## INTRO TO DYNAMICAL SYSTEMS FALL 2024, PROBLEM SET 11

- (1) Show that the set of non-diophantine irrational numbers in  $\mathbb{R}\setminus\mathbb{Q}$  is of Lebesgue measure 0.
- (2) Recall (or look up) the three lines lemma of Hadamard. Using it, show the inequality

$$\sum_{k=0}^{\infty} k^d \cdot |\zeta|^k \le C(d) \cdot (1 - |\zeta|)^{-d-1}$$

provided  $|\zeta| < 1$ , and  $d \ge 0$ . Can you estimate C(d)?

(3) Given any non-polynomial holomorphic function u(z) on a disc  $B_r(0)$ , r > 0, show that there is an irrational number  $\alpha \in \mathbb{R}$  such that

$$w(\lambda z) - \lambda w(z) = u(z), \ \lambda = e^{2\pi i\alpha},$$

does not have a holomorphic solution on any disc  $B_{\delta}(0)$ .