
Introduction to Dynamical Systems
Solutions Problem Set 1

Exercise 1. Carefully show that the map

π : Rn −→ Tn,

where Tn = S1 × S1 × · · · × S1 is the n-dimensional torus, given by

π(x) = (e2πix1 , e2πix2 , . . . , e2πixn), x = (x1, . . . , xn)

is a covering map.

Solution. We need only check that for each y ∈ Tn we may find a neighborhood y ∈ Uy ⊂ Tn

such that
π−1(Uy) =

⊔
α∈A

Vα,

where the Vα are open and pairwise disjoint, and π|Vα
is a homeomorphism between Uy and Vα.

One can easily check that this is the case when letting 0 < ε < 1/2 and y = (e2πix̃1 , . . . e2πix̃n),
and choosing

Uy =
n∏

j=1

{
e2πi(xj+x̃j) : − ε < xj < ε

}
, Vk =

n∏
j=1

(kj − ε, kj + ε),

where k = (k1, . . . , kn) ∈ A = Zn.

Exercise 2. Show that Theorem 4.4 from lecture1.pdf is wrong in general if we only assume g
to be Lebesgue integrable.

Solution. To show this, we only need to shift the rational numbers in [0, 1] by all the multiples
of some irrational number α ∈ (R \ Q) ∩ [0, 1], and take f as the indicator function of the
resulting set. Given such an α, define

Qα = (Q + αZ) ∩ [0, 1], f(x) = 1Qα
(x).

Then, for a given rational number x ∈ [0, 1] the left-hand side of the theorem reads

1
N

N∑
j=1

1Qα
(φj

α(x)) = 1
N

N∑
j=1

1 = 1,

whereas the right-hand side reads ∫ 1

0
1Qα

(x) dx = |Qα| = 0,

given that Qα is a countable set.

Exercise 3. Give a detailed proof of Theorem 4.7 in lecture1.pdf.

Solution. The proof follows the same structure and ideas as that of Theorem 4.4. Now
ααα = (α1, . . . , αn), and the function φααα : Rn −→ R is defined via φ(z) = z + ααα, for z ∈ Rn.
Trigonometric polynomials are now finite sums of terms of the form f(z) = e2πin·z, where
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n ∈ Zn and · is the regular Euclidean product. The trivial case n = 0 can be easily checked to
work, and otherwise,

N−1∑
j=0

f(φj
ααα(z)) =

N−1∑
j=0

e2πin·(z+jααα) = e2πin·z e2πiNn·ααα − 1
e2πin·ααα − 1 ,

which is bounded through the same considerations as in the proof of Theorem 4.4. Therefore,

lim
N→∞

1
N

N−1∑
j=0

f(φj
ααα(z)) = 0 =

∫
[0,1]n

f.

The Stone-Weierstrass theorem now grants density of trigonometric polynomials with respect
to the L∞–norm (uniform convergence) in C([0, 1]n;R), and we only need to check the case of
Riemann integrable functions. However, this part of the proof proceeds identically as that of
Theorem 4.4. The only difference we need to take into account is that the Riemann integral is
now defined in terms of partitions into rectangular subsets of the hypercube.

Exercise 4. Show that the condition
∑n

k=1 ak ·jk /∈ Z for jk ∈ Z is satisfied for n = 3, α1 =
√

2,
α2 =

√
3, α3 =

√
5.

Solution. We can easily check this by contradiction: assume that a
√

2 + b
√

3 + c
√

5 = k ∈ Z,
where a, b, c ∈ Z. Then, by rearranging and squaring both sides we reach

k2 + 2a2 − 2
√

2ak = 3b2 + 5a2 + 2bc
√

15.

Naming r = k2 + 2a2 − 3b2 − 5a2 ∈ Z and rearranging again, we find

r = 2
√

2ak + 2bc
√

15. (1)

Squaring both sides again and renaming p = r2 − 8a2k2 − 60b2c2 ∈ Z,

p = 8akbc
√

30.

Assuming that the right-hand side is not zero, then we reach
√

30 ∈ Q. But this is false (as can
be shown by an elementary contradiction argument).

On the other hand, for the right-hand side to be zero it means that either a, b, c or k is zero.
If only one of a, b, c is nonzero, the result is trivially checked. Otherwise, (1) can be used to
consider cases and check that we always reach a contradiction.
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