13) with respect
to σ2 shows that the marginal posterior for µ depends on both y and s2.

Let us use the improper priors π(µ) ∝ 1, π(σ2) ∝ σ−2. Example 11.7 shows
that the posterior density for µ when σ2 is known is N(y,σ2/n). Conditional
on σ2, the distribution of (n− 1)s2 is σ2χ2

n−1, so our choice of prior gives

π(σ2 | s2) ∝ π(σ2)f(s2 | σ2)

∝ (σ2)−1(σ2)−(n−1)/2 exp
{
− 1

2 (n− 1)s2/σ2
}

, σ2 > 0.

Thus the marginal posterior density of σ2 is inverse gamma,

βα

Γ(α)xα+1
exp(−β/x), x > 0, α,β > 0, (11.14)



11.2 · Inference 649

Figure 11.2

Posterior densities of
(µ,σ2) of normal
model for maize
data. Left: contours
of the normalized log
joint posterior
density. Right:
marginal posterior
density for µ,
showing 95% HPD
credible set, which is
the set of values of µ
whose values of the
posterior density
π(µ | y) lie above the
dashed line. The
shaded region has
area 0.05.
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with x = σ2, α = 1
2 (n− 1) and β = 1

2 (n− 1)s2; a useful shorthand for (11.14)
is IG(α,β). Its mean and variance are β/(α − 1) and β2/{(α − 1)2(α − 2)},
provided that α > 2. Equivalently, the posterior distribution of σ2 given s2 is
that of (n−1)s2/V , where V ∼ χ2

n−1. The joint posterior density for (µ,σ2),

π(µ,σ2 | y, s2) ∝ π(µ | y,σ2)π(σ2 | s2).

is proportional to

(σ2)−1/2 exp
{
− n

2σ2
(µ− y)2

}
× (σ2)−(n−1)/2−1 exp

{
− (n− 1)s2

2σ2

}
, (11.15)

integration of which over σ2 yields the marginal posterior density for µ,

π(µ | y, s2) =
Γ
(

n
2

)

Γ
(

n−1
2

)
{

n

(n− 1)s2π

}1/2{
1 +

n(µ− y)2

(n− 1)s2

}−n/2

.

Therefore n1/2(µ− y)/s ∼ tn−1 a posteriori. The corresponding frequentist
result treats y and s2 as random and µ as fixed; here the random variable is
µ, with y and s2 regarded as constants.

Figure 11.2 shows posterior densities for µ and σ2 based on the height
differences for the 15 pairs of plants in Table 1.1; here y = 20.93 and s2 =
1424.64. Evidently the posterior densities are not independent. While the HPD
credible set for µ is equi-tailed, that for σ2 is not.

A credible set may contain the same values of θ as a confidence interval, but
its interpretation is different. In the Bayesian framework the data are regarded
as fixed and the parameter as random, so the endpoints of the credible set
are fixed and the probability statement concerns the parameter, regarded
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as a random variable. The frequentist approach treats the parameter as an
unknown constant and the confidence interval endpoints as random variables;
the probability statement concerns their behaviour in repeated sampling from
the model.

11.2.2 Bayes factors

The frequentist approach to hypothesis testing compares a null hypothesis
H0 with an alternative H1 through a test statistic T that tends to be larger
under H1 than under H0, and rejects H0 for small values of the significance
probability pobs = Pr0(T ≥ tobs), where tobs is the value of T actually observed
and the probability is computed as if H0 were true.

The Bayesian approach attaches prior probabilities to the models corre-
sponding to H0 and H1 and compares their posterior probabilities

Pr(Hi | y) =
Pr(y | Hi)Pr(Hi)

Pr(y | H0)Pr(H0) + Pr(y | H1)Pr(H1)
, i = 0, 1.

An obvious distinction between this and the frequentist approach is that
Pr(H0 | y) is the probability of H0 conditional on the data, whereas the
P-value may not be interpreted in this way. In Bayesian settings increasing
amounts of data may lead to increasing support for one hypothesis relative
to the alternatives. This differs from the frequentist approach, where non-
rejection of H0 does not indicate increasing support for it in large samples. A
further important difference is that the P-value does not depend on the par-
ticular alternative H1 under discussion. Indeed, whereas frequentist testing
does not require H1 to be fully specified, this is essential for Bayesian testing,
which is in this sense more restrictive.

For some purposes it is valuable to use the odds in favour of H1,

Pr(H1 | y)

Pr(H0 | y)
=

Pr(y | H1)

Pr(y | H0)
× Pr(H1)

Pr(H0)
. (11.16)

The change in prior to posterior odds for H1 relative to H0 depends on data
only through the Bayes factor

B10 =
Pr(y | H1)

Pr(y | H0)
. (11.17)

Thus analogous to the updating rule for inference on θ, we update evidence
comparing the models by the rule posterior odds = Bayes factor × prior odds.

The simplest situation is when both hypotheses are simple, in which case
B10 equals the likelihood ratio in favour of H1. Usually, however, both hy-
potheses involve parameters, say θ0 and θ1, and

Pr(y | Hi) =

∫
f(y | Hi, θi)π(θi | Hi) dθi, i = 0, 1,
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Table 11.3

Interpretation of
Bayes factor B10 in
favour of H1 over
H0. Since
B10 = B−1

01 , negating
the values of
2 log B10 gives the
evidence against H1.

B10 2 log B10 Evidence against H0

1–3 0–2 Hardly worth a mention
3–20 2–6 Positive
20–150 6–10 Strong
> 150 > 10 Very strong

where π(θi | Hi) is the prior for θi under Hi. In this case the Bayes factor is a
ratio of weighted likelihoods. By analogy with the likelihood ratio statistic, the
quantity 2 log B10 is often used to summarize the evidence for H1 compared
to H0, with the rough interpretation shown in Table 11.3. This contrasts with
the interpretation of a likelihood ratio statistic, whose null χ2 distribution
for nested models would depend on the difference in their degrees of freedom.
The log Bayes factor log B10 is sometimes called the weight of evidence.

Example 11.13 (HUS data) Example 4.40 introduced data on the num-
bers of cases of haemolytic uraemic syndrome (HUS) treated at a clinic in
Birmingham from 1970 to 1989. The data suggest a sharp rise in incidence
around 1980. In that example it was supposed that the annual counts y1, . . . , yn

are realizations of independent Poisson variables with means E(Yj) = λ1 for
j = 1, . . . , τ and E(Yj) = λ2 for j = τ + 1, . . . , n. Here the changepoint τ can
take values 1, . . . , n− 1.

Suppose that our baseline model H0 is that λ1 = λ2 = λ, that is, no change,
and consider the alternative Hτ of change after year τ . Under Hτ we suppose
that λ1 and λ2 have independent gamma prior densities with parameters γ
and δ. This density has mean γ/δ and variance γ/δ2. Then Pr(y | Hτ ) equals
∫ ∞

0

τ∏

j=1

λ
yj

1

yj !
e−λ1 × δγλγ−1

1

Γ(γ)
e−δλ1 dλ1

∫ ∞

0

n∏

j=τ+1

λ
yj

2

yj !
e−λ2 × δγλγ−1

2

Γ(γ)
e−δλ2 dλ2,

or equivalently

δ2γ

Γ(γ)2
∏n

j=1 yj !

Γ (γ + sτ )Γ (γ + sn − sτ )

(δ + τ)γ+sτ (δ + n− τ)γ+sn−sτ
,

where sτ = y1 + · · · + yτ .
Under H0 we assume that λ also has the gamma density with parameters

γ and δ. Then the Bayes factor for a changepoint in year τ is

Bτ0 =
Γ (γ + sτ )Γ (γ + sn − sτ ) δγ(δ + n)γ+sn

Γ(γ)Γ(γ + sn)(δ + τ)γ+sτ (δ + n− τ)γ+sn−sτ
, τ = 1, . . . , n− 1.

For completeness we set Bn0 = 1.
Table 11.4 gives 2 logBτ0 for τ = 1, . . . , 19, for values of γ and δ such that
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Table 11.4 Bayes
factors for
comparison of model
of change in Poisson
parameter after τ
years, Hτ , with
model of no change
H0, for HUS data y.
There is very strong
evidence of change in
any year from
1976–86.

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

y 1 5 3 2 2 1 0 0 2 1
2 log Bτ0, γ = δ = 1 4.9 −0.5 0.6 3.9 7.5 13 24 35 41 51
2 log Bτ0, γ = δ = 0.01 −1.3 −5.9 −4.5 −1.0 3.0 9.7 20 32 39 51
2 log Bτ0, γ = δ = 0.0001 −10 −15 −14 −10 −6.1 0.6 11 23 30 42

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

y 1 7 11 4 7 10 16 16 9 15
2 log Bτ0, γ = δ = 1 63 55 38 42 40 31 11 −2.9 −5.3 0
2 log Bτ0, γ = δ = 0.01 64 57 40 47 46 38 18 1.8 1.2 0
2 log Bτ0, γ = δ = 0.0001 55 48 31 38 37 29 8.8 −7.1 −7.7 0

the prior density for λ has unit mean and variances respectively 1, 102, 104,
corresponding to increasing prior uncertainty. Negative values of 2 logBτ0

correspond to evidence in favour of H0. There is very strong evidence for
change in any year from 1976 to 1986, but the most plausible changepoint
is just after 1980. The evidence for change is overwhelming for all the priors
chosen. See Practical 11.6.

Example 11.14 (Forensic evidence) The following situation can arise
when forensic evidence is used in criminal trials: material y found on a suspect
is similar to other material, x, at the scene of the crime, and it is desired to
know how this affects our view of the case. For simplicity we shall suppose
that if x and y come from the same source, the suspect is guilty, an event we
shall denote by G. Let E denote any other evidence. Then the odds of guilt,
conditional on E and the data, are

Pr(G | x, y, E)

Pr(G | x, y, E)
=

Pr(x, y | G, E)

Pr(x, y | G, E)

Pr(G | E)

Pr(G | E)

=
Pr(x, y | G)

Pr(x | G)Pr(y | G)
× Pr(G | E)

Pr(G | E)
, (11.18)

where we have supposed that x and y are independent of E, and that they are
independent given the event G that the suspect is not guilty. The first ratio
on the right of (11.18) is the Bayes factor due to the forensic evidence.

Let y and x represent single measurements on the refractive index of glass
fragments found on a suspect and at the scene of a burglary. We model the
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corresponding random variables as

X | θ1 ∼ N(θ1,σ
2), Y | θ2 ∼ N(θ2,σ

2),

where θ1 and θ2 are the true refractive indexes and σ2 is known. If the suspect
is guilty, then θ1 = θ2 = θ, say. We model natural variation among refractive
indexes by supposing that θ is drawn from a population of types of glass whose
true refractive indexes are N(µ, τ2), where µ and τ2 ≫ σ2 both known. Thus
under G,

X, Y | θ iid∼ N(θ,σ2), θ ∼ N(µ, τ2),

while under G, the true indexes θ1 and θ2 are independent, giving

X | θ1 ∼ N(θ1,σ
2), Y | θ2 ∼ N(θ2,σ

2), θ1, θ2
iid∼ N(µ, τ2).

It turns out to be easier to work in terms of transformed observations u = x−y
and z = 1

2 (x + y), and to write the corresponding random variables as

U = θ1 − θ2 + ε1 − ε2, Z = 1
2 (θ1 + θ2 + ε1 + ε2), ε1, ε2

iid∼ N(0,σ2).

Then U and Z are independent and normal both conditionally on θ1, θ2 and
unconditionally. Under G, θ1 = θ2, so

U ∼ N(0, 2σ2), Z ∼ N(µ, τ2 + 1
2σ

2),

while under G,

U ∼ N(0, 2τ2 + 2σ2), Z ∼ N(µ, 1
2τ

2 + 1
2σ

2).

As the Jacobian of the transform from (x, y) to (u, z) equals one under both
G and G, and τ2 ≫ σ2, the Bayes factor is roughly

(2σ2)−1/2 exp{−u2/(4σ2)}(τ2)−1/2 exp{−(z − µ)2/(4τ2)}
(2τ2)−1/2 exp{−u2/(4τ2)}(τ2/2)−1/2 exp{−(z − µ)2/τ2}

,

which equals
(
τ2

2σ2

)1/2

× exp

(
− u2

4σ2

)
× exp

{
(z − µ)2

2τ2

}
.

The interpretation of the second term is that if the difference u = x − y
is large relative to its variance 2σ2, there is strong evidence that θ1 and θ2
differ, and this favours G. The third term measures how typical x and y are.
If z = 1

2 (x+ y) is far from its mean, µ, compared to its variance 1
2τ

2 under G,
both x and y have similar but unusual refractive indexes, and this strengthens
the evidence for G. With τ/σ = 100, u/(2σ2)1/2 = 2, and (z−µ)/(1

2τ
2)1/2 = 2,

for example, these factors are respectively 0.135 and 2.718, and the overall
Bayes factor is 26.01. Under G a frequentist test for a difference between
θ1 and θ2 based on u would suggest that θ1 ̸= θ2 at the 5% level, but the
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Bayes factor gives strong evidence in favour of guilt, as the values of x and y
correspond to similar, unusual, types of glass.

A more realistic model would account for non-normality of the distribution
of θ. Other forms of evidence, such as DNA fingerprints or cloth samples,
require more complex likelihoods in the Bayes factor and use prior informa-
tion from specially tailored databases. Moreover when the probabilities being
modelled are very small, it is important to allow for the possibility of events
such as mistakes at the forensic laboratory.

We often wish to test nested hypotheses. In a typical example θ = (ψ,λ)
for real ψ, and λ varies in an open subset of IRp, with H0 : ψ = ψ0 and
H1 : ψ ̸= ψ0. Then if the same proper continuous prior π(ψ,λ) is used under
both hypotheses, the prior odds in favour of H1 are infinite because

Pr(H0) =

∫
π(ψ0,λ) dλ = 0

is an integral over a set of prior probability zero. Thus the posterior odds in
favour of H1 are infinite, whatever the data. This vexation can be eliminated
by using different prior densities, weighted according to prior belief in H0 and
H1, giving overall prior δ(·) is the Dirac

delta function.

π(ψ,λ) = δ(ψ − ψ0)π(ψ0,λ | H0)Pr(H0) + π(ψ,λ | H1)Pr(H1),

where ∫
π(ψ0,λ | H0) dλ =

∫
π(ψ,λ | H1) dψdλ = 1.

One result of this is that Bayes factors are more sensitive to the prior than are
posterior densities. In particular, improper priors cannot be used, as the Bayes
factor depends on the ratio of the two arbitrary constants of proportionality
that appear in the priors. One way to remove the arbitrariness is to fix the
ratio of these constants using some external argument.

A further difficulty is that when a large number of models must be com-
pared, prior probabilities and proper priors must be assigned to each. This
can be hard in practice, and the results may depend strongly on how it is
done. This contrasts with frequentist hypothesis testing, where such difficul-
ties do not arise. An apparently even more striking contrast is provided by
the following example.

Example 11.15 (Jeffreys–Lindley paradox) Consider testing H0 : µ = Dennis Victor
Lindley (1923–) was
educated at
Cambridge, and held
academic posts
there, in
Aberwystwyth, and
in London. He is a
strong advocate of
Bayesian statistics.
See Smith (1995).

0 against H1 : µ ̸= 0 based on a normal random sample y1, . . . , yn with mean
µ and known variance σ2. The usual test is based on the normal distribution
of n1/2Y /σ under H0, and gives P-value p = Φ(−n1/2|y|/σ). In the Bayesian

Y is the average of
the random variables
Y1, . . . , Yn; its
observed value is y.

framework, we write π0 = Pr(H0), and suppose that under H1, µ is normal
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Table 11.5

Dependence of Bayes
factor B01 on sample
size n for a test with
significance level
0.01.

n 1 10 100 1000 104 106 108

B01 0.269 0.163 0.376 1.15 3.63 36.2 362

with mean zero and variance τ2. Then the posterior probabilities are

Pr(H0 | y) =
π0

(2πσ2)n/2
exp

⎛

⎝− 1

2σ2

n∑

j=1

y2
j

⎞

⎠ ,

Pr(H1 | y) =
1− π0

(2πσ2)n/2(2πτ2)1/2

∫
exp

⎧
⎨

⎩
− 1

2σ2

n∑

j=1

(yj − µ)2 − µ2

2τ2

⎫
⎬

⎭
dµ,

leading to Bayes factor

B01 =

(
1 + n

τ2

σ2

)1/2

exp

{
− ny2

2σ2(1 + n−1σ2/τ2)

}

in favour of H0. Now suppose that ny2/σ2 = z2
α/2. The significance level of the

conventional test is α, but as n→∞ we see that B01
.
= n1/2τσ−1 exp(−z2

α/2/2),
giving increasingly strong evidence in favour of H0. Hence the paradox: al-
though with y corresponding to α = 10−6 we would reject H0 decisively, the
Bayes factor gives increasingly strong support for H0, because as n→∞, the
weight of the alternative distribution is more and more widely spread com-
pared to the distance from y to the null hypothesis value of µ. Table 11.5 gives
some values of B01 when τ2 = σ2.

One resolution of this hinges on noticing that a fixed alternative is not ap-
propriate as n→∞. A test is used when there is doubt as to its outcome —
when the data do not evidently contradict the null hypothesis. Mathemati-
cally, this means that sensible alternatives are O(n−1/2) distant from the null
hypothesis. In this case we take τ2 = n−1δσ2, so that as n → ∞ the range
of alternatives is fixed relative to the null; sensible values for δ might be in
the range 5–20. Then the Bayes factor corresponding to significance level α,
B01 = (1 + δ)1/2 exp{− 1

2z2
α/2/(1 + δ−1)}, does not increase with n. If we take

δ = 10 and α = 0.05, 0.01, 0.001, and 0.0001, B10 equals 1.73, 6.2, 41.4,
and 293. According to Table 11.3 these correspond respectively to evidence
against H0 that is hardly worth mentioning, positive, strong, and very strong,
broadly agreeing with the usual interpretation of the P-values.

11.2.3 Model criticism

The prior density π(θ) introduces further information into the model, with
the benefit of directness of inference for θ. The corresponding disbenefit is
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the need to assess the appropriateness of π(θ) and the sensitivity of posterior
conclusions to the prior, added to the usual concerns about the sampling model
f(y | θ). Sensitivity analysis is generally performed simply by comparing
posterior inferences based on a range of priors and models. The problems this
poses are mainly computational, and we discuss them briefly in Section 11.3.

When just a few parametrized alternative models are in view, the ideas for
model comparison outlined in Section 11.2.2 can be applied, supplemented
with suitable graphs. In practice, however, consideration of all possible mod-
els is usually infeasible, not least because data can spring surprises on the
investigator, and so we turn to model-checking when the alternatives are not
explicit.

Marginal inference

From a Bayesian viewpoint all information concerning the data and model is
contained in the joint density

f(y, θ) = π(θ | y)f(y). (11.19)

and this suggests that f(y) should be used to check the model. It is relatively
clear how to do this when there is a sufficient statistic s and s = (t, a), where
a is a function of s whose distribution does not depend on θ; a is an ancillary
statistic, a notion explored in Section 12.1. Then we can write

f(y) = f(y | s)f(a)

∫
f(t | a, θ)π(θ) dθ, (11.20)

the first two components of which do not depend on the prior, and hence can
be used to give information about the sampling model. The third component
of (11.20), f(t | a), can be regarded as carrying information about agreement
between data and prior. In simple models, consideration of the first two terms
can yield standard model-checking tools.

Example 11.16 (Location-scale model) Let y1, . . . , yn be a random
sample from the location-scale model yj = η+ τεj , where the εj have density
g. In general, the order statistics s = (y(1), . . . , y(n)) form a minimal sufficient
statistic for θ = (η, τ) based on y1, . . . , yn. They may be re-expressed as

t = θ̂ = (η̂, τ̂ ), a =

(
y(1) − η̂

τ̂
, . . . ,

y(n) − η̂
τ̂

)
,

where t consists of the maximum likelihood estimators of θ, and the joint
distribution of the maximal invariant a is degenerate but independent of η
and τ . The suitability of g can be checked by probability plots of a against
quantiles of g. Similar ideas extend to regression models.

Given a particular choice of g, agreement between the prior and data would
be assessed through the conditional density of θ̂ given a.
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When g is normal, the minimal sufficient statistic is (y, s2) and the as-
sumption of normality is checked using the distribution of y given y and s2.
Example 5.14 established that the raw residuals ((y1 − y)/s, . . . , (yn − y)/s)
are independent of y and s2.

The marginal joint distribution of y and s2 enables the prior to be criticized.
For instance, suppose that a joint conjugate prior is used for µ and σ2, with

µ | σ2 ∼ N
(
µ0,σ

2/k0

)
, σ2 ∼ IG

(
1
2ν0,

1
2ν0σ

2
0

)
.

Then integration shows that the marginal densities of y and s2 are given byIG(·, ·) denotes the
inverse gamma
distribution.

d1 =
y − µ0

σ0

(
n−1 + k−1

0

)1/2
∼ tν0 , d2 =

s2

σ2
0

∼ Fn−1,ν0 .

Values of d1 and d2 that are unusual relative to the distributions of the cor-
responding random variables D1 and D2 can cast doubt on both prior and
sampling models. For example, if a probability plot cast no doubt on the as-
sumption of normality, and d1 = 100 nevertheless, the relevance of the prior
values µ0 and σ2

0 would be called into question. But if the data were not nor-
mal but Cauchy, then y would have the same distribution as y1 and very large
values of d1 could arise even if the prior and data agreed about µ.

Consider again the data of Example 11.12, for which the model was normal.
Suppose that our prior is that conditional on σ2, µ ∼ N(0,σ2), and that the
prior distribution for σ2 is IG(3, 3× 1002). Then d1 = 0.202 and d2 = 0.1424.
The first is close enough to zero to cast no doubt on the prior mean, but d2

is rather small relative to the F14,6 distribution, and casts some doubt on the
prior variance. The corresponding Bayesian P-values are Pr(|D1| > |d1|) =
0.75 and Pr(D2 < d2) = 0.045; the data are rather more precise than our
prior information would suggest.

