INTRO TO DYNAMICAL SYSTEMS FALL 2024, PROBLEM SET 4

(1) Assume that ϕ , Φ are as in the structural stability theorem in lecture 3.pdf. Also assume with

$$\Phi(x) = 2x + \hat{\psi}(x), \ \hat{\psi}(x+1) = \hat{\psi}(x),$$

that $\hat{\psi} \in C^1(\mathbb{R})$, and finally that $\hat{\psi}(0) = 0$, $\hat{\psi}'(0) \neq 0$. Then show that there is no open interval $(a,b) \subset \mathbb{R}$ on which the function u which solves

$$\Phi(u(x)) = u(2x)$$

is of class C^1 . Hint: first show that if u is C^1 on some open interval, then it is already C^1 everywhere. Then show that there is a dense set of points where the derivative u' vanishes.

(2) (i) Let T be a contraction on the complete metric space (X, d), with contraction factor $\lambda \in [0, 1)$, i. e. $d(Tx, Ty) \leq \lambda \cdot d(x, y)$. Then if x_* denotes the fixed point of T, show that for any $x_1 \in X$ there is a constant C > 0 such that

$$d(T^k(x_1), x_*) \le C \cdot \lambda^k$$
.

(ii) Let $Tg(x) = \Phi^{-1}(g(2x))$ be as in lecture 3.pdf, acting on the complete metric space X as in the lecture. By optimizing the choice of k in (i), show that there is a number $\alpha = \alpha(L) \in (0,1)$ and a constant $C_* > 0$ such that

$$|u(x) - u(y)| \le C_* \cdot |x - y|^{\alpha}$$

for every $x, y \in \mathbb{R}$ with $|x - y| \leq 1$. Here u solves the fixed point problem (1). Thus the conjugating function h is Holder continuous.

(3) Let X a finite measure space and $T: X \to X$ measure preserving. For measurable sets $A, B \subset X$, write

$$A\triangle B:=(A\backslash B)\cup (B\backslash A).$$

Show that T is ergodic if and only if

$$m(A\triangle T^{-1}A)=0$$

implies m(A) = 0 or m(A) = m(X). Hint: $\bigcap_{n \ge 1} \bigcup_{j \ge n} T^{-j}(A)$.

(4) Let (X, m) be a finite measure space and $T : \overline{X} \longrightarrow X$ a measure preserving map. Using the Von Neumann Mean Ergodic

Theorem, show that if $f \in L^1(X, dm)$, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N-1} f(T^j(x))$$

exists in $L^1(X, dm)$, and is a T-invariant function.