INTRO TO DYNAMICAL SYSTEMS FALL 2024, PROBLEM SET 5

The following exercises are from Einsiedler-Ward.

(1) Let (X, m) be a measure space with m(X) = 1, and let $T : X \longrightarrow X$ be measure preserving. Recalling the notation from last lecture, set $U_T f = f \circ T$. Then show that T is ergodic if and only if

$$\lim_{N \to \infty} N^{-1} \sum_{j=0}^{N-1} \langle U_T^j f, g \rangle = \langle f, 1 \rangle \cdot \langle 1, g \rangle$$

for all $f, g \in L^2(X, m)$.

(2) Let (X, m) a finite measure space, $T: X \longrightarrow X$ measure preserving, and let $f \in L^p(X, dm)$, $1 \le p < \infty$. Then show that there is $f^* \in L^p(X, dm)$, invariant under composition with T, and such that

$$\lim_{N \to \infty} N^{-1} \sum_{j=0}^{N-1} f(T^{j}x) = f^{*}(x)$$

with the convergence in the L^p -topology.

(3) Let X be a finite set and let $\sigma: X \to X$ a permutation. We call σ cyclic provided X is an orbit of σ . Show that if $f: X \longrightarrow \mathbb{R}$ and σ is a cyclic permutation, then

$$\lim_{N \to \infty} N^{-1} \sum_{j=0}^{N-1} f(\sigma^{j} x) = \frac{1}{|X|} \cdot \sum_{x \in X} f(x).$$