One overall measure of the plausibility of the data under the model is the
probability Pr{f(Y+) ≤ f(y)}, where f(y) is the marginal density of the data
actually observed, and Y+ is a set of data that might have been observed
(Problem 11.12). Some controversy surrounds this test and the P-values cal-
culated in the previous example, as they flout the likelihood principle. One
view is that the essence of Bayesian inference is to use Bayes’ theorem to up-
date prior belief in light of the data. This entails using posterior probabilities
or equivalently Bayes factors to compare competing models, and leaves no
place for tail probability calculations. A contrary argument is that a Bayes
factor measures the relative support for two hypotheses and therefore requires
prior specification of each, while some model-checking techniques do not re-

quire explicit alternatives: if my prior belief is that y1, . . . , y20
iid∼ N(0, 1), I

am surprised to learn that the smallest value is −10, even before considering
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how this could have arisen. Furthermore, a strict interpretation of the argu-
ment for Bayes factors requires the specification of a proper prior distribution
over all reasonable alternatives, which seems infeasible in practice. Finally,
the argument for the likelihood principle assumes that the model is correct
and the case for strict adherence to the principle seems weaker when assessing
fit than when performing inference for a parameter.

Prediction diagnostics

Most models do not have a useful reduction in terms of exact minimal sufficient
or ancillary statistics, so the ideas outlined above cannot usually be applied.
Moreover, π(θ) is often improper in practice and then f(y) is typically im-
proper also, though this need not undercut diagnostic use of f(y | s)f(a) if
there is a useful sufficient reduction. When π(θ) is improper, posterior pre-
dictive distributions can be used to diagnose both problems with individual
cases and more general model failures. The idea is to assess the posterior
plausibility of suitable functions of the data.

One way to detect single outliers compares observations with their predicted
values conditional on the remaining data through the conditional predictive
ordinates f(yj | y−j), where y−j consists of all the data except yj. Since these
quantities may be written in terms of ratios of densities, they depend less on
the propriety of priors. There is a close link to cross-validation.

Example 11.17 (Normal linear model) In the normal linear model with
known n × p design matrix X of rank p < n, the distribution of the n × 1
response vector y conditional on the p × 1 vector of parameters β and the
error variance σ2 is normal with mean Xβ and covariance matrix σ2In, and
the least squares estimates and residual estimate of error

β̂ = (XTX)−1XTy, s2 = (n− p)−1yT{I −X(XTX)−1XT}y,

are independent and minimal sufficient for β and σ2.
It would be alarming if the usual standardized residuals rj had no Bayesian

justification. Fortunately they do, as we now see. The simplest argument is
that the joint distribution of a = (r1, . . . , rn) is free of the parameters θ =
(β,σ2), for which θ̂ = (β̂, s2) form a complete minimal sufficient statistic.
Basu’s theorem (page 724) implies that a is independent of θ̂, so we infer
from (11.20) that the sampling model can be checked by comparing a to its
joint distribution. This justifies residual plots and other tricks of the trade. Concentrationally-

challenged readers
may want to jump to
(11.23).

For a longer more tedious argument for Bayesian use of deletion residuals
and hence of the rj , we compute the conditional predictive ordinate f(yj | y−j)
under the conjugate prior distribution for β and σ2,

β | σ2 ∼ N(γ,σ2V ), σ2 ∼ IG
(

1
2ν,

1
2ντ

2
)
,

where the hyperparameters are the p× 1 vector γ, the p× p positive definite
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symmetric matrix V , and the scalars ν and τ2; these are all regarded as known.
An argument analogous to that leading to (11.13) gives

π(β,σ2 | y) ∝ π(β | β̂,σ2)π(σ2 | s2),

so we need only find the posterior distributions of β given β̂ and σ2 and of σ2

given s2. As the joint distribution of (βT, β̂T)T given σ2 is

N2p

{(
γ
γ

)
,σ2

(
V V
V V + (XTX)−1

)}
,

(3.21) and Exercise 8.5.2 shows that the posterior distribution of β given β̂
and σ2 is normal with mean and variance matrix

(
XTX + V −1

)−1
(
XTX β̂ + V −1γ

)
, σ2

(
XTX + V −1

)−1
, (11.21)

which generalizes (11.11). As prior uncertainty about γ increases, V −1 →
0, and then we see from (11.21) that the posterior mean and variance of
β approach β̂ and σ2(XTX)−1. Direct calculation shows that the posterior
distribution of σ2 given s2 is IG[(ν + n)/2, {ντ2+(n−p)s2}/2]. If the constant
prior π(β) ∝ 1 is used, then the posterior mean and variance of β given σ2 are
β̂ and σ2(XTX)−1, but the posterior density for σ2 is IG[(ν + n− p)/2, {ντ2+
(n− p)s2}/2]; letting ν → 0 gives the effect of taking π(β,σ2) ∝ σ−2.

For future reference we note that the distribution of y conditional on σ2 is
normal with mean Xγ and variance σ2(I + XV XT), and that on integrating
over the prior distribution for σ2, we find that the marginal density f(y) has
a multivariate t form

Γ
(

n+ν
2

)
(ντ2)ν/2

πn/2Γ
(
ν
2

)
|I + XV XT|1/2

{
ντ2 + (y −Xγ)T (I + XV XT)−1 (y −Xγ)

}−(n+ν)/2
.

(11.22)

To find the posterior predictive density of another observation y+ with p×1
covariate vector x+, assumed independent of y conditional on β and σ2, we
write

f(y+ | y) =

∫
f(y+ | θ)π(θ | y) dθ

=

∫ ∫
f(y+ | β,σ2)π(β | β̂,σ2)π(σ2 | s2) dβ dσ2

=

∫
π(σ2 | s2)

∫
f(y+ | β,σ2)π(β | β̂,σ2) dβ dσ2.

Now

y+ | β,σ2 ∼ N(xT
+β,σ2),

β | β̂,σ2 ∼ N
{

(XTX + V −1)−1(XTX β̂ + V −1γ),σ2(XTX + V −1)−1
}

,
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from which it follows that conditional on β̂ and σ2, the distribution of y+ is
normal with mean and variance

xT
+(XTX + V −1)−1(XTX β̂ + V −1γ), σ2

{
1 + xT

+(XTX + V −1)−1x+

}
.

Integration over the posterior distribution of σ2 shows that the posterior pre-
dictive distribution of y+ conditional on y is given by

y+ − xT
+(XTX + V −1)−1(XTX β̂ + V −1γ)

[{
(n−p)s2+ντ2

n+ν

}{
1 + xT

+(XTX + V −1)−1x+

}]1/2
∼ tn+ν . (11.23)

For prediction of yj given the other observations y−j, based on the improper
prior π(β,σ2) ∝ σ−2, we set V −1 = 0 and ν = 0 and replace y+ with yj , x+

with xj , n+ν with n−p−1, and β̂, s2 and X with the corresponding quantities
β̂−j , s2

−j and X−j based on y−j . Then (11.23) becomes

yj − xT
j β̂−j

[
s2
−j

{
1 + xT

j (XT
−jX−j)−1xj

}]1/2
∼ tn−p−1.

A straightforward calculation reveals that the term in braces in the denomi-
nator here is (1− hj)−1, where hj is the jth leverage based on the full model.
Hence prediction of yj given y−j may be based on the tn−p−1 distribution of
the deletion residual

r∗j =
(yj − xT

j β̂−j)(1 − hj)1/2

s−j
.

Thus outlier detection based on the conditional predictive ordinate is con-
ducted using the usual deletion residuals r∗j . As these are monotonic functions
of the standardized residuals rj , this supports Bayesian use of the rj .

More general diagnostics can be based on measures of discrepancy between
data and the model, d = d(y, θ), compared to data Y+ that might have been
generated by the model. Posterior predictive checks are based on comparison
of D+ = d(Y+, θ) with its predictive distribution, via

Pr {d(Y+, θ) ≥ d(y, θ) | y} , (11.24)

where the averaging is over both Y+ and the posterior distribution of θ. Since
Y+ is independent of y given θ, we can write
∫

Pr {D+ ≥ d(y, θ) | y, θ}π(θ | y) dθ =

∫
Pr {D+ ≥ d(y, θ) | θ} π(θ | y) dθ.

Thus a simple way to evaluate (11.24) is to calculate Pr {D+ ≥ d(y, θ) | θ} for
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fixed θ, and then to average this probability over the posterior density of θ.
One omnibus measure of discrepancy is the analogue of Pearson’s statistic,

d(y, θ) =
n∑

j=1

{yj − E(Yj | θ)}2

var(Yj | θ) ,

but this may be inappropriate, and typically D+ is chosen with key aspects of
the model in mind. As mentioned above, authors differ over whether (11.24)
should be used, though unlike the use of the marginal density of y, inference
based on (11.24) does condition on the data.

11.2.4 Prediction and model averaging

In the Bayesian framework prediction is performed through the posterior pre-
dictive density (11.6). In practice this is not as simple as it appears, because
there may be a number of possible models M1, . . . , Mk on which to the base
the prediction. Conditional on Mi, the predictive density for z based on y
is f(z | y, Mi), but this ignores any uncertainty concerning the selection of
Mi. This uncertainty can be incorporated by averaging over the posterior
distribution of the model selected, to give the model-averaged prediction

f(z | y) =
k∑

i=1

f(z | y, Mi)Pr(Mi | y) (11.25)

which is an average of the posterior distributions of z under the different
models, weighted according to their posterior probabilities

Pr(Mi | y) =
f(y | Mi)Pr(Mi)

∑k
l=1 f(y | Ml)Pr(Ml)

, (11.26)

where

f(y | Mi) =

∫
f(y | θi, Mi)π(θi | Mi) dθi,

f(z | Mi, y) =

∫
f(z | y, θi, Mi)f(y | θi, Mi)π(θi | Mi) dθi

f(y | Mi)
.

Here θi is the parameter for model Mi, under which the prior is π(θi | Mi) and
the prior probability of Mi is Pr(Mi). Formally, (11.25) is just a re-expression
of (11.6) in which the parameter splits into two parts, one a model indicator,
Mi, and the other the parameters conditional on Mi. In using (11.25) it is
crucial that z is the same quantity under all models considered, rather than
one whose interpretation depends on the model.

In practice the main obstacle to model averaging is computational. For
each model, the integrations involved must usually be done numerically using
ideas described in Section 11.3. Furthermore there can be many models in
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some applications — for example, selecting among 15 covariates in a regression
problem gives 215 = 32, 768 models, corresponding to inclusion or exclusion of
each covariate separately, without considering outliers, transformations, and
so forth. Thus it may be difficult to find the most plausible models, quite apart
from the calculations conditional on each model and the difficulties of specifing
a prior over model space — giving the same weight to all combinations of
covariates will rarely be sensible.

Example 11.18 (Cement data) We fit linear models to the data in Ta-
ble 8.1 with n = 13 observations and four covariates. There are 24 possible
subsets of the covariates, giving us models M1, . . . , M16, which for sake of il-
lustration we regard as equally probable a priori, though in practice we should
hope that a small number of covariates is more likely than a large number. The
models are on different parameter spaces, so the discussion in Section 11.2.2
implies that proper, preferably weak, priors should be used. We use the con-
jugate prior described in Example 11.17, and without loss of generality centre
and scale each covariate vector to have average zero and unit variance. We
then set V to be the 5 × 5 matrix with diagonal elements φ2(v, 1, 1, 1, 1),
where v is the sample variance of y, γT = (y, 0, 0, 0, 0), ν = 2.58, τ2 = 0.28,
and φ = 2.85. This choice implies that the elements of β are independent a
priori, and should give a weak but proper prior that is consistent between
different models and invariant to location and scale changes of the response
and explanatory variables.

The marginal density of y under this model is (11.22); for each subset of
covariates we use the corresponding submatrix of V . Table 11.6 shows the
quantities 2 log B10, where B10 = Pr(y | M1)/Pr(y | M0) is the Bayes factor
in favour of a subset of covariates relative to the model with none, the posterior
probabilities of each subset, and, for comparison, the residual sums of squares
under the usual linear models, which are broadly in line with the probabilities.

Let us try and predict the value of a new response y+ with covariates
xT

+ = (1, 10, 40, 20, 30). Conditional on a particular subset of covariate vectors,
the predictive distribution for y+ is given by (11.23). Figure 11.3 shows these
densities for the six models shown in Table 11.6 to have non-negligible support,
and the model-averaged predictive density.

A different approach to dealing with model uncertainty is to find a plausible
model, f(y | ψ)π(ψ), and then add further parameters λ whose variation
allows for the most uncertain aspects of the model, together with a prior that
expresses belief about them. This gives an expanded model f(y | ψ,λ)π(ψ,λ),
to which (11.6) is then applied with θ = (ψ,λ).
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Table 11.6

Bayesian prediction
using model
averaging for the
cement data. For
each of the 16
possible subsets of
covariates, the table
shows the log Bayes
factor in favour of
that subset
compared to the
model with no
covariates and gives
the posterior
probability of each
model. The values of
the posterior mean
and scale parameters
a and b are also
shown for the six
most plausible
models; (y+ − a)/b
has a posterior t
density. For
comparison, the
residual sums of
squares are also
given.

Model RSS 2 log B10 Pr(M | y) a b

– – – – 2715.8 0.0 0.0000
1 – – – 1265.7 7.1 0.0000
– 2 – – 906.3 12.2 0.0000
– – 3 – 1939.4 0.6 0.0000
– – – 4 883.9 12.6 0.0000
1 2 – – 57.9 45.7 0.2027 93.77 2.31
1 – 3 – 1227.1 4.0 0.0000
1 – – 4 74.8 42.8 0.0480 99.05 2.58
– 2 3 – 415.4 19.3 0.0000
– 2 – 4 868.9 11.0 0.0000
– – 3 4 175.7 31.3 0.0002
1 2 3 – 48.11 43.6 0.0716 95.96 2.80
1 2 – 4 47.97 47.2 0.4344 95.88 2.45
1 – 3 4 50.84 44.2 0.0986 94.66 2.89
– 2 3 4 73.81 33.2 0.0004
1 2 3 4 47.86 45.0 0.1441 95.20 2.97

Figure 11.3

Posterior predictive
densities for cement
data. Predictive
densities for y+

based on individual
models are given as
dotted curves, and
the heavy curve is
the averaged
prediction from all
16 models.

y+

po
st

er
io

r p
re

di
ct

iv
e 

de
ns

ity

80 85 90 95 100 105 110

0.
0

0.
05

0.
10

0.
15

0.
20

Exercises 11.2
1 Find elements θ̃ and J̃(θ̃) of the normal approximation to a beta density, and

hence check the formulae in Example 11.11. Find also the posterior mean and
variance of θ. Give an approximate 0.95 credible interval for θ. How does this
differ from a 0.95 confidence interval? Comment.

2 Let Y1, . . . , Yn be a random sample from the uniform distribution on (0, θ), and
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take as prior the Pareto density with parameters β and λ,

π(θ) = βλβθ−β−1, θ > λ, β,λ > 0.

(a) Find the prior distribution function and quantiles for θ, and hence give prior
one- and two-sided credible intervals for θ. If β > 1, find the prior mean of θ.
(b) Show that the posterior density of θ is Pareto with parameters n + β and
max{Y1, . . . , Yn,λ}, and hence give posterior credible intervals and the posterior
mean for θ.
(c) Interpret λ and β in terms of a prior sample from the uniform density.

3 Check the details of Example 11.7.

4 Two independent samples Y1, . . . , Yn
iid∼ N(µ,σ2) and X1, . . . , Xm

iid∼ N(µ, cσ2)
are available, where c > 0 is known. Find posterior densities for µ and σ based
on prior π(µ,σ) ∝ 1/σ.

5 Verify (11.21), (11.22), and (11.23). How do (11.21) and (11.22) change when
var(yj | β, σ2) = σ2/wj , the wj being known weights?

6 Travelling in a foreign country, you arrive at midnight in a town you have never
heard of. You have no idea of its size. The first thing you see is a bus with the
number y = 100. What is a reasonable estimate of the total number θ of buses
in the town, assuming that they are numbered 1, . . . , θ?
(a) Explain why it is sensible to use the improper prior π(θ) ∝ θ−1, θ = 1, 2, . . ..
Assuming that f(y | θ) is uniform on 1, . . . , θ, show that θ has posterior density

π(θ | y) =
θ−2

∑∞
u=y

u−2
, θ = y, y + 1, . . . .

(b) Show that the posterior mean of θ is infinite. Show also that the posterior
distribution function is approximately

Pr(θ ≤ v | y)
.
=

∫ v+1/2

y−1/2
u−2 du

∫∞

y−1/2
u−2 du

,

and that the posterior median is approximately 2y − 3/2. Give an equi-tailed
95% posterior confidence interval and a 95% HPD interval for θ.
(c) What would you conclude if you saw two buses, numbered 100 and 30?

7 In Example 11.12, calculate the Bayes factor for H0 : µ ≤ 0 and H1 : µ > 0.

8 A forensic laboratory assesses if the DNA profile from a specimen found at a
crime scene matches the DNA profile of a suspect. The technology is not perfect,
as there is a (small) probability ρ that a match occurs by chance even if the
suspect was not present at the scene, and a (larger) probability γ that a match
is reported even if the profiles are different; this can arise due to laboratory
error such as cross-contamination or accidental switching of profiles.
(a) Let R, S, and M denotes the events that a match is reported, that the
specimen does indeed come from the suspect, and that there is a match between
the profiles, and suppose that M denotes the

complement of M ,
and ∩ means ‘and’.Pr(R | M∩S) = Pr(R | M∩S) = Pr(R | M) = 1, Pr(M | S) = 0, Pr(R | S) = 1.

Show that the posterior odds of the profiles matching, given that a match has
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been reported, depend on

Pr(R | S)

Pr(R | S)
=

Pr(R | M ∩ S)Pr(M | S) + Pr(R | M ∩ S)Pr(M | S)

Pr(R | M ∩ S)Pr(M | S) + Pr(R | M ∩ S)Pr(M | S)
,

and establish that this equals {ρ+ γ(1 − ρ)}−1.
(b) Tabulate Pr(R | S)/Pr(R | S) when ρ = 0, 10−9, 10−6, 10−3 and γ = 0,
10−4, 10−3, 10−2.
(c) At what level of posterior odds would you be willing to convict the suspect,
if the only evidence against them was the DNA analysis, and you should only
convict if convinced of their guilt ‘beyond reasonable doubt’? Would your chosen
odds level depend on the likely sentence, if they are found guilty? How does your
answer depend on the prior odds of the profiles matching, Pr(S)/Pr(S)?

9 One way to set the ratio of arbitrary constants that appears when two models
are compared using Bayes factors and improper priors is by imaginary obser-
vations: we imagine the smallest experiment that would enable the models to
be discriminated but maximizes evidence in favour of H0, and then choose the
constants so that the Bayes factor equals one for these data.
Consider data from a Poisson process observed on [0, t0], and let H0 and H1

represent the models with rates λ(t) = ρ and λ(t) = µβ−1{1 − exp(−βt)},
where ρ, µ,β > 0. Take improper priors π(ρ) = c0ρ−1 and π(µ,β) = c1µ−2,
with c1, c0 > 0.
(a) Explain why the smallest experiment that enables the models to be discrim-
inated must have two events, and show that it gives Pr(y | H0) = c0/t20. Find
Pr(y | H1) and show that it is minimized when both events occur at t0, with

Pr(y | H1) = c1

∫ ∞

0

βe−2βt0

1 − e−βt0
dβ = c1t

−2
0

(
π2

6
− 1

)
.

Deduce that the device of imaginary observations gives c0/c1 = π2/6 − 1.
(b) Compute the Bayes factor when these two models are compared using the
data in Table 6.13. Discuss.
(Section 6.5.1; Raftery, 1988; Spiegelhalter and Smith, 1982)

10 A random sample y1, . . . , yn arises either from a log-normal density, with log Yj ∼
N(µ, σ2), or from an exponential density ρ−1e−y/ρ. The improper priors chosen
are π(ρ) = c0/ρ and π(µ,σ) = c1/σ, for ρ,σ > 0 and c0, c1 > 0. Use imaginary
observations to give a value for c1/c0.

11.3 Bayesian Computation

11.3.1 Laplace approximation

The goal of Bayesian data analysis is posterior inference for quantities of inter-
est, and this involves integration over one or more of the parameters. Usually
the integrals cannot be obtained in closed form and numerical approxima-
tions must be used. Deterministic integration procedures such as Gaussian
quadrature can sometimes be applied, but they are typically useful only for
low-dimensional integrals, and have the drawback of requiring knowledge of
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the position and width of any modes of the integrand that is usually unavail-
able in practice. The most powerful tool for approximate calculation of pos-
terior densities is numerical integration by Monte Carlo simulation, to which
we turn after describing an analytical approach known as Laplace’s method.

Consider the one-dimensional integral

In =

∫ ∞

−∞
e−nh(u) du, (11.27)

where h(u) is a smooth convex function with minimum at u = ũ, at which
point dh(ũ)/du = 0 and d2h(ũ)/du2 > 0. For compactness of notation we
write h2 = d2h(ũ)/du2, h3 = d3h(ũ)/du3, and so forth. Close to ũ a Taylor
series expansion gives h(u)

.
= h(ũ) + 1

2h2(u− ũ)2, so

In
.
= e−nh(ũ)

∫ ∞

−∞
e−nh2(u−ũ)2/2 du

= e−nh(ũ)

∫ ∞

−∞
e−z2/2 du

dz
dz

=

(
2π

nh2

)1/2

e−nh(ũ),

where the first and second equalities use the substitution z = (nh2)1/2(u −
ũ) and the fact that the normal density has unit integral. A more detailed
accounting (Exercise 11.3.2) gives

In =

(
2π

nh2

)1/2

e−nh(ũ) ×
{

1 + n−1

(
5h2

3

24h3
2

− h4

8h2
2

)
+ O

(
n−2

)}
. (11.28)

The leading term on the right of (11.28) is known as the Laplace approximation
to In, and we denote it by Ĩn.

