INTRO TO DYNAMICAL SYSTEMS FALL 2024, PROBLEM SET 8

(1) Show that the map \mathcal{L}^{-1} from Lemma 4.3 in Lecture 8 preserves Holder continuity as follows: there is $\alpha_* > 0$ such that for all $\alpha \in (0, \alpha_*]$, we have that (here $x, y \in \mathbb{R}^n$) if

$$[g]_{\alpha} := \sup_{x \neq y} \frac{\left| g(x) - g(y) \right|}{|x - y|^{\alpha}} < \infty$$

then

$$\left[\mathcal{L}^{-1}g\right]_{\alpha} \le C \cdot [g]_{\alpha}.$$

 $\left[\mathcal{L}^{-1}g\right]_{\alpha} \leq C \cdot [g]_{\alpha}.$ For this take advantage of the explicit formulae for v_{\pm} in the proof of the lemma.

(2) Show that the function h effecting the conjugation in Proposition 4.2 is Holder continuous (for a sufficiently small Holder exponent).