INTRO TO DYNAMICAL SYSTEMS FALL 2024, PROBLEM SET 9

- (1) Prove Lemma 3.2 in Lecture 9.pdf
- (2) Give a careful proof of Lemma 3.3 in Lecture 9.pdf.
- (3) Using the result from the second exercise in problem set 8, prove that if $0 \in \mathbb{R}^n$ is a hyperbolic fixed point of the system of ODEs

(1)
$$\dot{y}_i(t) = f_i(y_1, y_2, \dots, y_n), j = 1, 2, \dots, n,$$

and more specifically $Df(0) = \left(\frac{\partial f_j}{\partial y_i}\right)_{1 \leq i,j \leq n}$ only has eigenvalues with negative real part, then there is a neighbourhood

$$0 \in U \subset \mathbb{R}^n$$

such that the solution of (1) with initial condition $\underline{y}(0) \in U$ satisfies a bound of the form

$$|\underline{y}(t)| \le C \cdot e^{-ct}, t \ge 0$$

for suitable constants C, c > 0.