There are several points to note about (11.28). First, as In/Ĩn = 1+O(n−1),
the error is relative, and Ĩn is often remarkably accurate. Second, Ĩn involves
only h and its second derivative at ũ, so it is relatively easy to obtain, nu-
merically if necessary. Third, the right-hand side of (11.28) is an asymptotic
series for In, implying that its partial sums need not converge, and that the
approximation may not be improved by including further terms of the series.
And fourth, because the bulk of the normal probability integral lies within
three standard deviations of its centre, the limits of the integral will not affect
Ĩn provided they lie outside the interval with endpoints ũ± 3(nh2)−1/2 or so.

In the multivariate case, with h(u) again a smooth convex function but u
a vector of length p, the same argument but using the multivariate normal
density shows that the Laplace approximation to (11.27) is

(
2π

n

)p/2

|h2|−1/2e−nh(ũ), (11.29)
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where ũ solves the p × 1 system of equations ∂h(u)/∂u = 0 and |h2| is the
determinant of the p×p matrix of second derivatives ∂2h(u)/∂u∂uT, evaluated
at u = ũ, at which point the matrix is positive definite.

In applications an approximation is often required to an integral of form

Jn(u0) =
( n

2π

)1/2
∫ u0

−∞
a(u)e−ng(u)

{
1 + O(n−1)

}
du, (11.30)

where u is scalar, a(u) > 0, and in addition to possessing the properties of
h(u) above, g is such that g(ũ) = 0. The first step in approximating (11.30) is
to change the variable of integration from u to r(u) = sign(u− ũ){2g(u)}1/2;
that is, r2/2 = g(u). Then g′(u) = dg(u)/du and r(u) have the same sign, and
rdr/du = g′(u), so

Jn(u0) =
( n

2π

)1/2
∫ r0

−∞
a(u)

r

g′(u)
e−nr2/2

{
1 + O(n−1)

}
dr

=
( n

2π

)1/2
∫ r0

−∞
e−nr2/2+log b(r)

{
1 + O(n−1)

}
dr,

where the positive quantity b(r) = a(u)r/g′(u) is regarded as a function of r.
We now change variable again, from r to r∗ = r − (rn)−1 log b(r), so

−nr∗2 = −nr2 + 2 log b(r)− n−1r−2{log b(r)}2.

The Jacobian of the transformation and the third term in −nr∗2 contribute
only to the error of Jn(u0), so

Jn(u0) =
( n

2π

)1/2
∫ r∗

0

−∞
e−nr∗2/2

{
1 + O(n−1)

}
dr∗

= Φ(n1/2r∗0) + O(n−1), (11.31)

where

r∗0 = r0 + (r0n)−1 log

(
v0

r0

)
, r0 = sign(u0 − ũ){2g(u0)}1/2, v0 =

g′(u0)

a(u0)
.

Variants on this expression play an important role in Chapter 12.
Here is a further approximation for later use. Let u = (u1, u2), where u1 is

scalar and u2 a p× 1 vector, and consider

(2π)−(p+1)/2c

∫ u0
1

−∞
du1

∫
du2 exp {−nh(u1, u2)} , (11.32)

where c is constant, the inner integral being over IRp. Here h has its previous
smoothness properties, is maximized at (ũ1, ũ2), and in addition h(ũ1, ũ2) = 0.
We fix u1 and apply Laplace approximation to the inner integral, obtaining

(2π)−1/2c

∫ u0
1

−∞
|nh22(u1, ũ21)|−1/2 exp {−nh(u1, ũ21)}

{
1 + O(n−1

}
du1,
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where ũ21 = ũ2(u1) maximizes h(u1, u2) with respect to u2 when u1 is fixed,
and h22(u1, u2) = ∂2h(u1, u2)/∂u2∂uT

2 is the p × p Hessian matrix of h with
respect to u2. Apart from multiplicative constants, this integral has form
(11.30), and so (11.31) may be used to approximate to (11.32), with

r0 = sign(u0
1 − ũ1)

{
2h(u0

1, ũ20)
}1/2

, v0 = c−1 ∂h(u0
1, ũ20)

∂u1

∣∣h22(u
0
1, ũ20)

∣∣1/2
,

where ũ20 is the maximizing value of u2 when u1 = u0
1.

Although the formulation of (11.27), (11.30), and (11.32) in terms of n and
the O(1) functions h and g simplifies the derivation of (11.29) and (11.31) by
clarifying the orders of the various terms, for applications it is equivalent and
usually simpler to set n = 1 and allow h and g and their derivatives to be
O(n).

Inference

One application of Laplace approximation is to the Bayes factor (11.17). For
one of the hypotheses we write Pr(y) =

∫
f(y | θ)π(θ) dθ, with integrand

expressed as exp{−h(θ)}, where h(θ) = −ℓm(θ) and

ℓm(θ) = log f(y | θ) + log π(θ)

is the log likelihood modified by addition of the log prior. Typically the first
term of ℓm is O(n), and the second is O(1). The value θ̃ that minimizes h(θ)
is the maximum a posteriori estimate of θ — the value that maximizes the
modified log likelihood — and we can apply (11.29). The result is

log Pr(y)
.
= log f(y | θ̃) + log π(θ̃)− 1

2p logn + 1
2p log(2π)− 1

2 log

∣∣∣∣∣
−∂

2ℓm(θ̃)

∂θ∂θT

∣∣∣∣∣
,

where p is the dimension of θ. To further simplify this, note that in large
samples the log prior is negligible relative to the log likelihood and θ̃ is roughly
the maximum likelihood estimate θ̂, and if concerned only with asymptotic
properties, we can drop terms that are O(1). This gives the breathtaking
approximation

−2 logPr(y)
.
= BIC = −2 log f(y | θ̂) + p log n.

This Bayes information criterion, which we met in Section 4.7, is used for
rough comparison of competing models.

For a more sophisticated application we write a vector parameter θ as
(ψ,λT)T and approximate the marginal posterior density for the scalar ψ,

π(ψ | y) =

∫
f(y | ψ,λ)π(ψ,λ) dλ∫

f(y | ψ,λ)π(ψ,λ) dλdψ
, (11.33)

by applying Laplace’s method to each integral. The discussion above gives
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the approximation to the denominator. For the numerator we take hψ(λ) =
−ℓm(ψ,λ), where the notation emphasises that the approximation is applied
only to the integral over λ, for a fixed value of ψ. The resulting approximation
may be written as

π(ψ | y)
.
=
( n

2π

)1/2

⎧
⎨

⎩

∣∣∣−∂
2ℓm(ψ̃,λ̃)
∂θ∂θT

∣∣∣
∣∣∣−∂

2ℓm(ψ,λ̃ψ)
∂λ∂λT

∣∣∣

⎫
⎬

⎭

1/2

f(y | ψ, λ̃ψ)π(ψ, λ̃ψ)

f(y | ψ̃, λ̃)π(ψ̃, λ̃)
, (11.34)

where λ̃ψ is the maximum a posteriori estimate of λ for fixed ψ and the
denominator and numerator determinants are of Hessian matrices of sides
(p− 1) and p respectively.

The posterior marginal cumulative distribution for ψ may be approximated
by applying (11.31) to the integral of (11.34) over the range (∞,ψ0). We take
u0 = ψ0,

g(ψ) = ℓm(ψ̃, λ̃)− ℓm(ψ, λ̃ψ), a(ψ) =

⎧
⎨

⎩

∣∣∣−∂
2ℓm(ψ̃,λ̃)
∂θ∂θT

∣∣∣
∣∣∣−∂

2ℓm(ψ,λ̃ψ)
∂λ∂λT

∣∣∣

⎫
⎬

⎭

1/2

,

and set r∗0 = r0 + r−1
0 log(v0/r0), where

r0 = sign(ψ0 − ψ̃)
[
2
{
ℓm(ψ̃, λ̃)− ℓm(ψ0, λ̃ψ0)

}]1/2
,

v0 = −∂ℓm(ψ0, λ̃ψ0)

∂ψ

⎧
⎪⎨

⎪⎩

∣∣∣−∂
2ℓm(ψ0,λ̃ψ0)
∂λ∂λT

∣∣∣
∣∣∣−∂

2ℓm(ψ̃,λ̃)
∂θ∂θT

∣∣∣

⎫
⎪⎬

⎪⎭

1/2

;

here λ̃ψ0 is the maximum a posteriori estimate of λ when ψ is fixed at ψ0. It
is often convenient to find the derivatives numerically.

Numerous variant approaches are possible. For example, the ratio of priors
in the integral of (11.34) may be included in the function a(u) of (11.30),
which case ℓm is simply the log likelihood, θ̃ and λ̃ψ are maximum likelihood
estimates, the Hessians are observed information matrices, and r0 is the di-
rected likelihood ratio statistic for testing the hypothesis ψ = ψ0. The prior
then appears only in v0. The resulting approximation is generally poorer than
that described above, but this idea does suggest a quick way to assess sensi-
tivity to the prior density. The key is to notice that the approximate effect on
(11.34) of taking a different prior, π1(ψ,λ), say, would be to multiply (11.34)
by the ratio c(ψ) = {π1(ψ, λ̃ψ)/π(ψ, λ̃ψ)}/{π1(ψ̃, λ̃)/π(ψ̃, λ̃)}; the effect is
approximate because Laplace approximation based on π1 would not lead to
integrals maximized at λ̃ψ and (ψ̃, λ̃). On the other hand, the effect on these
maximizing values of changing the prior is often relatively small. Thus the
effect of modifying the prior from π to π1 may be gauged by changing v0 to
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Table 11.7

Numbers of failures
y of ten pumps in x
thousand operating
hours, with the
crude rate estimate
y/x (Gaver and
O’Muircheartaigh,
1987). The final
column gives
empirical Bayes rate
estimates discussed
in Example 11.28.

Case x y Rate estimate (×102)
Crude Empirical Bayes

1 94.320 5 5.3 6.1
2 15.720 1 6.4 10.7
3 62.880 5 8.0 9.1
4 125.760 14 11.1 11.7
5 5.240 3 57.3 58.8
6 31.440 19 60.4 60.6
7 1.048 1 95.4 80.0
8 1.048 1 95.4 80.0
9 2.096 4 190.8 143.7
10 10.480 22 209.9 194.4

v0/c(ψ0), and recalculating r∗0 and Φ(r∗0). This involves no further maximiza-
tion or numerical differentation.

Example 11.19 (Pump failure data) Table 11.7 contains the numbers
of failures yj of n = 10 pumps in operating periods of xj thousands of hours.
The pumps are from several systems in the nuclear plant Farley 1; pumps 1, 3,
4, and 6 operate continuously, while the rest operate only intermittantly or on
standby. For now we suppose that the pumps may be expected to have similar
rates of failure, with the jth pump having failure rate λj , and that conditional
on λj , the numbers of failures yj have independent Poisson distributions with
means λjxj . We further suppose that the λj are independent realizations of a
gamma variable with parameters α and β, and that β itself has a prior gamma
distribution with parameters ν and φ. Thus

f(y | λ) =
n∏

j=1

(xjλj)yj

yj !
e−xjλj , π(λ | β) =

n∏

j=1

βαλα−1
j

Γ(α)
e−βλj ,

(11.35)

π(β) =
φνβν−1

Γ(ν)
e−φβ,

so that the joint density of the data y, the rates λ, and β is

f(y | λ)f(λ | β)π(β) = c
n∏

j=1

{
λ

yj+α−1
j e−λj(xj+β)

}
× βnα+ν−1e−φβ, (11.36)

where c is a constant of proportionality.
To find the conditional density of β, we integrate over the λj , to obtain

f(y,β) = c
n∏

j=1

{
(xj + β)−(yj+α)Γ(yj + α)

}
× βnα+ν−1e−φβ, (11.37)
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Table 11.8

Integrals of two
approximate
posterior densities
for β for the pumps
data. The first, Ĩ1,
involves a
one-dimensional
Laplace
approximation to
(11.36), while Ĩ10
involves
ten-dimensional
Laplace
approximation. The
table shows how the
integral changes
when the curvature
of the likelihood is
increased by a.

a 1 2 3 4 5 10 20
Ĩ1 1.022 1.017 1.014 1.012 1.011 1.009 1.007
Ĩ10 1.782 1.309 1.183 1.127 1.096 1.042 1.019

from which the marginal density of y is obtained by further integration to give

f(y) = c
n∏

j=1

Γ(yj + α) ×
∫ ∞

0
e−h(β) dβ,

where h(β) = φβ − (nα + ν − 1) logβ +
∑

(yj + α) log(xj + β); we use I to
denote the integral in this expression.

For sake of illustration we take a proper but fairly uninformative prior for
β, with ν = 0.1 and φ = 1, and take α = 1.8. Application of Laplace’s
method to I then results in the approximate posterior density for β, π̃(β |
y) = Ĩ−1 exp{−h(β)}, which has integral 1.022.

The accuracy of Laplace’s method can be tested by taking a different ap-
proach, in which we first integrate (11.36) over β, and then apply the multi-
variate version of Laplace’s method to the resulting ten-dimensional integral
with respect to the λj . In this case the density approximation has integral
1.782, because the ten-dimensional integral approximation, Ĩ10, is less accu-
rate than Ĩ1. To compare the two approaches we recalculate the approxima-
tions for data (axj , ayj) and various values of a. This leaves unchanged the
failure rates yj/xj , but increases by a factor a the Fisher information for each
of the λj , thereby increasing the curvature of the log likelihood and the ac-
curacy of the approximation. The results in Table 11.8 show that Ĩ10 rapidly
improves as a increases, and that with counts about 4–5 times as large as
those observed, Laplace’s method gives adequately accurate answers, even in
ten dimensions. In practice, of course, Ĩ1 would be used.

To calculate approximate posterior densities for λj , we integrate (11.36) over
λi, i ̸= j, and then apply Laplace’s method to the numerator and denominator
integrals of

π(λj | y) =
λ

yj+α−1
j e−λjxj

∫∞
0 e−hj(β) dλ

Γ(yj + α)
∫∞
0 e−h(β) dβ

,

where

hj(β) = (φ+ λj)β − (nα+ ν − 1) log β +
∑

i̸=j

(yi + α) log(xi + β).

The resulting denominator is again Ĩ1, while the numerator must be recalcu-
lated at each of a range of values of λj . Figure 11.4 shows these approximate
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Figure 11.4

Approximate
osterior densities

for β and λ2 for the
pumps data, based
on Laplace
approximation.
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densities for β and for λ2. That for λ2 has integral 1.0004 and is presumably
closer to one because it is based on a ratio of Laplace approximations.

The ideal situation for Laplace approximation is when the posterior density
is strongly unimodal. When the posterior is multimodal, the approximation
can be applied separately to each mode — provided they can all be found.
Different approximations apply when the posterior is peaked at the end of its
range (Exercise 11.3.5).

11.3.2 Importance sampling

Many Monte Carlo techniques may be applied in Bayesian computation. In
this section we discuss ideas based on importance sampling, and in the next
section we turn to iterative methods based on simulating Markov chains. Im-
portance sampling gives independent samples, and so measures of uncertainty
for estimators are usually fairly readily obtained, but it applies to a limited
range of problems. Iterative methods are more widely applicable but it can
be difficult to assess their convergence and to give statements of uncertainty
for their output.

Suppose we wish to calculate an integral of form

µ =

∫
m(θ, y, z)π(θ | y)dθ.

If we take m(θ, y, z) = I(θ ≤ a), for example, then µ = Pr(θ ≤ a | y), while
taking m(θ, y, z) = f(z | y, θ) gives µ = f(z | y), the posterior predictive
density for z given the data. Suppose that direct computation of µ is awkward,
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but that it is straightforward both to generate a sample θ1, . . . , θS from a
density h(θ) whose support includes that of π(θ | y), and to calculate m(θ, y, z)
and f(y | θ). We can then apply importance sampling for estimation of µ,
obtaining the unbiased estimator (Section 3.3.2)

µ̂ = S−1
S∑

s=1

m(θs, y, z)
π(θs | y)

h(θs)
= S−1

S∑

s=1

m(θs, y, z)w(θs), (11.38)

say, where w(θ) = π(θ | y)/h(θ) is an importance sampling weight. An impor-
tant advantage of µ̂ over the iterative procedures to be disussed later is that
its variance is readily obtained (Exercise 11.3.6).

In practice the importance sampling ratio estimator of µ,

µ̂rat =

∑S
s=1 m(θs, y, z)w(θs)
∑S

s=1 w(θs)
,

is more commonly used. This is typically less variable than µ̂; indeed it per-
forms perfectly if m(θ, y, z) is constant, as is clear from its variance, given by
(Example 2.25)

v̂ar(µ̂rat) =
1

S(S − 1)

S∑

s=1

{m(θs, y, z)− µ̂rat}2w(θs)2

w2 , w = S−1
S∑

s=1

w(θs).

As usual with importance sampling, a good choice of h(θ) is crucial if the
simulation is to be useful. One possibility is a normal approximation to the

posterior density of θ, taking h(θ) to be N
{
θ̂, J(θ̂)−1

}
, where θ̂ and J(θ̂)

are the maximum likelihood estimate and the observed information. Normal
approximation may be better if applied to a transformed parameter ψ = ψ(θ),
however, while the light-tailed normal distribution typically gives too few
simulations in the tail of the posterior density. Hence it is usually better to
generate the θs from a shifted and rescaled tν density.

Example 11.20 (Challenger data) Table 1.3 gives data on launches of
the space shuttle, including the ill-fated Challenger launch. In Examples 1.3,
4.5 and 4.33 we saw how these data may be modelled using a logistic regression
model, under which the number of O-rings suffering thermal distress when a
launch takes place at temperature x◦

1F is binomial with denominator m = 6
and probability π(β + β1x1) = exp(β0 + β1x1)/{1 + exp(β0 + β1x1)}. The
likelihood (4.6) for this model is shown in Figure 4.3. Let us represent the data
for the 23 successful launches by y, with likelihood f(y | θ); here θ = (β0,β1).

One aspect of interest when deciding whether to launch the Challenger
should have been the number Z of distressed O-rings at its launch temper-
ature of x1 = 31◦F. We suppose that, conditional on θ, f(z | θ) is binomial
with denominator m = 6 and probability π(β0 + 31β1), independent of other
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Figure 11.5

Importance sampling
applied to shuttle
data. Left: pairs
(β0,β1) simulated
from a prior density,
with log likelihood
contours
superimposed. Pairs
whose weight ws

exceeds (100S)−1

are shown as blobs.
The other pairs have
very low likelihoods
and hence essentially
zero posterior
probabilities ws.
Right: posterior
predictive density for
the number of
distressed O-rings
for a launch at 31◦F,
using beta prior with
a = b = 0.5 (blobs),
a = b = 1 (1) and
a = 1, b = 4 (2),
estimated by
importance sampling
with S = 10, 000.
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launches. Then in the Bayesian framework we should calculate the posterior
predictive density for Z,

∫
f(z | θ)f(y | θ)π(θ) dθ∫

f(y | θ)π(θ) dθ
,

where π(θ) is the prior density on (β0,β1).

The parameters β0 and β1 are difficult to interpret directly, and instead we
consider the probabilities π1 = π(β+60β1) and π2 = π(β+80β1) that a single
O-ring will be distressed at 60 and 80◦F. In practice specification of the joint
prior density of π1 and π2 would require engineering expertise, but in default
of this we simply suppose that they have independent beta densities (11.3)
with a = b = 1/2. For the initial step of the importance sampling algorithm
we generate 10,000 independent pairs (π1,π2) and then set

β1 =
1

80− 60
log

{
π2(1− π1)

π2(1− π1)

}
, β0 = log

{
π1

1− π1

}
− 60β1.

The left panel of Figure 11.5 shows some of the resulting pairs θs = (β0,β1),
superimposed on contours of the log likelihood. Pairs whose weight ws exceeds
one-hundredth of its average are shown by blobs. About 30% of the simulated
values fall into this category, for which

∑
ws = 0.9996, so just 4/10,000ths of

the posterior probability is placed on the other 7000 pairs. This occurs both
because the prior is much more dispersed than the likelihood, and because
they are mismatched, in the sense that the prior value of β1 for a given β0

is generally too large — the mode of f(β1 | β0) lies to the right of that of
f(y | β1,β0), considered as a function of β1 for fixed β0.

The right panel of Figure 11.5 shows the posterior probabilities of z =
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0, . . . , 6 distressed rings. There is appreciable probability of damage to most
of the rings, as Pr(Z ≥ 4 | y)

.
= 0.65, with little dependence on the prior.

This examples show both the strengths and weaknesses of importance sam-
pling. It is simple to apply, and because θ1, . . . , θS are independent it is easy to
obtain a standard error for µ̂, and then to increase S if necessary. On the other
hand the prior is sometimes so overdispersed relative to the likelihood that S
must be huge before an appreciable number of the ws are non-zero, and a bet-
ter importance sampling distribution must be found. This problem becomes
acute when the dimension of θ is large and the curse of dimensionality bites.
There are clever ways to improve importance sampling in such situations, but
Markov chain methods apply readily to many high-dimensional problems, and
to these we now turn.

11.3.3 Markov chain Monte Carlo

The idea of Markov chain Monte Carlo simulation is to construct a Markov
chain that will, if run for an infinitely long period, generate samples from a
posterior distribution π, specified implicitly and known only up to a normal-
izing constant. Although it has roots in areas such as statistical physics, its
application in mainstream Bayesian statistics is relatively recent and the dis-
cussion below is merely a snapshot of a topic in full spate of development. The
reader whose memory of Markov chains is hazy may find it useful to review
the early pages of Section 6.1.1.

Gibbs sampler
The term Gibbs
sampling comes from
an analogy with
statistical physics,
where similar
methods are used to
generate states from
Gibbs distributions.
In that context it is
called the heat bath
algorithm.

Let U = (U1, . . . , Uk) be a random variable of dimension k whose joint density
π(u) is unknown. Our goal is to estimate aspects of π(u), such as joint or
marginal densities and their quantiles, moments such as E(U1) and var(U1),
and so forth. Although π(u) itself is unknown, we suppose that we can simulate
observations from the full conditional densities π(ui | u−i), where u−i =
(u1, . . . , ui−1, ui+1, . . . , uk). Often in practice the constant normalizing π(u)
is unknown, but as it does not appear in the π(ui | u−i), this causes no
difficulty. If π(u) is proper, then the Hammersley–Clifford theorem implies
that under mild conditions π(u) is determined by these densities; this does
not imply that any set of full conditional densities determines a proper joint
density. Gibbs sampling is successive simulation from the π(ui | u−i) according
to the algorithm:

1 initialize by taking arbitrary values of U (0)
1 , . . . , U (0)

k .
2 Then for i = 1, . . . , I,

(a) generate U (i)
1 from π

(
u1 | u2 = U (i−1)

2 , . . . , uk = U (i−1)
k

)
,

(b) generate U (i)
2 from π

(
u2 | u1 = U (i)

1 , u3 = U (i−1)
3 , . . . , uk = U (i−1)

k

)
,
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(c) generate U (i)
3 from

π
(
u3 | u1 = U (i)

1 , u2 = U (i)
2 , u4 = U (i−1)

4 , . . . , uk = U (i−1)
k

)
,

...

(k) generate U (i)
k from π

(
uk | u1 = U (i)

1 , . . . , uk−1 = U (i)
k−1

)
.

Here we update each of the Uj in turn, basing each value generated on the
k − 1 previous simulations. This gives a stream of random variables

U (1)
1 , . . . , U (1)

k , U (2)
1 , . . . , U (2)

k , . . . , U (I−1)
1 , . . . , U (I−1)

k , U (I)
1 , . . . , U (I)

k ,

so for the jth component of U we have a sequence U (1)
j , . . . , U (I)

j .

To see why we might hope that (U (I)
1 , . . . , U (I)

k ) is approximately a sample
from π(u), suppose that k = 2 and that U1 and U2 take values in the finite
sets {1, . . . , n} and {1, . . . , m}. We write their joint and marginal densities as

Pr(U1 = r, U2 = s) = π(r, s),

Pr(U1 = r) = π1(r) =
m∑

s=1

π(r, s), r = 1, . . . , n,

Pr(U2 = s) = π2(s) =
n∑

r=1

π(r, s), s = 1, . . . , m,

with π1(r),π2(s) > 0 for all r and s. The conditional densities are

psr = Pr(U1 = r | U2 = s) =
π(r, s)

π2(s)
, qrs = Pr(U2 = s | U1 = r) =

π(r, s)

π1(r)
,

which we express as an m × n matrix P21 with (s, r) element psr and an
n ×m matrix P12 with (r, s) element qrs. These transition matrices give the
probabilities of going from the m possible values of U2 to the n possible
values of U1 and back again. As they are ratios, prs and qrs do not involve
the normalizing constant for π.

If f0 is an m×1 vector containing the distribution of U (0)
2 , the distributions

of U (1)
1 , U (1)

2 , U (2)
1 , . . ., are fT

0 P21, fT
0 P21P12, fT

0 P21P12P21, . . .. Thus each iter-
ation of step 2 of the algorithm corresponds to postmultiplying the current
distribution of U (i)

2 by the m ×m matrix H = P21P12. Hence U (I)
2 has dis-

tribution fT
0 HI . Conditional on U (i)

2 , U (i+1)
2 is independent of earlier values,

so the sequence U (1)
2 , . . . , U (I)

2 is a Markov chain with transition matrix H . If

the chain is ergodic, then U (I)
2 has a unique limiting distribution f as I →∞,

satisfying the equation fTH = fT. As this limit is unique, we need only show
that f is the marginal distribution of U2 to see that the algorithm ultimately
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produces a variable with density π2. Now the rth element of πT
2 H = πT

2 P21P12

equals

n∑

t=1

m∑

s=1

π2(t)ptsqsr =
n∑

t=1

m∑

s=1

π2(t)
π(s, t)

π2(t)

π(r, s)

π1(s)
= π2(r),

so π2 is indeed the unique solution to the equation fTH = fT. By symmetry,
U (1)

1 , . . . , U (I)
1 is a Markov chain with transition matrix P12P21 and limiting

distribution π1. Moreover the fact that πT
2 P21 = πT

1 ensures that the joint
distribution of (U (I)

1 , U (I)
2 ) converges to π(r, s) as I → ∞. Generalization to

k > 2 works in an obvious way.
Most of the densities π(u) met in applications are continuous, so this argu-

ment is not directly applicable. However any continuous density can be closely
approximated by one with countable support, for which essentially the same
results hold, so it is not surprising that the ideas apply more widely, and from
now on we shall assume that they are applicable to our problems.

Such a simulation will only be useful if convergence to the stationary dis-
tribution is not too slow. In discrete cases like that above, the convergence
rate is determined by the modulus of the second largest eigenvalue l2 of H ,
where 1 = l1 ≥ |l2| ≥ · · ·. If |l2| < 1, then convergence is geometrically er-
godic; see (6.4). In the continuous case it can occur that |l2| = 1 or that l2
does not exist, either of which will spell trouble. A reversible chain has real
eigenvalues and satisfies the detailed balance condition (6.5). Hence it can
be useful to make the chain reversible, for example by generating variables
in order 1, . . . , k, k − 1, . . . , 2, . . . or by choosing the next update at random.
Either involves modifying step 2 of the algorithm.

Output analysis

The only sure way to know how long a Markov chain simulation algorithm
should be run is by theoretical analysis to determine its rate of conver-
gence. This requires knowledge of the stationary distribution being estimated,
however, and is possible only in very special cases. A more pragmatic ap-
proach is to declare that the algorithm has converged when its output satis-
fies tests of some sort. Such convergence diagnostics can at best detect non-
convergence, however; they cannot guarantee that the output will be useful.
Both empirically- and theoretically-based diagnostics have been proposed, and
references to them are given in the bibliographic notes. Empirical approaches
include contrasting output from the start and the end of a run, and comparing
results from parallel independent runs whose initial values have been chosen
to be overdispersed relative to the target distribution. Theoretical approaches
generally assess whether the output satisfies known properties of stationary
chains. In practice it is sensible to use several diagnostics but also to scruti-
nize time series plots of the output. As different parameters may converge at
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different rates, it is important to examine all parameters of interest and also
global quantities such as the current log likelihood, prior, and posterior.

If stationarity seems to have been attained, then it is useful to examine cor-
relograms and partial correlograms of output. If the autocorrelations are high,
then the statistical efficiency of the algorithm will be low. A chain with low
correlations will yield estimators with smaller variance, and is more likely to
visit all regions of significant probability mass. The algorithm may need mod-
ification to reduce high autocorrelations, for example by reparametrization;
see Example 11.24.

Multimodal target densities are awkward because it can be hard to know
if all significant modes have been visited. Use of widely separated starting
values may then be useful, and so too may be occasional insertion of large
random jumps into the algorithm, so that it effectively restarts from a location
unrelated to its previous position.

Suppose that the chain seems to have converged after B iterations and is
run for a total of I ≫ B iterations. In general discussion below we suppose
that I is so much larger than B that inference can safely be based on all I
iterations, but in practice we use only output from iterations B +1, . . . , I. Let
the quantity of interest be µ =

∫
m(u)π(u) du, where

∫
|m(u)|π(u) du < ∞.

Unless there is qualitative knowledge about π(u) this may involve an act of
faith. For example, taking m(u) = u1 gives µ = E(U1), which could be infinite
although π(u) is proper. Hence unless properties of the posterior density are
known it is safer to base inferences on density and quantile estimates than on
moments. If µ is finite then it can be estimated by the ergodic average

µ̂ = I−1
I∑

i=1

m(U (i)), (11.39)

where U (i) denotes (U (i)
1 , . . . , U (i)

k ). The ergodic theorem (6.2) implies that µ̂
converges almost surely to µ as I →∞, and under further conditions

I1/2 (µ̂− µ)
D−→ N(0,σ2

m), where 0 < σ2
m <∞, (11.40)

so µ̂ is approximately normal for large I. In that case

I × var(µ̂) = I−1
I−1∑

i=−I+1

(I − |i|) γi ∼ σ2
m =

∞∑

i=−∞
γi = γ0

∞∑

i=−∞
ρi,

where γi = cov
{
m(U (0)), m(U (i))

}
depends on π and on the construction of

the chain, and ρi = γi/γ0 is the ith autocorrelation. The marginal variance
of m(U) is γ0 = varπ {m(U)}, which depends only on m and π. The effect of
using correlated output is to inflate var(µ̂) by a factor τ =

∑∞
−∞ ρi relative to

an independent sample of size I, so an estimate τ̂ from a pilot run may suggest
how large I should be. The obvious estimator of τ based on the correlogram
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is inconsistent, but better ones exist. One simple possibility is τ̂ =
∑M

i=−M ρ̂i,
where M = ⌊3τ̂⌋ is found by iteration.⌊x⌋ is the smallest

integer greater than
or equal to x.

Another approach splits the output into b blocks of k successive iterations,
with k taken so large that the block averages of the m(U (i)) have correlations
lower than 0.05, say, and gives the standard error for µ̂ as if the block averages
were a simple random sample.

The density of U1 at u1 may be estimated by a kernel method (Section 7.1.2),
or by the unbiased estimator (7.12), written in this context as

I−1
I∑

i=1

π(u1 | U (i)
−1). (11.41)

The discussion above presupposes a single long run of the chain. An al-
ternative is S independent parallel runs of length I, leading ultimately to S
independent values U (I) from π(u). An estimate based on these may be less
variable than one based on SI dependent samples from a single chain, and its
variance is more easily estimated. Roughly SB iterations must be disregarded,
however, compared to B when there is only one chain. From this viewpoint a
single run is preferable, but it is then harder to detect lack of convergence.

Example 11.21 (Bivariate normal density) If (U1, U2) are bivariate
normal with means zero, variances one and correlation ρ, thenφ denotes the

standard normal
density.

π(u1 | u2) =
1

(1− ρ2)1/2
φ

{
u1 − ρu2

(1 − ρ2)1/2

}
,

with a symmetric result for π(u2 | u1), and we can use the marginal standard
normal densities of U1 and U2 to assess convergence. The upper left panel of
Figure 11.6 shows the contours of the joint density when ρ = 0.75, together
with a sample path of the process starting from an initial value generated
uniformly on the square (−4, 4) × (−4, 4). The updating scheme forces the
sample path to consist of steps parallel to the coordinate axes. The upper right
panel shows that the sample paths of the Markov chains appear to converge
rapidly to their limit distributions, as the calculations in Problem 11.20 show
will be the case. This is confirmed by the estimated variance inflation factor
τ̂

.
= 3. The lower left panel shows rapid convergence of the kernel density

estimates to their target, based on S = 100 parallel chains. The lower right
panel illustrates the variability of (11.41), which here performs better than
the kernel estimator.

Bayesian application

The essence of Bayesian inference is to treat all unknowns as random variables,
and to compute their posterior distributions given the data y. The Gibbs sam-
pler is applied by taking U1, . . . , Uk to be the unknowns, usually parameters,
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Figure 11.6 Gibbs
sampler for bivariate
normal density. Top
left: contours of the
bivariate normal
density with
ρ = 0.75, with the
first five iterations of
a Gibbs sampler; the
blobs are at
(u

(i)
1 , u

(i)
2 ), for

i = 0, . . . , 5, starting
from the top left of
the panel. Top right:

sample paths of U(i)
1

and U(i)
2 for

i = 1, . . . , 100.
Bottom left: kernel
density estimates of
π1(u1) (heavy solid)
based on 100 parallel
chains after I
iterations, with
I = 0 (solid), 2
(dots), 5 (dashes), 10
(large dashes), and
100 (largest dashes);
the bandwidth is
chosen by uniform
cross-validation.
Bottom right:
estimates (dots) of
π1(u1) (heavy solid)
after 100 iterations
of 5 replicate chains,
based on (11.41).
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and simulating conditional on y. The full conditional densities π(ui | u−i) are
typically of form π(θi | θ−i, y) and must be obtained before the algorithm can
be applied. Fortunately this is often possible for ‘nice’ models, where the full
conditional densities have conjugate forms.

Example 11.22 (Random effects model) The sampling model in the
simplest normal one-way layout is

ytr = θt + εtr, t = 1, . . . , T, r = 1, . . . , R,
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where θ1, . . . , θT
iid∼ N(ν,σ2

θ) and independent of this εtr
iid∼ N(0,σ2). The fo-

cus of interest is usually σ2 and σ2
θ .

Bayesian analysis requires prior information, which we suppose to be ex-
pressed through the conjugate densities

µ ∼ N(µ0, τ
2), σ2 ∼ IG(α,β), σ2

θ ∼ IG(αθ,βθ).

The full posterior density is then

π(µ, θ,σ2,σ2
θ | y) ∝ f(y | θ,σ2)f(θ | µ,σ2

θ)π(µ)π(σ2)π(σ2
θ). (11.42)

We now take (U1, U2, U3, U4) = (σ2
θ ,σ

2, µ, θ), and calculate the full condi-
tional densities needed for Gibbs sampling, always treating the data y as fixed.
Each calculation requires integration over just one parameter. For example,

π(σ2
θ | σ2, µ, θ, y) =

f(y | θ,σ2)f(θ | µ,σ2
θ)π(µ)π(σ2)π(σ2

θ )∫
f(y | θ,σ2)f(θ | µ,σ2

θ)π(µ)π(σ2)π(σ2
θ ) dσ2

θ

=
f(θ | µ,σ2

θ)π(µ)π(σ2
θ )∫

f(θ | µ,σ2
θ)π(µ)π(σ2

θ ) dσ2
θ

= π(σ2
θ | µ, θ).

Similar calculations reveal that π(θ | σ2
θ ,σ

2, µ, y) does not simplify, but that

π(σ2 | σ2
θ , µ, θ, y) = π(σ2 | θ, y), π(µ | σ2

θ ,σ
2, θ, y) = π(µ | σ2

θ , θ). (11.43)

Arguments paralleling those in Example 11.12 lead to

σ2
θ | µ, θ ∼ IG

(

αθ + 1
2T,βθ + 1

2

T∑

t=1

(θt − µ)2
)

, (11.44)

σ2 | θ, y ∼ IG

(

α+ 1
2TR,β + 1

2

T∑

t=1

R∑

r=1

(ytr − θt)
2

)

, (11.45)

µ | σ2
θ , θ ∼ N

(
σ2
θµ0 + τ2

∑T

t=1 θt

σ2
θ + T τ2

,
σ2
θτ

2

σ2
θ + T τ2

)
. (11.46)

The conditional density π(θ | σ2
θ ,σ

2, µ, y) is most readily calculated by noting
that given µ, σ2

θ and σ2, the statistic yt is sufficient for θt, with distribution
N(θt,σ2/R), while the prior density for θt given σ2

θ , σ
2, and µ is N(µ,σ2

θ).
Hence the posterior density for θt is

θt | σ2
θ ,σ

2, µ, y ∼ N

(
Rσ2

θyt + σ2µ

Rσ2
θ + σ2

,
σ2
θσ

2

Rσ2
θ + σ2

)
, t = 1, . . . , T, (11.47)

and the θt are conditionally independent.
Expressions (11.44)–(11.47) give the steps required for an iteration of the

Gibbs sampler. As the T updates in (11.47) are independent, they may all be
performed at once, if the programming language used permits simultaneous
generation of several non-identically-distributed normal variates.
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Figure 11.7

Graphs for random
effects model of
Example 11.22. Left:
directed acyclic
graph showing
dependence of
random variables
(circles) on
themselves and on
fixed quantities
(rectangles). Right:
conditional
independence graph,
formed by moralizing
the directed acyclic
graph, that is,
joining parents and
dropping
arrowheads.
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Table 11.9

Estimated posterior
means and standard
deviations for the
model fitted to the
blood data, and
simple frequentist
estimates from
analysis of variance.

σ2
θ σ2 µ θ1 θ2 θ3 θ4 θ5 θ6

Estimate 23.8 126.4 41.9 53.9 43.0 34.9 39.9 41.3 38.6
Posterior mean 17.1 138.0 41.9 45.8 42.3 39.6 41.2 41.7 40.8
Posterior SD 30.3 33.8 2.4 4.1 2.9 3.4 2.9 2.9 3.0

Ideas from Section 6.2.2 render the structure of the full conditional densities
more intelligible. Figure 11.7 shows the directed acyclic graph and the corre-
sponding conditional independence graph for the present model. Each of µ,
σ2
θ , and σ2 has two hyperparameters, considered fixed, and µ and σ2

θ are par-
ents of θ1, . . . , θT . Each iteration of the Gibbs sampler traverses the parameter
nodes in the conditional independence graph, simulating from the full condi-
tional distribution corresponding to each node with remaining parameters set
at their current values. The data y are held fixed throughout.

We applied this algorithm to the data in Table 9.22 on the stickiness of
blood. For illustration we took α = αθ = 0.5, β = βθ = 1, µ = 0, and
τ2 = 1000, and generated starting-values for the parameters from the uniform
distribution on (0, 100). We ran 25 independent chains with I = 1000.

Figure 11.8 shows simulated series for three parameters and estimates of
their posterior densities. The burn-in period seems to last for about B = 100
iterations, after which the chains seem stable. The chain for σ2

θ makes some
large positive excursions, but the others seem fairly homogeneous, though they
both show fairly strong autocorrelations. Estimated variance inflation factors
are about 10 for σ2

θ and µ, but only 1–2.5 for the other parameters, consistent
with the top left panels of the figure.

Table 11.9 shows the posterior means and standard deviations for the pa-
rameters, with their frequentist estimates. The posterior mean for µ is es-
sentially equal to the overall average y, but the posterior densities of the θt
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Figure 11.8 Gibbs
sampler for normal
components of
variance model and
blood data. Top left:
time plots of θ1, σ

2
θ ,

and σ2. The other
panels show
estimated posterior
densities for these
parameters, based on
applying analogues
of (11.41) to the last
200 estimates from
each of 25 parallel
chains of length
1000. Frequentist
estimates are shown
as the dotted vertical
lines.
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are strongly shrunk towards it, because there is evidence that σ2
θ is small; its

posterior 0.1, 0.5, and 0.9 quantiles are 0.46, 7.1, and 42.1. The variability
mostly comes from measurement error, not inter-subject variation.

Metropolis–Hastings algorithm

The Gibbs sampler is easy to program, but if the full conditional densities
it involves are unavailable or too nasty then a more general algorithm may
be needed. A powerful approach known as the Metropolis–Hastings algorithm
works as follows. In order to update the current value u of a Markov chain, a
new value u′ is generated using a proposal density q(u′ | u). Any density q can
be used provided q(u′ | u) > 0 if and only if q(u | u′) > 0 and the resulting
chain has the properties desired. Having generated u′, a move from u to u′ is
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accepted with probability

a(u, u′) = min

{
1,
π(u′)q(u | u′)

π(u)q(u′ | u)

}
,

but otherwise the chain remains at u. Hence the probability density for a move
to u′, given that the chain has current value u, is δ denotes the Dirac

delta function.

p(u′ | u) = q(u′ | u)a(u, u′) + r(u)δ(u − u′),

where

r(u) = 1−
∫

q(v | u)a(u, v)dv.

The first and second terms of p(u′ | u) are the probability density for a move
from u to u′ being proposed and accepted, and the probability that a move
away from u is rejected.

The Metropolis–Hastings update step satisfies the detailed balance condi-
tion (6.5), because

π(u)p(u′ | u) = π(u)q(u′ | u)min

{
1,
π(u′)q(u | u′)

π(u)q(u′ | u)

}
+ π(u)r(u)δ(u − u′)

= π(u′)q(u | u′)min

{
π(u)q(u′ | u)

π(u′)q(u | u′)
, 1

}
+ π(u′)r(u′)δ(u′ − u)

= π(u′)p(u | u′).

Hence the corresponding Markov chain is reversible with equilibrium distri-
bution π, provided it is irreducible and aperiodic. As π appears only in a ratio
π(u′)/π(u) in the acceptance probability a(u, u′), the algorithm requires no
knowledge of the constant that normalizes π.

If q(u′ | u) = q(u | u′), the kernel is called symmetric, and a(u, u′) =
min {1,π(u′)/π(u)}. This occurs in particular if u′ = u + ε, where ε is sym-
metric with density g; then q(u′ | u) = g(u′ − u) = g(u− u′) = q(u | u′). This
is called random walk Metropolis sampling. It is often applied to transforma-
tions of u, or to subsets of its elements, using a different proposal distribution
for each subset.

The Gibbs sampler is a form of Metropolis–Hastings algorithm, the proposal
density at the ith step of an iteration being

q(u′ | u) =

{
π(u′

i | u−i), u′
−i = u−i,

0, otherwise.

It then follows that

π(u′)q(u | u′)

π(u)q(u′ | u)
=
π(u′)/π(u′

i | u−i)

π(u)/π(ui | u′
−i)

=
π(u′)/π(u′

i | u′
−i)

π(u)/π(ui | u−i)
=
π(u′

−i)

π(u−i)
= 1,

because u′
−i = u−i. Here the proposals always have u′

−i = u−i and are always
accepted, because a(u, u′) = min[1,π(u′)q(u | u′)/{π(u)q(u′ | u)}] = 1.
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Figure 11.9

Sample paths for
Metropolis–Hastings
algorithm. The
stationary density is
standard normal and
the proposal density
q(u′ | u) is N(u,σ2),
with σ = 0.1, 0.5, 2.4
and 10. The initial
value is u0 = −10
and the same seed is
used for the random
number generator in
each case. Note the
dependence of the
acceptance rate and
convergence to
stationarity on σ.
The horizontal
dashed lines show
the ‘usual’ range for
u.
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Although there are few theoretical restrictions on the choice of q, practical
constraints intervene. For example, if q(u′ | u) is so chosen that the acceptance
probability a(u, u′) is essentially zero, the chain will spend long periods with-
out moving and its output will be useless, and if the acceptance probability
is close to one at each step but the chain barely moves, the state space will
be traversed too slowly. Hence it is important to balance a reasonably high
acceptance probability a(u, u′) with a chain that moves around its state space
quickly enough. This can demand creativity and patience from the program-
mer.

Example 11.23 (Normal density) For illustration we take the toy prob-
lem of using the Metropolis–Hastings algorithm to simulate from the standard
normal density φ(u) = π(u). The proposal density, q(u′ | u) = σ−1φ{(u′ −
u)/σ}, depends on σ. We take initial value u0 = −10 far from the centre of the
stationary distribution. As q(u′ | u) = q(u | u′), the acceptance probability is
a(u, u′) = min{1,φ(u′)/φ(u)}.

Figure 11.9 shows sample paths u0, . . . , u500 for four values of σ. When
σ = 0.1, only small steps occur but they are accepted with high probability
because φ(u′)/φ(u)

.
= 1. Although u changes at almost every step, it moves

so little that the chain has not reached equilibrium after 500 iterations. When
σ = 0.5 it takes 100 or so iterations to reach convergence and the chain then
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able 11.10

Motorette data
(Nelson and Hahn,
1972). Censored
failure times are
denoted by +.

x (◦ F) Failure time (hours)

150 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+
170 1764 2772 3444 3542 3780 4860 5196 5448+ 5448+ 5448+
190 408 408 1344 1344 1440 1680+ 1680+ 1680+ 1680+ 1680+
220 408 408 504 504 504 528+ 528+ 528+ 528+ 528+

appears to mix fairly fast. When σ = 2.4 convergence is almost immediate
but as the acceptance probability is lower the chain tends to get stuck for
slightly longer. When σ = 10 the acceptance probability is low and although
the chain jumps to its stationary range almost at once, it spends long periods
without moving.

For comparison the experiment above was repeated 50 times, and the esti-
mated means of π(u) were compared. The estimator was the average of the
last half of u0, . . . , uI , with I = 500 iterations; that is, (11.39) with m(u) = u
and B = 250. Each of the 50 replicates used the same seed and initial value u0

for each σ; the values of u0 were generated from the t5 density. The estimated
values of σ2

m in (11.40) were 170, 17.7, 6.2, and 8.0 for σ = 0.1, 0.5, 2.4, and
10; the larger values of σ are preferable, but there is a large efficiency loss
relative to the value σ2

m = 1 for independent sampling. This is because of the
serial correlations of uB+1, . . . , uI , which were roughly 0.97, 0.89, 0.62, and
0.83 for σ = 0.1, 0.5, 2.4, and 10.

Exercise 11.3.11 sheds more light on this example.

Example 11.24 (Motorette data) Table 11.10 contains failure times yij

from an accelerated life trial in which ten motorettes were tested at each
of four temperatures, with the objective of predicting lifetime at 130◦F. We
analyse these data using a Weibull model with

Pr(Yij ≤ y; xi) = 1− exp {(y/θi)
γ} , θi = exp (β0 + β1xi) , (11.48)

for i = 1, . . . , 4, j = 1, . . . , 10, where failure time is taken in units of hundreds
of hours and xi is log(temperature/100).

Here we describe a simple Bayesian analysis using the Metropolis–Hastings
algorithm. For illustration we take independent priors on the parameters,
N(0, 100) on β0 and β1 and exponential with mean 2 on γ. Then the log
posterior is

ℓm(β0,β1, γ) ≡ −(β2
0+β2

1)/200−γ/2+
4∑

i=1

10∑

j=1

dij {log γ + γ log(yij/θi)}−(yij/θi)
γ ,

where dij = 0 for uncensored yij .
For proposal distribution we update all three parameters simultaneously,
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Figure 11.10

Bayesian analysis of
motorette data using
Metropolis–Hastings
algorithm. Upper
panels: sample paths
for β1 using two
parametrizations,
the right one more
nearly orthogonal.
Lower left: kernel
density estimates of
π(β1 | y) and of
π(Y+ | y), where Y+

is failure time
predicted for 130◦F.
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by taking (β′
0,β

′
1, log γ′) = (β0,β1, log γ) + c(s1Z1, s2Z2, s3Z3), where the sr

are the standard errors of the corresponding maximum likelihood estimates,

Zr
iid∼ N(0, 1), and c can be chosen to balance the acceptance probability and

the size of the move. The ratio q(u | u′)/q(u′ | u) reduces to γ′/γ, so the
acceptance probability equals

a {(β′
0,β

′
1, γ

′), (β0,β1, γ)} = min [1, exp {ℓm(β0,β1, γ)− ℓm(β′
0,β

′
1, γ

′)} γ′/γ] .

The chain is clearly irreducible and aperiodic, so the ergodic theorem applies.
We take initial values near the maximum likelihood estimates, and run the

chain for 5000 iterations with c = 0.5. The sample path for β1 in the upper left
panel of Figure 11.10 shows that despite its acceptance probability of about
0.3, the chain is not moving well over the parameter space. This is confirmed
by the correlogram and partial correlogram for successive values of β1, which
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suggest that the chain is essentially an AR(1) process with ρ1
.
= 0.99. In this

case the variance inflation factor is τ̂ = 199, so 5000 successive observations
from the chain are worth about 25 independent observations. Sample paths for
the other parameters are similar, and varying c does not improve matters. One
reason for this is that β0 and β1 have correlation about −0.97 a posteriori,
and the proposal distribution does not respect this. It is better to reduce
this correlation by replacing x by x − x, after which corr(β0,β1 | y)

.
= −0.4.

The sample path for β1 from a run of the algorithm starting near the new
maximum likelihood estimates, with the new sr and with c = 2, is shown in
the upper right panel of Figure 11.10. This chain mixes much better, though
its acceptance probability is about 0.2. The usual plots suggest that β1 follows
an AR(1) process with ρ

.
= 0.9, and likewise for the other parameters, whose

chains show similar good behaviour. Here τ̂ has the more acceptable value 19,
though 5000 iterations would remain too small in practice.

The lower panels of the figure show kernel density estimates of the posterior
densities for β1 and for a predicted failure time Y+ for temperature 130◦F.
Once convergence has been verified, it is easy to obtain values for Y+, simply
by simulating a Weibull variable from (11.48) using the current parameter
values at each iteration. Quantiles of the simulated distributions may be used
to obtain posterior confidence intervals for the corresponding quantities.

The Metropolis–Hastings update described above changes all three param-
eters on each iteration, or none of them. Alternatively we may attempt to
update one parameter, chosen at random. The resulting chain is also ergodic,
but it does not improve on the second approach described above.

Metropolis–Hastings updates using an appropriate proposal distribution
can be used when the full conditional densities needed for particular steps
of the Gibbs sampler are not available. Generalizations can be constructed
to jump between spaces of differing dimensions, and these are valuable in
applications where averaging over various spaces or choosing among them is
important. More details are given in the bibliographic notes.

Exercises 11.3
1 Show that Laplace approximation to the gamma function

Iα+1 = Γ(α+ 1) =

∫ ∞

0

uαe−u du

gives Stirling’s formula, Γ(α+ 1)
.
= Ĩα+1 = (2π)1/2αα+1/2e−α, and verify that

the O(α−1) term in (11.28) is (12α)−1. Show that this can be incorporated
by modifying Ĩα+1 to Ĩ ′

α+1 = (2π)1/2(α + 1
6 )1/2ααe−α, and check some of the

numbers in Table 11.11.

2 Use the facts that if Z is a standard normal variable, E(Z4) = 3 and E(Z6) = 15,
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Table 11.11

Accuracy of
Stirling’s formula
and related
approximations.

α 0.5 1 2 3 4 5

Iα+1 0.8862 1 2 6 24 120
Ĩα+1/Iα+1 0.8578 0.9221 0.9595 0.9727 0.9794 0.9834
Ĩ′α+1/Iα+1 0.9905 0.9960 0.9987 0.9994 0.9996 0.9998

to check (11.28). Use properties of normal moments to explain why (11.28) is
an expansion with terms in increasing powers of n−1 rather than n−1/2.

3 Let f(y; θ) be a unimodal density with mode at ỹθ. Show that
∫ y

−∞
f(u; θ) du

may be approximated by (11.31), with

g(u) = log f(ỹθ; θ) − log f(u; θ), a(u) = (2π)1/2f(ỹθ ; θ),

and verify that the approximation is exact for the N(θ, σ2) density. Investigate
its accuracy numerically for the gamma density with shape parameter θ > 1,
and for the tν density.

4 Consider predicting the outcome of a future random variable Z on the basis of
a random sample Y1, . . . , Yn from density λ−1e−u/λ, u > 0, λ > 0. Show that
π(λ) ∝ λ−1 gives posterior predictive density

f(z | y) =

∫
f(z, y | λ)π(λ)dλ∫
f(y | λ)π(λ) dλ

= nsn/(s + z)n+1, z > 0,

where s = y1 + · · · + yn.
Show that when Laplace’s method is applied to each integral in the predictive
density the result is proportional to the exact answer, and assess how close the
approximation is to a density when n = 5.

5 Consider the integral

In =

∫ u2

u1

e−nh(u) du,

where h(u) is a smooth increasing function with minimum at u1, at which point
its derivatives are h1 = h′(u1) > 0, h2 = h′′(u1) and so forth. Show that

In =
1

nh1
e−nh(u1)

{
1 − e−nh1(u2−u1) + O(n−1)

}
,

and deduce that
∫ u2

u1

e−nh(u) du/

∫ ∞

u1

e−nh(u) du
.
= 1 − e−nh1(u2−u1).

A posterior density has form π(θ | y) ∝ θ−m−1, for θ > θ1 (Exercise 11.2.2).
Find the approximate and exact posterior density and distribution functions of
θ, and compare them numerically when m = 5, 10, 20 and θ1 = 1. Discuss.
Investigate how the approximation will change if h1 = 0.

6 Give an approximate variance for the importance sampling estimator (11.38),
and verify the formula for var(µ̂rat).
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7 Sampling-importance resampling (SIR) works as follows: instead of using (11.38)
as an estimator of µ, an independent sample θ∗1 , . . . θ∗Q of size Q ≪ S is taken
from θ1, . . . , θS with probabilities proportional to w(θ1), . . . , w(θS). The esti-
mator of µ is µ̂∗ = Q−1

∑
θ∗q .

(a) Discuss SIR critically when the initial sample is taken from the prior π(θ);
this is sometimes called the Bayesian bootstrap. Give an explicit discussion in
the case of an exponential family model and conjugate prior.
(b) Show that E∗(µ̂∗) = µ̂rat, and find its variance. Use the Rao–Blackwell
theorem to show that the variance of µ̂∗ exceeds that of µ̂rat.
Under what circumstances would it be sensible to use SIR anyway?
(Rubin, 1987; Smith and Gelfand, 1992; Ross, 1996)

8 Show that the Gibbs sampler with k > 2 components updated in order

1, . . . , k, 1, . . . , k, 1, . . . , k, . . .

is not reversible. Are samplers updated in order 1, . . . , k, k − 1, . . . , 1, 2, . . ., or
in a random order reversible?

9 Show that the acceptance probability for a move from u to u′ when random
walk Metropolis sampling is applied to a transformation v = v(u) of u is

min

{
1,
π(u′)|dv/du|
π(u)|dv′/du′|

}
.

Hence verify the form of q(u | u′)/q(u′ | u) given in Example 11.24.
Find the acceptance probability when a component of u takes values in (a, b),
and a random walk is proposed for v = log{(u − a)/(b − u)}.

10 Suppose that Y1, . . . , Yn are taken from an AR(1) process with innovation vari-
ance σ2 and correlation parameter ρ such that |ρ| < 1. Show that

var(Y ) =
σ2

n2(1 − ρ2)

{

n + 2

n−1∑

j=1

(n − j)ρj

}

,

and deduce that as n → ∞ for any fixed ρ, nvar(Y ) → σ2/(1 − ρ)2.
What happens when |ρ| = 1?
Discuss estimation of var(Y ) based on (n − 1)−1

∑
(Yj − Y )2 and an estimate

ρ̂.

11 In Example 11.23, show that the probability of acceptance of a move starting
from u > 0 equals

1
2 + (1 + σ2)−1/2 exp

(
a2/2

)
{Φ (a) + Φ (b)}− Φ (−2u/σ) ,

where

a = − σu√
1 + σ2

, b =
−(2 + σ2)u√
σ2(1 + σ2)

.

Show that the expected move size may be written as

exp

(
a2

2

)[
σ

1 + σ2
{φ (a) − φ (b)}− σ2u

(1 + σ2)3/2
{Φ (a) + Φ (b)}

]

+σ
{
φ
(−2u

σ

)
− φ(0)

}
.
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Plot these functions over the range 0 ≤ u ≤ 15 for σ = 0.1, 1, 2.4, 10, and also
with 0 ≤ σ ≤ 10 for u = 0, 1, 2, 3, 10. What light do these plots cast on the
behaviour of the chains in Figure 11.9?

11.4 Bayesian Hierarchical Models

Hierarchical models are useful when data have layers of variation. The inci-
dence of a disease may vary from region to region of a country, for instance,
while within regions there is variation due to differences in poverty, pollu-
tion, or other factors. If the regional and local incidence rates are regarded
as random, we can imagine a hierarchy in which the numbers of diseased
persons depend on random local rates, which themselves depend on random
regional rates. Such models were discussed briefly from a frequentist view-
point in Section 9.4. Here we outline the Bayesian approach, using the notion
of exchangeability.

The random variables U1, . . . , Un are called finitely exchangeable if their
density has the property

f(u1, . . . , un) = f
(
uξ(1), . . . , uξ(n)

)

for any permutation ξ of the set {1, . . . , n}. Then the density is completely
symmetric in its arguments and in probabilistic terms the U1, . . . , Un are in-
distinguishable; this does not mean that they are independent. An infinite
sequence U1, U2, . . . , is called infinitely exchangeable if every finite subset of
it is finitely exchangeable.

A key result in this context is de Finetti’s theorem, whose simplest form saysBruno de Finetti
(1906–1985) was
born in Innsbruck
and studied in Milan
and Rome, where he
eventually became
professor, after
working in Trieste as
an actuary and at
the University of
Padova. His main
contribution to
statistics was to
develop personalistic
probability, teaching
that ‘probability
does not exist’. (You
may think this
should have been
made clear on page 1
of the book!) He
argued that
probability
distributions express
a person’s view of
the world, with no
objective force. His
ideas have strongly
influenced Bayesian
thought.

that if U1, U2, . . ., is an infinitely exchangeable sequence of binary variables,
taking values uj = 0, 1, then for any n there is a distribution G such that

f(u1, . . . , un) =

∫ 1

0

n∏

j=1

θuj (1− θ)1−uj dG(θ) (11.49)

where

G(θ) = lim
m→∞

Pr
{
m−1(U1 + · · · + Um) ≤ θ

}
, θ = lim

m→∞
m−1(U1+ · · ·+Um).

This is justified at the end of this section. It implies that any set of exchange-
able binary variables U1, . . . , Un may be modelled as if they were independent
Bernoulli variables, conditional on their success probability θ, this having dis-
tribution G and being interpretable as the long-run proportion of successes.
More general versions of (11.49) hold for real Uj , for example. The upshot is
that a judgement that certain quantities are exchangeable implies that they
may be represented as a random sample conditional on a variable that itself
has a distribution. This provides the basis of a case in favour of Bayesian infer-
ence, because it implies that the conditional density Pr(Un+1 | U1, . . . , Un) for
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a future variable Un+1 given the outcomes of U1, . . . , Un, may be represented
as a ratio of two integrals of form (11.49), and this is formally equivalent to
Bayesian prediction using a prior density on θ.

The essence of hierarchical modelling is to treat not data but particular
sets of parameters as exchangeable. For if our model contains parameters
θ1, . . . , θn, and if we believe a priori that these are to be treated completely
symmetrically, then they are exchangeable and may be thought of as a random
sample from a distribution that is itself unknown. In principle that distribution
might be anything, but in practice a tractable one is often chosen.

Example 11.25 (Normal hierarchical model) A prototypical case is
the normal model under which y1, . . . , yn satisfy

yj | θj
ind∼ N(θj , vj), θ1, . . . , θn | µ

iid∼ N(µ,σ2), µ ∼ N(µ0, τ
2),

where v1, . . . , vn, σ2, µ0 and τ2 are known; the last two are hyperparameters
that control the uncertainty injected at the top level of the hierarchy. The
yj have different variances, but their means θj are supposed indistinguishable
and hence are modelled as exchangeable, being normal with unknown mean µ.
As the joint density of (µ, θT, yT)T is multivariate normal of dimension 2n+1,
with mean vector and covariance matrix

µ012n+1,

⎛

⎝
τ2 τ21T

n τ21T
n

τ21n τ21n1T
n + σ2In τ21n1T

n + σ2In

τ21n τ21n1T
n + σ2In V + τ21n1T

n + σ2In

⎞

⎠ , (11.50)

where V = diag(v1, . . . , vn), the posterior density of (µ, θT)T given y is also
normal. Unenlightening matrix calculations give

E(µ | y) =
µ0/τ2 +

∑
yj/(σ2 + vj)

1/τ2 +
∑

1/(σ2 + vj)
, var(µ | y) =

1

1/τ2 +
∑

1/(σ2 + vj)
,

and

E(θj | y) = E(µ | y) +
σ2

σ2 + vj
{yj − E(µ | y)} .

The posterior mean of µ is a weighted average of its prior mean µ0 and of
the yj , weighted according to their precisions conditional on µ. Typically τ2

is very large, and then E(µ | y) is essentially a weighted average of the data.
Even when vj → 0 for all j there is still posterior uncertainty about µ, whose
variance is σ2/n because y1, . . . , yn is then a random sample from N(µ,σ2).

The posterior mean of θj is a weighted average of yj and E(µ | y), showing
shrinkage of yj towards E(µ | y) by an amount that depends on vj . As vj → 0,
E(θj | y)→ yj , while as vj →∞, E(θj | y)→ E(µ | y). This is a characteristic
feature of hierarchical models, in which there is a ‘borrowing of strength’
whereby all the data combine to estimate common parameters such as µ,
while estimates of individual parameters such as the θj are shrunk towards
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Figure 11.11

Posterior summaries
for mortality rates
for cardiac surgery
data. Posterior
means and 0.95
equitailed credible
intervals for separate
analyses for each
hospital are shown
by hollow circles and
dotted lines, while
blobs and solid lines
show the
corresponding
quantities for a
hierarchical model.
Note the shrinkage of
the estimates for the
hierarchical model
towards the overall
posterior mean rate,
shown as the solid
vertical line; the
hierarchical intervals
are slightly shorter
than those for the
simpler model.
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common values by amounts that depend on the precision of the corresponding
observations, here represented by the vj .

Example 11.26 (Cardiac surgery data) Table 11.2 contains data on
mortality of babies undergoing cardiac surgery at 12 hospitals. Although the
numbers of operations and the death rates vary, we have no further knowledge
of the hospitals and hence no basis for treating them other than entirely
symmetrically, suggesting the hierarchical model

rj | θj
ind∼ B(mj , θj), j = A, . . . , L, θA, . . . , θL | ζ iid∼ f(θ | ζ), ζ ∼ π(ζ).

Conditional on θj , the number of deaths rj at hospital j is binomial with
probability θj and denominator mj , the number of operations, which plays
the same role as v−1

j in Example 11.25: when mj is large then a death rate
is relatively precisely known. Conditional on ζ, the θj are a random sample
from a distribution f(θ | ζ), and ζ itself has a prior distribution that depends
on fixed hyperparameters.

One simple formulation is to let βj = log{θj/(1 − θj)} ∼ N(µ,σ2), con-
ditional on ζ = (µ,σ2), thereby supposing that the log odds of death have a
normal distribution, and to take µ ∼ N(0, c2) and σ2 ∼ IG(a, b), where a,
b, and c express proper but vague prior information. For sake of illustration
we let a = b = 10−3, so σ2 has prior mean one but variance 103, and c = 103,
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giving µ prior variance 106. The joint density then has form

∏

j

(
mj

rj

)
erjβj

(1 + eβj )
mj

1

(2πσ2)1/2
exp

{
− 1

2σ2
(βj − µ)2

}
× π(µ)π(σ2),

so the full conditional densities for µ and σ2 are normal and inverse gamma.
Apart from a constant, the full conditional density for βj has logarithm

rjβj −mj log
(
1 + eβj

)
− (βj − µ)2

2σ2
,

and as this is a sum of two functions concave in βj , adaptive rejection sampling
may be used to simulate βj given µ, σ2, and the data; see Example 3.22.

This model was fitted using the Gibbs sampler with 5500 iterations, of
which the first 500 were discarded. Convergence appeared rapid.

Figure 11.11 compares results for the hierarchical model with the effect
of treating each hospital separately using uniform prior densities for the θj.
Shrinkage due to the hierarchical fit is strong, particularly for the smaller
hospitals; the posterior mean of θA, for example, has changed from about
2% to over 5%. Likewise the posterior means of θH and θB have decreased
considerably towards the overall mean. By contrast, the posterior mean of θD

barely changes because of the large value of mD. Posterior credible intervals
for the hierarchical model are only slightly shorter but they are centred quite
differently. The posterior mean rate is about 7.3%, with 0.95 credible interval
(5.3, 9.4)%.

In some cases the hierarchical element is merely a component of a more
complex model, as the following example illustrates.

Example 11.27 (Spring barley data) Table 10.21 contains data on a
field trial intended to compare the yields of 75 varieties of spring barley allo-
cated randomly to plots in three long narrow blocks. The data were analysed in
Example 10.35 using a generalized additive model to accommodate the strong
fertility trends over the blocks. In the absence of detailed knowledge about
the varieties it seems natural to treat them as exchangeable, and we outline a
Bayesian hierarchical approach. We also show how the fertility patterns may
be modelled using a simple Markov random field.

Let y = (y1, . . . , yn)T denote the yields in the n = 225 plots and let ψj

denote the unknown fertility of plot j. Let X denote the n× p design matrix
that shows which of the p = 75 variety parameters β = (β1, . . . ,βp)T have
been allocated to the plots. Then a normal linear model for the yields is

y | β,ψ,λy ∼ Nn(ψ + Xβ, In/λy), (11.51)

where ψ is the n × 1 vector containing the fertilities and λy is the unknown
precision of the ys.
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We take the prior density of λy to be gamma with shape and scale param-
eters a and b, G(a, b), so that its prior mean and variance are a/b and a/b2,
where a and b are specified. As there is no special treatment structure, we
take for the βr the exchangeable prior β ∼ Np(0, Ip/λ

−1
β ), with λβ ∼ G(c, d)

and c, d specified. For the fertilities we take the normal Markov chain of
Example 6.13, for which

π(ψ | λψ) ∝ λn/2
ψ exp

⎧
⎨

⎩
− 1

2λψ
∑

i∼j

(ψi − ψj)
2

⎫
⎬

⎭
, λψ > 0, (11.52)

the summation being over pairs of neighbouring plots and λ−1
ψ being the

variance of differences between fertilities. Each ψj occurs in nj terms, where
nj = 1 or 2 is the number of plots adjacent to plot j. The sum in (11.52)
equals ψTWψ, where W is the n× n tridiagonal matrix with elements

wij =

⎧
⎨

⎩

ni, i = j,
−1, i ∼ j,
0, otherwise.

Thus W is block diagonal, with three blocks like the matrix V in Example 6.13
with τ = 0, corresponding to the three physical blocks of the experiment. We
take λψ ∼ G(g, h), with g and h specified.

With these conjugate prior densities, the joint posterior density is

π(β,ψ,λ) ∝ λn/2
y exp

{
− 1

2λy(y − ψ −Xβ)T(y − ψ −Xβ)
}

×λp/2
β exp

(
− 1

2λββ
Tβ
)
× λp/2

ψ exp
(
− 1

2λψψ
TWψ

)

×λa−1
y exp (−bλy)× λc−1

β exp (−cλβ)× λg−1
ψ exp (−hλψ) ,

where λ = (λy,λβ ,λψ)T. The full conditional densities turn out to be

β | ψ,λ, y ∼ N
{
λyQ−1

β XT(y − ψ), Q−1
β

}
, (11.53)

ψ | β,λ, y ∼ N
{
λyQ−1

ψ (y −Xβ), Q−1
ψ

}
, (11.54)

λy | ψ,β, y ∼ G {a + n/2, b + (y −Xβ − ψ)T(y −Xβ − ψ)/2} , (11.55)

λβ | ψ,β, y ∼ G (c + p/2, d + βTβ/2) , (11.56)

λψ | ψ,β, y ∼ G (g + n/2, h + ψTWψ/2) , (11.57)

where

Qβ = λyXTX + λβIp, Qψ = λyIn + λψW.

The elements of λ are independent conditional on the remaining variables.
The relatively simple form of the densities in (11.53)–(11.57) suggests using a
time-reversible Gibbs sampler, in which β, ψ, and λ are updated in a random
order at each iteration. The most direct approach to simulation in (11.53)
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and (11.54) is through Cholesky decomposition of Qβ and Qψ: in (11.53), for
example, we find the lower triangular matrix L such that LLT = Q−1

β , generate

ε ∼ Np(0, Ip), and let β = λyQ−1
β XT(y−ψ)+Lε. The block diagonal structure

of W means that the ψs for different blocks can be updated separately, so
the largest Cholesky decomposition needed is that of a 75 × 75 matrix. An
alternative is to update individual ψjs in a random order, but although the
computational burden is smaller, the algorithm then converges more slowly
than with direct use of (11.54).

Note the strong resemblance of (11.53) and (11.54) to the steps of the
backfitting algorithm for the corresponding generalized additive model.

The missing response in block 3 is simply a further unknown whose value
may be simulated using the relevant marginal density of (11.51). This adds a
fourth component to the simulation in random order of β, ψ, and λ at each
iteration; there are no other changes to the algorithm.

If the matrix XTX is diagonal, then the full conditional density for the rth
variety effect has form

βr | ψ,λ, y ∼ N

(
λymrzr

λβ + λymr
,

1

λβ + λymr

)
,

where zr is the current average of yj − ψj for the mr plots receiving vari-
ety r. Thus the βr are shrunk towards zero by an amount that depends on
the ratio λβ/λy; with λβ = 0 the mean for β in (11.53) is the least squares
estimate computed by regressing y−ψ on the columns of X . Unlike in Exam-
ple 11.25, however, the normal distributions of the βr are here averaged over
the posterior densities of ψ, λy and λβ .

The algorithm described above was run with random initial values for 10,500
iterations. Time series plots of the parameters and log likelihood suggested
that it had converged after 500 iterations, and inferences below are based on
the final 10,000 iterations. The variance inflation factors τ̂ were less than 4
for ψ and β, about 44, 6 and 30 for λy , λτ and λψ, and about 6 for y187.
Thus estimation for λy is least reliable, being based on a sample equivalent
to about 220 independent observations. A longer run of the algorithm would
seem wise in practice. Based on this run, the posterior 0.9 credible intervals
for λy, λψ and λβ were (5.2, 12.4), (5.0, 11.5) and (2.7, 5.7) respectively, and
differences of two variety effects have posterior densities very close to normal
with typical standard deviation of 0.35. The corresponding standard error for
the generalized additive model was 0.41, so use of a hierarchical model and
injection of prior information has increased the precision of these comparisons.

Figure 11.12 shows some simulated values of ψ and pointwise 0.90 credible
envelopes for the true ψ. These envelopes are constructed by joining the 0.05
quantiles of the fertilities simulated from the posterior density, for each loca-
tion, and likewise with the 0.95 quantiles. By contrast with the analysis in
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Figure 11.12

Posterior summaries
for fertility trend ψ
for the three blocks
of spring barley data,
shown from left to
right. Above: median
trend (heavy) and
overall 0.9 posterior
credible bands.
Below: 20 simulated
trends from Gibbs
sampler output.
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Table 11.12

Posterior
probabilities that a
variety is ranked
among the best r
varieties, estimated
from 10,000
iterations of Gibbs
sampler.

r Variety
56 35 72 31 55 47 54 18 38 40

1 0.327 0.182 0.149 0.129 0.075 0.055 0.019 0.015 0.012 0.006
2 0.518 0.357 0.299 0.270 0.174 0.136 0.050 0.042 0.035 0.020
5 0.814 0.690 0.643 0.621 0.486 0.416 0.234 0.183 0.153 0.106
10 0.959 0.908 0.887 0.871 0.795 0.743 0.560 0.497 0.429 0.344

Example 10.35, the effective degrees of freedom for ψ, controlled by λψ , are
here equal for each block, leading to apparent overfitting of the fertilities for
block 2 compared to the generalized additive model. A difference between the
models is that the current model corresponds to first differences of ψ being a
normal random sample, while in the earlier model the second differences are
a normal random sample, giving a smoother fit.

The posterior probabilities that certain varieties rank among the r best are
given in Table 11.12. The ordering is somewhat different from that in Exam-
ple 10.35, perhaps due to the slightly different treatment of fertility effects.
As mentioned previously, no single variety strongly outperforms the rest, and
future field experiments would have to include several of those included in
this trial. This type of information is difficult to obtain using frequentist pro-
cedures, but is readily found by manipulating the output of the simulation
algorithm described above.

This analysis is relatively easily modified when elements of the model are
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changed. Indeed the priors and other components chosen largely for conve-
nience should be varied in order to assess the sensitivity of the conclusions
to them; see Exercise 11.3.6. Metropolis–Hastings steps would then typically
replace the Gibbs updates in the algorithm.

As mentioned above, more complicated hierarchies involve several layers of
nested variation. Such models are widely used in certain applications, but their
assessment and comparison can be difficult. For instance, shrinkage makes
it unclear just how many parameters a hierarchical model has. Hierarchical
modelling is an active area of current research.

Justification of (11.49)

To establish (11.49), suppose that r lies in 0, . . . , n and that m > n. Then
exchangeability of U1, . . . , Um implies that the conditional probability

Pr(U1 + · · · + Un = r | U1 + · · · + Um = s)

equals the probability of seeing r 1’s in n draws without replacement from an
urn containing s 1’s and m−s 0’s, which is

(
m
n

)−1(s
r

)(
m−s
n−r

)
for s = r, . . . , m−

(n− r) and zero otherwise. Hence

Pr(U1 + · · · + Un = r) =

m−(n−r)∑

s=r

(
m

n

)−1(s

r

)(
m− s

n− r

)
Pr(U1 + · · · + Um = s)

=

(
n

r

)m−(n−r)∑

s=r

s(r)(m− s)(n−r)

m(n)
Pr(U1 + · · · + Um = s),

where s(r) = s(s − 1) · · · (s − r + 1) and so forth. If Gm(θ) denotes the dis-
tribution putting mass Pr(U1 + · · · + Um = s) at s/m, for s = 0, . . . , m,
then

Pr(U1 + · · · + Un = r) =

(
n

r

)∫ 1

0

(mθ)(r){m(1− θ)}(n−r)

m(n)
dGm(θ).

As m→∞,

(mθ)(r){m(1− θ)}(n−r)

m(n)
→ θr(1 − θ)n−r,

and in fact there is an infinite subsequence of values of m such that Gm

converges to a limit G that is a distribution function. To establish (11.49) we
simply note that

(
n

r

)
f(uξ(1), . . . , uξ(n)) = Pr(U1 + · · · + Un = r)

for any permutation ξ of {1, . . . , n} such that uξ(1) + · · · + uξ(n) = r, giving

f(u1, . . . , un) =

∫ 1

0
θr(1− θ)n−r dG(θ) =

∫ 1

0

n∏

j=1

θuj (1− θ)1−uj dG(θ)
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as desired.

Exercises 11.4
1 Two balls are drawn successively without replacement from an urn containing

three white and two red balls. Are the outcomes of the first and second draws
independent? Are they exchangeable?

2 Under what conditions are the Bernoulli random variables Y1 and Y2 = 1 − Y1

exchangeable? What about Y1, . . . , Yn given that Y1 + · · · + Yn = m?

3 Establish (11.50), and use it and (3.21) to verify the given formulae for the
posterior mean and variance for µ.

4 Describe how a Metropolis–Hastings update could be used to avoid adaptive
rejection sampling from the full conditional density for β in Example 11.26.
Compare and contrast the two approaches.

5 In a variant on the hierarchical Poisson model in Example 11.19, let Y1, . . . , Yn

be independent Poisson variables with means θ1, . . . , θn, let θ1, . . . , θn be a ran-
dom sample from the density βe−θβ, θ > 0, and let the prior density of β be
uniform on the positive half-line. Find E(θj | y,β), and show that if ny > 1
then the posterior distribution of γ = 1/(1 + β) is Beta with parameters ny − 1
and n+1. Hence show that the posterior mean of θj is (yj +1)(ny−1)/(ny+n).

Under what condition is this greater than the estimate θ̂j = yj obtained under
the classical model with no link among the θs? Explain.

6 (a) Give the directed acyclic and conditional independence graphs for the model
in Example 11.27, and verify (11.53)–(11.57).
(b) What changes to the algorithm are needed if (11.52) is replaced by

π(ψ | λψ) ∝ λn/2
ψ exp

{

− 1
2λψ

∑

i∼j

|ψi − ψj |

}

, λψ > 0?

What changes are needed if (11.51) specifies that the yj have independent tν
densities, for some known ν?
(c) How would you allow different degrees of smoothing for the different blocks?
(Besag et al., 1995)

11.5 Empirical Bayes Inference

11.5.1 Basic ideas

The borrowing of strength achieved by hierarchical Bayes models increases
the precision of parameter estimation at the cost of specifying prior distri-
butions at two levels. This can be bothersome in practice, because priors on
hyperparameters are difficult to verify and it is natural to worry about their
effect on subsequent inferences. Sensitivity analysis, comparing results from
different priors, is valuable, but another possibility in some cases is to estimate
the hyperparameters from the data. Many Bayesians deprecate this empirical
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Bayes approach as essentially frequentist; we shall skirt this issue and simply
sketch the main ideas.

Consider the model

y1, . . . , yn | θ1, . . . , θn
ind∼ f(y1 | θ1), . . . , f(yn | θn), θ1, . . . , θn

iid∼ π(θ | γ).

A fully Bayesian specification would add a prior density π(γ) for γ, with
inference for the θj based on the marginal posterior densities π(θj | y). If
we do not add this further level of complexity, then the data have marginal
density

f(y1, . . . , yn | γ) =
n∏

j=1

∫
f(yj | θj)π(θj | γ) dθj

from which we might estimate γ. An obvious approach is to use the maximum
likelihood estimator γ̂ found from this density, and then to base inferences on
the posterior densities π(θj | y, γ̂), for example computing posterior moments

E(θr
j | y, γ̂) =

∫
θr

jf(yj | θj)π(θj | γ)dθj∫
f(yj | θj)π(θj | γ)dθj

∣∣∣∣∣
γ=γ̂

.

Numerical methods are generally needed to evaluate the integrals. Full Bayesian
analysis would integrate out γ with respect to its prior density, thereby ac-
counting for uncertainty about γ rather than simply setting it to γ̂.

Example 11.28 (Normal distribution) Consider the model

y1, . . . , yn | θ1, . . . , θn
ind∼ N(θj , vj), θ1, . . . , θn

iid∼ N(µ, τ2),

where the vj are known positive constants, and suppose initially that τ2 > 0
is also known. The conditional distribution of θj given y is

N (ξjµ + (1− ξj)yj , (1− ξj)vj) , with ξj =
vj

vj + τ2
, j = 1, . . . , n, (11.58)

and the yj are marginally independent with N(µ, vj +τ2) densities. The max-
imum likelihood estimate of µ is therefore

µ̂ = µ̂(τ2) =

∑n
j=1 yj/(vj + τ2)

∑n
j=1 1/(vj + τ2)

,

and the empirical Bayes estimate of θj is found by substituting this into
E(θj | y), to give

θ̃j = ξj µ̂ + (1 − ξj)yj = µ̂ + (1− ξj)(yj − µ̂). (11.59)

When ξj = 0 then θ̃j = yj is unbiased for θj . Taking ξj > 0 gives non-zero
shrinkage and biased estimation of θ̃j , but the hope is that the borrowing of
strength induced by shrinkage towards a common mean will reduce overall
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mean squared error. The degree of shrinkage towards µ̂ depends on vj/τ2.
This is disquieting because the amount of shrinkage bears no relation to the
data. Thus if the yj were very different doubt would be cast on the model,
but the formulation pays no heed to this.

When τ2 is unknown, its profile log likelihood is

ℓp(τ
2) ≡ − 1

2

n∑

j=1

log(vj + τ2)− 1
2

n∑

j=1

{
yj − µ̂(τ2)

}2
/(vj + τ2), τ2 ≥ 0,

from which the maximum likelihood estimate τ̂2 can be obtained. If τ̂2 = 0
then the data give no evidence of variation in the θj , all the yj have mean µ,
and all the θ̃j are shrunk to µ̂. If τ̂2 > 0, then ξj is replaced by vj/(vj + τ̂2)
in (11.59). As 0 ≤ vj/(vj + τ̂2) ≤ 1, θ̃j lies between yj and µ̂.

Confidence intervals for the θj may be computed by replacing µ and τ2

in (11.58) by estimates, but their coverage will be lower than the nominal
level because the variability of µ̂ and τ̂2 is unaccounted for. Approaches to
overcoming this have been proposed, but we shall not treat them here.

Example 11.29 (Toxoplasmosis data) Example 10.29 discusses estima-
tion of levels of toxoplasmosis in 34 cities in El Salvador. For a simple analysis
of these data, we let yj = log{(rj + 1/2)/(mj − rj + 1/2)} represent empirical
logistic transformations of the binomial responses giving the level of toxoplas-
mosis, with approximate variances vj = (rj + 1/2)−1 + (mj − rj + 1/2)−1

treated as known. We generalize Example 11.28 to encompass regression by
taking

y1, . . . , yn | θ1, . . . , θn
ind∼ N(θj , vj), θj | β ind∼ N(xT

j β, v′j), j = 1, . . . , n,

so that the θj vary around means xT
j β. Then

θj | y,β, v′j
ind∼ N

{
(1− ξj)yj + ξjx

T
j β, vj(1− ξj)

}
, ξj = vj/(vj + v′j),

and marginally yj
ind∼ N(xT

j β, vj + v′j), for j = 1, . . . , n. Maximum likelihood

yields the weighted least squares estimator β̂ = (XTWX)−1XTWy, where W
is the diagonal matrix with elements wj = (vj + v′j)

−1, leading to shrinkage

estimators θ̃j = (1−ξj)yj+ξjxT
j β̂ of the θj , with estimated variances vj(1−ξj).

The v′j typically depend on unknown parameters that may be estimated
from the profile likelihood. Here we take v′1 = · · · = v′n = τ2. If xTβ equals
a constant, then τ̂2 = 0.17, but it is better to let xTβ be a cubic function
of rainfall, leading to τ̂2 = 0.1. Figure 11.13 shows strong shrinkage of the
individual estimates yj towards their regression counterparts xj β̂. The average

variance reduces by a factor of almost ten, from v = 0.68 to v(1 − ξ̂) = 0.07,
and one would expect a large decrease in overall mean squared error.

The empirical Bayes estimates of the toxoplasmosis levels themselves are
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Figure 11.13

Shrinkage of
individual estimates
(lower blobs)
towards regession
estimates (upper
blobs) for
toxoplasmosis data.
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Table 11.13

Shakespeare’s word
type frequencies
(Efron and Thisted,
1976; Thisted and
Efron, 1987). Entry
r is nr, the number
of word types used
exactly r times.
There are 846 word
types which appear
more than 100 times,
for a total of 31,534
word types.

r 1 2 3 4 5 6 7 8 9 10 Total

0+ 14376 4343 2292 1463 1043 837 638 519 430 364 26305
10+ 305 259 242 223 187 181 179 130 127 128 1961
20+ 104 105 99 112 93 74 83 76 72 63 881
30+ 73 47 56 59 53 45 34 49 45 52 513
40+ 49 41 30 35 37 21 41 30 28 19 331
50+ 25 19 28 27 31 19 19 22 23 14 227
60+ 30 19 21 18 15 10 15 14 11 16 169
70+ 13 12 10 16 18 11 8 15 12 7 122
80+ 13 12 11 8 10 11 7 12 9 8 101
90+ 4 7 6 7 10 10 15 7 7 5 78

obtained by inverse logistic transformation, with standard errors from the
delta method. A more detailed analysis, or simulation, would be needed to
account for the uncertainty in β̂ and τ̂2.

The previous examples illustrate parametric empirical Bayes inference, in
which the prior for θ is taken from a parametrized family of distributions. In
practice an alternative is to try and estimate the prior nonparametrically. The
resulting estimators are generally unstable if the data are not extensive, and
some form of smoothing may be needed.

Example 11.30 (Shakespeare’s vocabulary data) The canon of Shake-
speare’s accepted works contains 884,647 words, with 31,534 distinct word
types. A word type is a distinguishable arrangement of letters, so ‘king’ is
different from ‘kings’ and ‘alehouse’ different from both ‘ale’ and ‘house’. Ta-
ble 11.13 shows how many word types occurred once, twice, and so on in the
canon: 14,376 appear just once, 4343 appear twice, and so forth. If nr is the
number of word types appearing r times, then

∑∞
r=1 nr = 31,534.

If a new body of work containing 884,647t words was found, how many new
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word types might it contain? Taking t = 1 corresponds to finding a new set of
works the same size as the canon, while setting t =∞ enables us to estimate
Shakespeare’s total vocabulary.

Finding a new word type in a body of work is analogous to finding a new
species of animal among those caught in a trap. Suppose that there are S
species in total, and that after trapping over the period [−1, 0] we have ys

members of species s. We assume that they enter the trap according to a
Poisson process of rate λs per unit of time, so ys is Poisson with mean λs, and
let nr =

∑
s I(ys = r) be the number of species observed exactly r times in

the trapping period [−1, 0]. Let G(λ) be the unknown distribution function of
λ1, . . . ,λS . Then the expected number of species seen in (0, t] that were seen
exactly r times in the previous interval [−1, 0] is

νr(t) = S

∫ ∞

0
e−λ

λr

r!
(1− e−λt)dG(λ)

= S

∫ ∞

0
e−λ

λr

r!

{
λt− (λt)2

2!
+

(λt)3

3!
− · · ·

}
dG(λ)

=
∞∑

k=1

(−1)k+1

(
r + k

k

)
tkηr+k, (11.60)

where

ηr = E(nr) = S

∫ ∞

0

λr

r!
e−λ dG(λ), r = 1, 2, . . . .

The convergence of (11.60) will depend on t, but if it does converge, then
an unbiased nonparametric empirical Bayes estimator ν̃r(t) is obtained by
replacing the ηr by estimates η̃r = nr obtained from the marginal distribution
across the species. If the S Poisson processes are independent, then the nr

will be approximately independent Poisson variables with means ηr. Thus for
example,

var {ν̃0(t)} = var
(
n1t− n2t

2 + n3t
3 − · · ·

) .
=

∞∑

r=1

ηrt
2r .

=
∞∑

r=1

nrt
2r

provides a standard error for ν̃0(t).

For the data in Table 11.13, ν̃0(1) = 11,430 with standard error 178. It turns
out not to be possible to give an upper bound for the size of Shakepeare’s
vocabulary, but a fairly realistic lower bound can be established of about
35,000 word types that he knew but which do not appear in the canon.

Parametric empirical Bayes models employ parametric distributions for G,
one candidate being gamma with mean and variance ξ/β and ξ/β2. Then

ηr = η1
Γ(r + ξ)

r!Γ(1 + ξ)

(
β

1 + β

)r−1

, r = 1, 2, . . . ,
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proportional to the negative binomial density truncated so that r > 0. In
the negative binomial case ξ > 0, but here any value of ξ > −1 is possible;
ξ = 0 gives the logarithmic series distribution, the first to be fitted to species
abundance data. The parameters can be estimated by maximum likelihood
fitting of the multinomial distribution of n1, . . . , nr0 , for some suitable r0.
Taking r0 = 40 yields η̂1 = 14,376, ξ̂ = −0.3954 and β̂ = 104.3. The fit to
Table 11.13 is then remarkably good, giving ν̃0(1)

.
= 11,483, very close to the

nonparametric empirical Bayes estimate.

In 1985 a previously unknown nine-stanza poem was found in the Bodleian
Library in Oxford. It consists of 429 words with 258 word types, of which nine
do not appear in the canon. The empirical counts can be compared with the
values ν̃r(t) with t = 429/884,647; for example ν̃0(t) = 6.97 is in fair agreement
with the observed number of nine new words. Detailed work suggests that at
least on the basis of the word counts, the poem might be attributable to
Shakespeare. Scholarly debate continues, however, as word usage in the new
poem differs from that in the canon.

Shrinkage improves estimators in many models. Before discussing an unex-
pected consequence of this, we outline some key notions of decision theory.

11.5.2 Decision theory

Sometimes data are gathered in order to decide among decisions whose payoffs
are known explicitly. The decision chosen will depend on the data y, and the
choice is made according to a decision rule δ(y), which takes a value in a
decision space D. Thus δ is a mapping from the sample space Y to D.

The fact that some decisions have better consequences than others is quan-
tified through a loss function l(d, θ), which represents the loss due to making
decision d when the true state of nature is θ. A bad decision incurs a big loss,
a better decision a smaller one.

At the time a decision is taken its loss is unknown because of uncertainty
about θ. Nevertheless, provided we have prior information on θ, we can cal-
culate the posterior expected loss,

E {l(d, θ) | y} =

∫
l(d, θ)π(θ | y) dθ =

∫
l(d, θ)f(y | θ)π(θ) dθ∫

f(y | θ)π(θ) dθ
.

This is a function of d and y. If we want to make a decision leading to as small
a loss as possible, one strategy is to choose the decision d that minimizes the
posterior expected loss for the particular y that has been observed. Thus
δ(y) = d, where E {l(d′, θ) | y} ≥ E {l(d, θ) | y} for every d′ ∈ D. This is called
the Bayes rule for loss function l with respect to prior π.

Example 11.31 (Discrimination) Suppose we must decide whether or
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not a patient with measurements y has a disease that has prevalence γ in the
population. Let θ = 1 indicate the event that he is diseased. Then

Pr(θ = 1) = γ, Pr(θ = 0) = 1− γ,

and y has densities f1(y) and f0(y) according to the unknown value of θ,
which represents the state of nature. The possible decisions are

d0 = ‘patient is not diseased’, d1 = ‘patient is diseased’,

and a decision rule δ(y) is a procedure that chooses one of these.
Let lij denote the loss made when θ = i and decision dj is made. We set

l00 = l11 = 0, so there is no loss when a decision is correct, and assume that
l10, l01 > 0. The posterior expected losses associated with d0 and d1 are

E {l(d0, θ) | y} =
l00(1− γ)f0(y) + l10γf1(y)

(1− γ)f0(y) + γf1(y)
=

l10γf1(y)

(1− γ)f0(y) + γf1(y)

and

E {l(d1, θ) | y} =
l01(1− γ)f0(y) + l11γf1(y)

(1− γ)f0(y) + γf1(y)
=

l01(1 − γ)f0(y)

(1 − γ)f0(y) + γf1(y)
.

The posterior expected loss is minimized by d0 if l10γf1(y) < l01(1 − γ)f0(y)
and otherwise by d1; we are indifferent if l10γf1(y) = l01(1 − γ)f0(y).

This Bayes rule can be expressed in more familiar terms: choose d0 if

f0(y)

f1(y)
>

l10γ

l01(1− γ)
,

and otherwise choose d1. This is reminiscent of the Neyman–Pearson lemma,
though here the value determining the decision involves γ and the loss function
rather than a null distribution for y.

The set-up described thus far applies to decisions to be made once the
data are known. But actions must sometimes be taken before any data are
available — for example, an experimental design should be chosen to maximize
the information in future data. It then seems wise to average the loss incurred
over the future data. The expected loss due to using decision rule δ(y) when
the true state of nature is θ is called the risk function of δ,

Rδ(θ) =

∫
l{δ(y), θ}f(y | θ) dy.

If we have prior density π(θ) for θ, the overall expected loss due to using δ is
the Bayes risk,

∫
Rδ(θ)π(θ) dθ =

∫
π(θ)

∫
l{δ(y), θ}f(y | θ) dy dθ

=

∫
f(y)

∫
l{δ(y), θ}π(θ | y) dθ dy.
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For any given y this is minimized by the decision δ(y) minimizing the inner
integral, and this choice of δ is the Bayes rule for the prior π(θ). Thus the
Bayes rule minimizes expected loss for both post-data and pre-data decisions.

If we view estimation as a decision problem, then a decision is a choice of
the value θ̃ to be used to estimate θ, and the loss depends on θ and θ̃. A
common choice is squared error loss, l(θ̃, θ) = (θ̃ − θ)2. The Bayes rule then
uses as estimator the posterior mean of θ,

m(y) =

∫
θπ(θ | y)dθ.

To see why, let θ̃(y) be any other estimator, and note that as

{
θ̃(y)− θ

}2
=
{
θ̃(y)−m(y)

}2
+2
{
θ̃(y)−m(y)

}
{m(y)− θ}+{m(y)− θ}2 ,

the posterior expected loss
∫ {

θ̃(y)− θ
}2
π(θ | y) dθ =

{
θ̃(y)−m(y)

}2
+

∫
{m(y)− θ}2 π(θ | y) dθ

(11.61)
is minimized by choosing θ̃(y) = m(y).

Admissible decision rules

We saw above that if a prior density for θ is available, one should choose the
decision that minimizes the posterior expected loss with respect to that prior.
But if no prior is available then we must attempt to make a good decision
whatever the value of θ. We can compare two decision rules δ and δ′ through
their risk functions. If Rδ′(θ) ≥ Rδ(θ) for all θ, with strict inequality for
some θ, then we say that δ′ is inadmissible — it is beaten by another rule. If
no such rule can be found, δ′ is said to be admissible. Provided the decision
formulation is accepted and considerations such as robustness may be ignored,
we should clearly restrict attention to admissible decision rules.

The Bayes rule δB corresponding to a proper prior π(θ) is always admis-
sible. For if not, there is a rule δ′ such that Rδ′(θ) ≤ RδB (θ), with strict
inequality for some set of values of θ to which π attaches positive probability.
The corresponding Bayes risks satisfy

∫
π(θ)Rδ′ (θ) dθ <

∫
π(θ)RδB (θ) dθ,

contradicting the fact that δB minimizes the Bayes risk with respect to π(θ).
In a particular setting there may be many admissible decision rules. We

can choose among them by minimizing supθ Rδ(θ). This generally very con-
servative choice is called a minimax rule. An admissible decision rule δ with
constant risk is minimax. For otherwise there exists a rule δ′ such that for all



11.5 · Empirical Bayes Inference 707

θ,

Rδ′(θ) ≤ sup
θ

Rδ′(θ) < sup
θ

Rδ(θ).

But if δ has constant risk, then the right-hand side of this expression is con-
stant, and δ must be inadmissible, which is a contradiction.

Example 11.32 (Normal distribution) Suppose that Y1, . . . , Yn is a ran-
dom sample from the N(µ,σ2) distribution with known σ2 and that we wish
to choose an estimator µ̃ of µ among

1 δ1(Y ) = Y , the sample average;
2 δ2(Y ) is the median of Y1, . . . , Yn; and
3 δ3(Y ) = (nY /σ2 + µ0/τ2)/(n/σ2 + 1/τ2), the posterior mean for µ under

the prior N(µ0, τ2); see (11.11).

We take loss function (µ̃ − µ)2, so δ(Y ) has risk Rδ(µ) equal to its mean

squared error, E
[
{δ(Y )− µ}2

]
, the expectation being over Y for fixed µ.

The average δ1(Y ) has mean and variance µ and σ2/n, while the median
δ2(Y ) has approximate mean and variance µ and πσ2/(2n). Their risks are

Rδ1(µ) = σ2/n, Rδ2(µ)
.
= πσ2/(2n).

The posterior mean δ3(Y ) has bias and variance

nµ/σ2 + µ0/τ2

n/σ2 + 1/τ2
− µ,

n/σ2

(n/σ2 + 1/τ2)2
,

and so

Rδ3(µ) =
n/σ2 + (µ− µ0)2/τ2

(n/σ2 + 1/τ2)2
.

As Rδ2(µ) > Rδ1(µ) for all µ, δ2 is inadmissible. It can be shown that δ1 is
admissible, and as it has constant risk it is minimax. The rule δ3 is Bayes and
hence admissible. If τ2 is small, δ3 will be greatly preferable to δ1 for values
of µ close to the prior mean µ0. Contrariwise if τ2 is large, corresponding
to weak prior information, then Rδ3(µ) < Rδ1(µ) over a wide range, but the
improvement is small. When τ →∞, we see that δ3 → δ1.

Shrinkage and squared error loss

Having set up machinery for the comparison of estimators using risk, we in-
vestigate the gains due to shrinkage when using empirical Bayes estimation.

Let Y1, . . . , Yn be independent normal variables with means θ1, . . . , θn and
unit variance. We consider estimation of θ1, . . . , θn by θ̃1, . . . , θ̃n using as risk
function the sum of squared errors

Rθ̃(θ) = E

⎧
⎨

⎩

n∑

j=1

(θ̃j − θj)
2

⎫
⎬

⎭
, (11.62)
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the expectation being over Y with θ fixed. At first sight this formulation seems
highly artificial, but in fact it is paradigmatic of many situations, one being
the semiparametric models discussed in Section 10.7. The maximum likelihood
estimators arise when θ̃j = Yj and have risk Rθ̃(θ) = n. Are better estimators
available?

One possibility stems from taking (11.59) when v1 = · · · = vn. Then µ̂ = Y
does not depend on τ2, whose maximum likelihood estimator is given by

τ̂2
+ = max

(
n−1W − 1, 0

)
, W =

n∑

j=1

(Yj − Y )2.

The eventual conclusion is unchanged but the computations below simplify if
we replace τ̂2

+ by W/b, where we choose b to minimize the risk. Substitution
into (11.59) gives the shrinkage estimators

θ̃j = Y + (1− b/W )(Yj − Y ), j = 1, . . . , n. (11.63)

These are more appealing than (11.59), because the degree of shrinkage de-
pends on the data, being small if the Yj are widely separated and W is large.
‘Overshrinkage’ occurs if b/W > 1, so in practice one would use a non-negative
estimator such as τ̂+.

We show below that the risk of (11.63) using squared error loss is

Rθ̃(θ) = n + b {b− 2(n− 3)}E(W−1). (11.64)

This has minimum value n−(n−3)2E(W−1) when b = n−3, and as E(W−1) >
0 this risk is uniformly less than n when n > 3. That is, when means of four or
more normal variables are estimated simultaneously using (11.63) and squared
error loss, the maximum likelihood estimator is inadmissible: the paragon of
point estimation should not be used. This risk improvement is often called
the Stein effect after its chief discoverer. Charles Stein

(1920–) studied at
Chicago and
Columbia
universities and since
1953 has worked at
Stanford University.
He has made
important
contributions to
mathematical
statistics. See
DeGroot (1986b).

This striking result rests on the cumulation of risk across observations; the
chosen risk function would not be sensible if interest focused on a single θj.
The extent to which shrinkage reduces the risk depends on the distribution
of W , which is non-central chi-squared with non-centrality parameter ρ =∑

(θj − θ)2. If ρ = 0, that is, all the θj are equal, then E(W−1) = (n − 3)−1

and Rθ̃(θ) = 3 independent of n. In this case shrinkage yields a dramatically
improved estimator. If ρ is large, then the means of the Yj are widely separated
and E(W−1) is small, so Rθ̃(θ) is only slightly less than n: the gain from
shrinkage is then small. When Y in (11.63) and in W is replaced by a fixed
prior value µ, then essentially the same result applies, with the maximum
likelihood estimator then inadmissible when n > 2. The amount of shrinkage
then depends on the distance from θ to the prior mean µ, and is large if this
distance is small.
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Similar results apply more generally, for example to regression and to mul-
tivariate situations. The broad lesson is that frequentist estimation of related
quantities may be improved by using shrinkage procedures.

Derivation of (11.64)

Note first that with θ̃j given in (11.63),
∑

(θ̃j − θj)2 equals

n∑

j=1

{
Y + (1− b/W )(Yj − Y )− θj

}2
=

n∑

j=1

{
Yj − θj − b(Yj − Y )/W

}2

and this equals

n∑

j=1

(Yj − θj)
2 − 2bW−1

n∑

j=1

(Yj − θj)(Yj − Y ) + b2W−1. (11.65)

The first term has expectation n and the last appears in (11.64), so we must
deal with the middle term.

Consider E {(Yj − θj)hj(Y )}, where hj(y) is a sufficiently well-behaved func-

tion. Integration by parts, recalling that Yj
ind∼ N(θj , 1), and that dφ(z)/dz =

−zφ(z), implies that E {(Yj − θj)hj(Y )} = E {∂hj(Y )/∂Yj}. Setting

hj(Y ) =
Yj − Y

W
=

Yj − Y
∑

i(Yi − Y )2

yields

∂hj(Y )

∂Yj
=

1− n−1

W
− 2

(Yj − Y )2

W 2
,

and a little algebra establishes that the central term in (11.65) has expectation
−2b(n− 3)E(W−1). Expression (11.64) follows directly.

Exercises 11.5
1 In Example 11.29, suppose that v′

j = τ 2vj . Show that an unbiased estimator of
τ 2 is then SS/(n− p)− 1, where SS is the residual sum of squares and p is the
dimension of β, and explain why a better estimator is max{SS/(n − p)− 1, 0}.
Find also the profile log likelihood when v′

j = τ 2.

2 Consider estimating the success probability θ for a binomial variable R with
denominator m, using a beta prior distribution with parameters a, b > 0.
(a) Show that the marginal probability Pr(R = r | µ, ν) has beta-binomial form

Γ(ν)

Γ(νµ)Γ{ν(1 − µ)}

(
m
r

)
Γ(r + νµ)Γ{m − r + ν(1 − µ)}

Γ(m + ν)
, r = 0, . . . , m,

where µ = a/(a + b) and ν = a + b, and deduce that

E(R/m) = µ, var(R/m) =
µ(1 − µ)

m

(
1 +

m − 1
ν + 1

)
.
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(b) Show that methods of moments estimators based on a random sample
R1, . . . , Rn all with denominator m are

µ̂ = R, ν̂ =
µ̂(1 − µ̂) − S2

S2 − µ̂(1 − µ̂)/m
,

where R and S2 are the sample average and variance of the Rj .
(c) Find the mean and variance of the conditional distribution of θ given R, and
show that the mean can be written as a shrinking of R/m towards µ. Hence
give the empirical Bayes estimates of the θj .

3 Consider a logistic regression model for Example 11.29. Show that the marginal
log likelihood for β, τ 2 may be written as

n∑

j=1

log

∫
erjθ

(1 + eθ)mj
φ

(
θ − xT

j β

τ

)
dθ − log τ.

Use Laplace approximation to remove the integrals, and outline how you would
then estimate β and τ 2. Give also a Laplace approximation for the posterior
mean of θj given the data, β and τ .

4 Consider the exponential family density f(y | θ) = θye−κ(θ)f0(y) for integer y,
where f0(y) is known. If π(θ) is any prior on θ, show that

E(θ | y) =

∫
θy+1e−κ(θ)π(θ) dθ∫
θye−κ(θ)π(θ) dθ

=
Prπ(Y = y + 1)f0(y)

Prπ(Y = y)f0(y + 1)
,

where Prπ(Y = y) is the marginal probability that Y = y, averaged over π.
Given a sample y1, . . . , yn from the corresponding empirical Bayes model, ex-
plain why E(θj | yj) may be estimated by

f0(yj)
∑n

i=1
I(yi = yj + 1)

f0(yj + 1)
∑n

i=1
I(yi = yj)

.

Do you think this estimator will be numerically stable? Check by simulating
some data and trying it out.

5 Let X1, . . . , Xn be a Poisson random sample with mean µ. Previous experience
suggests prior density

π(µ) =
1

Γ(ν)
µν−1e−µ, 0 < µ < ∞, ν > 0.

If the loss function for an estimator µ̃ of µ is (µ̃ − µ)2, determine an estimator
that minimizes the expected loss and compare its bias and variance with those
of the maximum likelihood estimator.

6 The proportion θ of defective items from a production process varies because of
fluctuations in the the raw material. Records show that the prior density for θ
is proportional to θ(1 − θ)4. A hundred items are inspected from a large batch
all made from a homogeneous batch of raw material, and six are found to be
defective.
Find the posterior density function for the proportion θ of defectives in the
batch. The cost of estimating θ by θ̂ is θ2(θ̂−θ)2. Find also the value of θ̂ which
minimizes the expected cost, and the value of the minimum expected cost.
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7 The loss when the success probability θ in Bernoulli trials is estimated by θ̃ is
(θ̃− θ)2θ−1(1− θ)−1. Show that if the prior distribution for θ is uniform and m
trials result in r successes then the corresponding Bayes estimator for θ is r/m.
Hence show that r/m is also a minimax estimator for θ.

8 A population consists of k classes θ1, . . . , θk and it is required to classify an
individual on the basis of an observation Y having density fi(y | θi) when the
individual belongs to class i = 1, . . . , k. The classes have prior probabilities
π1, . . . ,πk and the loss in classifying an individual from class i into class j is lij .
(a) Find the posterior probability πi(y) = Pr(class i | y) and the posterior risk
of allocating the individual to class i.
(b) Now consider the case of 0–1 loss, that is, lij = 0 if i = j and lij = 1
otherwise. Show that the risk is the probability of misclassification.
(b) Suppose that k = 3, that π1 = π2 = π3 = 1/3 and that Y is normally
distributed with mean i and variance 1 in class i. Find the Bayes rule for
classifying an observation. Use it to classify the observation y = 2.2.

9 Let Yj
ind∼ N(θj , 1), j = 1, . . . , n, let µT = (µ1, . . . , µn) be a constant vector,

and consider the estimator of θ1, . . . , θn given by

θ̃j = µ +
{

1 − b
/∑

(Yi − µi)
2
}

(Yj − µ), j = 1, . . . , n.

Show that the risk under squared error loss, (11.62), reduces to (11.64) with
n − 3 replaced by n − 2. Discuss the consequences of this.

11.6 Bibliographic Notes

The Bayesian approach to statistics, then called the inverse probability ap-
proach, played a central role in the early and middle parts of the nineteenth
century, and was central to Laplace’s work. It then fell into disrepute after
strong attacks were made on the principle of insufficient reason and remained
there for many years. During the 1920s and 1930s R. A. Fisher strongly criti-
cised the use of prior distributions to represent ignorance. The publication in
1939 of the first edition of the influential Jeffreys (1961) marked the start of a
resurgence of interest in Bayesian inference, which was consolidated by further
important advocacy in the 1950s, particularly after difficulties with frequen-
tist procedures emerged. Interest has mounted especially strongly since serious
Bayesian computation became routinely possible.

Introductory books on the Bayesian approach are O’Hagan (1988), Lee
(1997), and Robert (2001), while the excellent Carlin and Louis (2000) and
Gelman et al. (1995) are more oriented towards applications; see also Box
and Tiao (1973), and Leonard and Hsu (1999). More advanced accounts are
Berger (1985) and Bernardo and Smith (1994), while De Finetti (1974, 1975)
is de rigeur for the serious reader. The likelihood principle and its relation to
the Bayesian approach is discussed at length by Berger and Wolpert (1988).
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Bayesian model averaging is described by Hoeting et al. (1999), who give other
references to the topic.

The role and derivation of prior information has been much debated. For
some flavour of this, see Lindley (2000) and its discussion. A valuable review
of arguments for non-subjective representations of prior ignorance is given by
Kass and Wasserman (1996). The elicitation of priors is extensively discussed
by Kadane and Wolfson (1998), O’Hagan (1998), and Craig et al. (1998).

Laplace approximation is a standard tool in asymptotics, with close links to
saddlepoint approximation. A statistical account is given by Barndorff-Nielsen
and Cox (1989), which gives further references. It has been used sporadically
in Bayesian contexts at least since the 1960s. Tierney and Kadane (1986) and
Tierney et al. (1989) raised its profile for modern readers. The same idea can
be applied to other distributions; see for example Leonard et al. (1994).

Markov chain Monte Carlo methods originated in statistical physics. The
original algorithm of Metropolis et al. (1953) was broadened to what is now
called the Metropolis–Hastings algorithm by Hastings (1970), a paper aston-
ishingly overlooked for two decades, though known to researchers in spatial
statistics and image analysis (Geman and Geman, 1984; Ripley, 1987, 1988).
The last decade has made up for this oversight, with rapid progress being made
in the 1990s following Gelfand and Smith (1990)’s adoption of the Gibbs sam-
pler for mainstream Bayesian application. Valuable books on Bayesian use of
such procedures are Gilks et al. (1996), Gamerman (1997), and Robert and
Casella (1999), while Brooks (1998) and Green (2001) give excellent shorter
accounts. Example 11.27 is taken from Besag et al. (1995), while further inter-
esting applications are contained in Besag et al. (1991) and Besag and Green
(1993). Tanner (1996) describes a number of related algorithms, including vari-
ants on the EM algorithm and data augmentation. Green (1995) and Stephens
(2000) describe procedures that may be applied when the parameter space has
varying dimension.

Spiegelhalter et al. (1996a) describe software for Bayesian use of Gibbs sam-
pling algorithms, with many examples in the accompanying manuals (Spiegel-
halter et al., 1996b,c). Cowles and Carlin (1996) and Brooks and Gelman
(1998) review numerous convergence diagnostics for Markov chain Monte
Carlo output.

Decision theory is treated by Lindley (1985), Smith (1988), Raiffa and
Schlaifer (1961), and Ferguson (1967). Hierarchical modelling is discussed in
many of the above references. Carlin and Louis (2000) give a modern ac-
count of empirical Bayes methods, while the more theoretical Maritz and
Lwin (1989) predates modern computational developments. The discovery of
the inadmissibility of the maximum likelihood estimator by Stein (1956) and
the effects of shrinkage spurred much work; see Morris (1983) for a review.
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11.7 Problems

1 Show that the integration in (11.6) is avoided by rewriting it as

f(z | y) =
f(z | y, θ)π(θ | y)

π(θ | y, z)
.

Note that the terms on the right need be calculated only for a single θ.
Use this formula to give a general expression for the density of a future obser-
vation in an exponential family with a conjugate prior, and check your result
using Example 11.3.
(Besag, 1989)

2 (a) Consider a scale model with density f(y) = τ−1g(y/τ ), y > 0, depending
on a positive parameter τ . Show that this can be written as a location model
in terms of log y and log τ , and infer that the non-informative prior for τ is
π(τ ) ∝ τ−1, for τ > 0.
(b) Verify that the expected information matrix for the location-scale model
f(y; η, τ ) = τ−1g{(y − η)/τ}, for real η and positive τ , has the form given in
Example 11.10, and hence check the Jeffreys prior for η and τ given there.

3 Show that if y1, . . . , yn is a random sample from an exponential family with
conjugate prior π(θ | λ, m), any finite mixture of conjugate priors,

k∑

j=1

pjπ(θ,λj , mj),
∑

j

pj = 1, pj ≥ 0,

is also conjugate. Check the details when y1, . . . , yn is a random sample from
the Bernoulli distribution with probability θ.

4 Inference for a probability θ proceeds either by observing a single Bernoulli
trial, X, with probability θ, or by observing the outcome of a geometric random
variable, Y , with density θ(1−θ)y−1, y = 1, 2, . . .,. Show that the corresponding
Jeffreys priors are θ−1/2(1−θ)−1/2 and θ−1(1−θ)−1/2, and deduce that although
the likelihoods for X and Y are equal, subsequent inferences may differ. Does
this make sense to you?

5 Let y1, y2 be the observed value of a random variable from the bivariate density

f(y1, y2; θ) = π−3/2 exp
{
−(y1 + y2 − 2θ)2/4

}

1 + (y1 − y2)2
, −∞ < y1, y2, θ < ∞.

Show that the likelihood for θ is the same as for two independent observations
from the N(θ, 1) density, but that confidence intervals for θ based the average y
are not the same under both models, in contravention of the likelihood principle.

6 Show that acceptance of the likelihood principle implies acceptance of the suf-
ficiency and conditionality principles.

7 Consider a likelihood L(ψ,λ), and suppose that in order to respect the likelihood
principle we base inferences for ψ on the integrated likelihood

∫
L(ψ,λ) dλ.

(a) Compare what happens when X and Y have independent exponential dis-
tributions with means (i) λ−1 and (λψ)−1, (ii) λ and λ/ψ. Discuss.
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Table 11.14

Counts of of
balsam-fir seedlings
in five feet square
quadrats.

0 1 2 3 4 3 4 2 2 1
0 2 0 2 4 2 3 3 4 2
1 1 1 1 4 1 5 2 2 3
4 1 2 5 2 0 3 2 1 1
3 1 4 3 1 0 0 2 7 0

(b) Suppose that the parameters in (i) are given prior density π(ψ,λ) and
that we compute the marginal posterior density for ψ. Establish that if the
corresponding prior density is used in the parametrization in (ii), the problems
in (a) do not arise.

8 Obtain expressions for the mean, variance, and mode of the inverse gamma
density (11.14), and express its quantiles in terms of those of the gamma density.
Use your results to summarize the posterior density of σ2 in Example 11.12.
Calculate also 95% HPD and equi-tailed credible sets for σ2.

You may like to
check that for b > 0,
the function
g(u) = au − beu is
concave with a
maximum at a finite
u if a > 0, but that
if a < 0, it is
monotonic
decreasing.

9 (a) Let y be Poisson with mean θ and gamma prior λνθν−1 exp(−λθ)/Γ(ν), for
θ > 0. Show that if ν = 1

2 and y = 0, the posterior density for θ has mode zero,
and that a HPD credible set for θ has form (0, θU ).
(b) Show that a HPD credible set for φ = log θ has form(φL,φU ), with both
endpoints finite. How does this compare to the interval transformed from (a)?
Why does the difference arise?
(c) Compare the intervals in (a) and (b) with the use of quantiles of π(θ | y) to
construct an equi-tailed credible set for θ, and with confidence intervals based
on the likelihood ratio statistic.

10 Use (11.15) to show that the joint conjugate density for the normal mean and
variance has µ ∼ N(µ0, σ

2/k) conditional on σ2, with σ2 having an inverse
gamma density. Give interpretations of the hyperparameters, and investigate
under what conditions the conjugate prior approaches the improper prior in
which π(µ,σ2) ∝ σ−2.
Consider instead replacing the prior variance σ2/k of µ by a known quantity
τ 2. Is the resulting joint prior conjugate?

11 Two competing models for a random sample of count data y1, . . . , yn are that
they are independent Poisson variables with mean θ, or independent geometric
variables with density θ(1− θ)y−1, for y = 0, 1, . . ., with 0 < θ < 1; this density
has mean θ−1. Give the posterior odds and Bayes factor for comparison of these
models, using conjugate priors for θ in both cases.
What are your prior mean and variance for the numbers of seedlings per five
foot square quadrat in a fir plantation? Use them to deduce the correspond-
ing parameters of the conjugate priors for the Poisson and geometric models.
Calculate your prior odds and Bayes factor for comparison of the two models
applied to the data in Table 11.14. Investigate their sensitivity to other choices
of prior mean and variance.

12 Consider a random sample y1, . . . , yn from the N(µ,σ2) distribution, with con-
jugate prior N(µ0,σ

2/k) for µ; here σ2 and the hyperparameters µ0 and k are
known. Show that the marginal density of the data

f(y) ∝ σ−(n+1)
(
σ2n−1 + σ2k−1

)1/2
exp

[
− 1

2

{
(n − 1)s2

σ2
+

(y − µ0)
2

σ2/n + σ2/k

}]
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∝ exp
{
− 1

2d(y)
}

,

say. Hence show that if Y+ is a set of data from this marginal density, Pr{f(Y+) ≤
f(y)} = Pr{χ2

n ≥ d(y)}. Evaluate this for the sample 77, 74, 75, 78, with
µ0 = 70, σ2 = 1, and k0 = 1

2 . What do you conclude about the model?
Do the corresponding development when σ2 has an inverse gamma prior.
(Box, 1980)

13 Suppose that y1, . . . , yn is a random sample from the Poisson distribution with
mean θ, and that the prior information for θ is gamma with scale and shape
parameters λ and ν. Show that the marginal density of y is

f(y) =
s!∏n

j=1
yj !

n−s × Γ(s + ν)

Γ(ν)s!
λνns

(λ+ n)ν+s
, y1, . . . , yn ≥ 0,

where s =
∑

j
yj , and give an interpretation of it.

Suppose that the data in Table 11.14 are treated as Poisson variables, and that
prior information suggests that λ = 1 and ν = 1

2 . Is this compatible with the
data? Do the data seem Poisson, regardless of the prior?

14 In the usual normal linear regression model, y = Xβ + ε, suppose that σ2 is
known and that β has prior density

π(β) =
1

|Ω|1/2(2π)p/2
exp
{
−(β − β0)

TΩ−1(β − β0)/2
}

,

where Ω and β0 are known. Find the posterior density of β.

15 Show that the (1−2α) HPD credible interval for a continuous unimodal posterior
density π(θ | y) is the shortest credible interval with level (1 − 2α).

16 An autoregressive process of order one with correlation parameter ρ is stationary
only if |ρ| < 1. Discuss Bayesian inference for such a process. How might you
(a) impose stationarity through the prior, (b) compute the probability that
the process underlying data y is non-stationary, (c) compare the models of
stationarity and non-stationarity?

17 Study the derivation of BIC for a random sample of size n. Investigate the sizes
of the neglected terms for nested normal linear models with known variance.
Suggest a better model comparison criterion that is almost equally simple.

18 The lifetime in months, y, of an individual with a certain disease is thought to be
exponential with mean 1/(α+βx), where α, β > 0 are unknown parameters and
x a known covariate. Data (xj , yj) are observed for n independent individuals,
some of the lifetimes being right-censored. The prior density for α and β is

π(α,β) = ab exp(−αa − βb), α, β > 0,

where a, b > 0 are specified. Show that an approximate predictive density for
the uncensored lifetime, z, of a future individual with covariate t is

f̂(z|t, y1, . . . , yn) = (α̂+ β̂t) exp{−(α̂+ β̂t)z}, z > 0,

where α̂ and β̂ satisfy the equations

b +

n∑

j=1

xjyj =
∑

j∈U

xj

α+ βxj
, a +

n∑

j=1

yj =
∑

j∈U

1
α+ βxj

,
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and U denotes the set of uncensored individuals.

19 Suppose that (U1, U2) lies in a product space, of form U1 × U2.
(a) Show that

π(u1) =
π(u1 | u2)
π(u2 | u1)

π(u2), for any u1 ∈ U1, u2 ∈ U2,

and deduce that for each u2 ∈ U2 and an arbitrary u′
1 ∈ U1,

π(u2) =

{∫
π(u1 | u2)

π(u2 | u1)
du1

}−1

=
π(u2 | u′

1)

π(u′
1 | u2)

{∫
π(u2 | u′

1)

π(u′
1 | u2)

du2

}−1

.

(b) If U1
2 , . . . , US

2 is a random sample from π(u2 | u′
1), show that

π̂(u2) =
π(u2 | u′

1)

π(u′
1 | u2)

{

S−1
S∑

s=1

π(u′
1 | Us

2 )−1

}−1

P−→ π(u2) as S → ∞.

(c) Verify that the code below applies this approach to the bivariate normal
model in Example 11.21.

S <- 1000; rho <- 0.75; u1p <- -2 # u1p is u1prime
z <- seq(from=-4,to=4,length=200)
plot(z,dnorm(z),type="l",ylim=c(0,1.5))
for (r in 1:20) # 20 replicates of the simulation
{ u2.sim <- rnorm(S, rho*u1p, sqrt(1-rho^2))

if (r==1) rug(u2.sim) # rug with one of the u2 samples
const <- mean( 1/dnorm(u1p,rho*u2.sim,sqrt(1-rho^2)) )
dz <- dnorm(z,rho*u1p,sqrt(1-rho^2))/dnorm(u1p,rho*z,sqrt(1-rho^2))
lines(z, dz/const) }

Does this work well? Why not? Try with u′
1 = −2, −1, 0.

What lesson does this example suggest for the use of this approach in general?

20 (a) Let (U1, U2) have a joint density π, marginal densities π1 and π2, and con-
ditional densities π1|2 and π2|1. Show that π1 satisfies the integral equation

π1(u) =

∫
h(u, v)π1(v) dv, where h(u, v) =

∫
π1|2(u | w)π2|1(w | v) dw.

(b) In Example 11.21, establish that the conditional distributions of U (i+1)
2 |

U (i)
1 = v, U (i+1)

1 | U (i+1)
2 = w, and U (i+1)

1 | U (i)
1 = v, i = 1, . . . , I − 1, are those

of

ρv + (1 − ρ2)1/2ε1, ρw + (1 − ρ2)1/2ε2, ρ2v + (1 − ρ4)1/2ε3,

where εj
iid∼ N(0, 1). Hence write down h(u, v) for this problem.

(c) Show by induction that the conditional distribution of U (I+1)
1 | U (1)

1 = v is
the same as that of ρ2Iv + (1 − ρ4I)1/2ε4, and hence show that (i) the Markov

chain U (1)
1 , U (2)

1 , . . . is in equilibrium when U (0)
2 has the standard normal density,

and (ii) the chain will reach equilibrium provided U (0)
2 may not equal ±∞.

21 The unmodified Gibbs sampler can be a poor way to generate values from a
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posterior density with several widely separated modes. Let U = (U1, U2)
T and

consider

π(u) = γφ(u1 − δ)φ(u2 − δ) + (1 − γ)φ(u1 + δ)φ(u2 + δ),

where u = (u1, u2)
T, 0 < γ < 1 and δ > 0; this is a mixture of two bivariate

normal densities whose separation depends on δ and whose relative sizes depend
on γ.
(a) When γ = 1/2, sketch contours of π and the conditional density of U1 given
U2 = u2 for u2 = −2δ, δ, 0, δ, 2δ. Sketch also some sample paths for a Gibbs
sampling algorithm. What problem do you foresee if δ > 4, say?
(b) Show that the conditional density of U1 given U2 = u2 may be written

α(u2)φ(u1 − δ) + {1 − α(u2)}φ(u1 + δ), where α(u2) =
γe2δu2

1 − γ + γe2δu2
,

and write down a Gibbs sampling algorithm for π.
(c) If c > 0 is large enough that Φ(−c) is negligible, show that the probability
that the sampler stays in the same mode during R iterations of the sampler is
bounded below by

exp
{
−2R(γ−1 − 1)e−2δc

}
,

and compute this for δ = 2, 3 and some suitable values of c. Comment.
(d) Find the joint distribution of V = (V1, V2)

T = 2−1/2(U1 +U2, U1−U2)
T and

show that if simulation is performed in terms of V , convergence is immediate.
Comment on the implications for implementing the Gibbs sampler.

22 Table 5.9 gives data from k clinical trials as 2× 2 tables (RTj , mTj ; RCj , mCj),
where RTj is the number of deaths in the treatment group of mTj patients
and similarly in the control group, for j = 1, . . . , k. As a model for such data,
ignoring publication bias, assume that RCj and RTj are independent binomial
variables with denominators mCj and mTj and probabilities

exp(µj)
1 + exp(µj)

,
exp(µj + δj)

1 + exp(µj + δj)
, j = 1, . . . , k,

where δj
iid∼ N(γ, τ 2) represent the treatment effects. Suitable prior densities are

assumed for µ1, . . . , µk, γ and τ 2.
(a) Write down the directed acyclic graph for this model, derive its conditional
independence graph, and hence give steps of a Markov chain Monte Carlo al-
gorithm to sample from the posterior density of µ1, . . . , µk, γ and τ 2. If any
steps require Metropolis–Hastings sampling, suggest how you would implement
it and give the acceptance probabilities.
(b) How does your sampler change if one of the RCs is missing?
(c) How should your sampler be modified to generate from the posterior pre-
dictive density of δ+, the value of δ for a new trial?
(d) How should your algorithm be modified if an hierarchical model is used for
the µj?

23 A Poisson process with rate

λ(t) =
{
λ0, 0 < t ≤ τ ,
λ1, τ < t ≤ t0,

where τ is known, is observed on the interval (0, t0]. Let n0 and n1 denote the
numbers of events seen before and after τ , and suppose that λ0 and λ1 are
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independent gamma variables with parameters ν and β, where ν is specified
and β has a gamma prior density with specified parameters a and b.
(a) Check that the joint density of n0, n1,λ0,λ1, and β is

(λ0τ )
n0

n0!
e−λ0τ {λ1(t0 − τ )}n1

n1!
e−λ1(t0−τ)λ

ν−1
0 βν

Γ(ν)
e−λ0β λ

ν−1
1 βν

Γ(ν)
e−λ1β β

a−1ba

Γ(a)
e−bβ .

Show that λ0, λ1, and β have gamma full conditional densities, and hence give
a reversible Gibbs sampler algorithm for simulating from their joint posterior
density. Extend this to a process with known multiple change points τ1, . . . , τk,
for which

λ(t) =

⎧
⎨

⎩

λ0, 0 < t ≤ τ1,
λ1, τ1 < t ≤ τ2,
· · · · · ·
λk, τk < t ≤ t0.

(b) Now suppose that ν is unknown, with prior gamma density with specified
parameters c and d. Show that a random walk Metropolis–Hastings move to
update log ν to log ν′ has acceptance probability

min

[

1,

{
Γ(ν)

Γ(ν′)

}k+1(
ν′

ν

)c (
e−dβk+1

∏
λj

)ν′−ν
]

.

How would you add this to the algorithm in (a) to retain reversibility?
(c) Now suppose that although k is known, τ1, . . . , τk are not. Show that the
joint density of the even order statistics from a random sample of size 2k + 1
from the uniform density on (0, t0) is proportional to

τ1(τ2 − τ1) · · · (τk − τk−1)(t0 − τl), 0 < τ1 < · · · < τk < t0.

Suppose that this is taken as the prior for the positions of the k changepoints,
and that these are updated singly with proposals in which τ ′i is drawn uniformly
from (τi−1, τi+1), with obvious changes for τ1 and τk. Find the acceptance prob-
abilities for these moves.

24 In a Bayesian formulation of Problem 6.16, we suppose that the computer pro-
gram is one of many to be debugged, and that the mean number of bugs per
program has a Poisson distribution with mean µ/β, where µ,β > 0. The actual
number of bugs in a particular program is m, and each gives rise to a failure
after an exponential time with mean β−1, independent of the others. On failure,
the corresponding bug is found and removed at once.
(a) Debugging takes place over the interval [0, t0] and failures are seen to occur
at times 0 < t1 < · · · < tn < t0. Show that

f(y | m,β) =
m!

(m − n)!
βn exp {−βt0(m + s/t0 − n)} , β > 0, m = n, n+1, . . . ,

where y represents the failure times and s =
∑n

j=1
tj .

(b) We take prior π(µ,β) ∝ µ−2, µ > 0. Show that

π(y,m) =

∫ ∞

0

∫ ∞

0

f(y | m,β)f(m | β, µ)π(β, µ) dβdµ

∝ (m − n + s/t0)
−n

n−2∏

i=1

(m − n + i), m = n, n + 1, . . . ,
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and give expressions for the posterior probabilities (i) that the program has
been entirely debugged and (ii) that there are no failures in [t0, t0 + u].
(c) Use the data in Table 6.13 to give a 95% HPD credible interval for the
number of bugs remaining after 31 failures. Compute the probability that the
program had been entirely debugged (i) after 31 failures and (ii) after 34 failures.
Should the program have been released when it was?
(d) Discuss how the appropriateness of the model might be checked.
(Example 2.28; Raftery, 1988)

25 Let Y1, . . . , Yn be independent normal variables with means µ1, . . . , µn and com-
mon variance σ2. Show that if the prior density for µj isδ is the Dirac delta

function.

π(µj) = γτ−1φ(µj/τ ) + (1 − γ)δ(µj), τ > 0, 0 < γ < 1,

with all the µj independent a priori, then π(µj | yj) is also a mixture of a point
mass and a normal density, and give an interpretation of its parameters.
(a) Find the posterior mean and median of µj when σ is known, and sketch how
they vary as functions of yj . Which would you prefer if the signal is sparse, that
is, many of the µj are known a priori to equal zero but it is not known which?
(b) How would you find empirical Bayes estimates of τ , γ, and σ?
(c) In applications of the tails of the normal density might be too light to
represent the distribution of non-zero µj well. How could you modify π to allow
for this?

26 Suppose that y1, . . . , yn are independent Poisson variables with means λjxj ,
where the xj are known constants, and that the λj are a random sample from
the gamma density with mean ξ/ν.
(a) Show that the marginal density of yj is

f(yj ; ξ, ν) =
Γ(yj + ξ)

Γ(ξ)yj !

x
yj
j ν

ξ

(xj + ξ)yj+ξ
, yj = 0, 1, . . . , ξ, ν > 0,

and give its mean. Say how you would estimate ξ and ν based on y1, . . . , yn.
(b) Establish that

E(λj | y, ξ, ν) =
yj + ξ
xj + ν

, var(λj | y, ξ, ν) =
yj + ξ

(xj + ν)2
,

and give an interpretation of this.
(c) Check that the code below computes the maximum likelihood estimates ξ̂
and ν̂, and applies it to the data in Table 11.7. Discuss.

x <- c(94.32,15.72,62.88,125.76,5.24,31.44,1.048,1.048,2.096,10.48)
y <- c(5,1,5,14,3,19,1,1,4,22)
L <- function(p, y, x)

-sum(dnbinom(y, size=p[1], prob=p[2]/(x+p[2]), log=T))
fit <- nlm(L, p=c(1,1), y=y, x=x) # marginal maximum likelihood
xi <- fit$estimate[1]
nu <- fit$estimate[2]
ests <- (y+xi)/(x+nu)
vars <- (y+xi)/(x+nu)^2
cbind(ests,vars)


