INTRO TO DYNAMICAL SYSTEMS FALL 2024, PROBLEM SET 10

(1) Let $A \in \operatorname{Mat}(n \times n, \mathbb{R})$ a matrix whose eigenvalues $\lambda \in \mathbb{C}$ satisfy $\alpha < \operatorname{Re} \lambda < \beta$

for two real numbers α, β . Show that there is an inner product $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ such that

$$\alpha ||x||^2 \le \langle Ax, x \rangle \le \beta ||x||^2,$$

where $||x||^2 = \langle x, x \rangle$.

(2) Consider the system of ODEs

$$\frac{\dot{y} = \underline{f}(\underline{y})}{y_1}$$
where as usual $\underline{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$. Assume that $\underline{0} \in \mathbb{R}^n$ is a fixed

point, i. e. $f(\underline{0}) = \underline{0}$, and $f \in C^1(\mathbb{R}^n, \mathbb{R}^n)$. Finally, assume that

the Jacobian matrix, has only eigenvalues with negative real part. By using (1), show directly (i. e. without using Hartman-Grobman) that there exist C>0,c>0 and $\delta>0$ such that for any initial condition

$$\underline{y}(0), \ \|\underline{y}(0)\| < \delta,$$

we have that

$$\|\underline{y}(t)\| \le C \cdot e^{-ct} \cdot \|\underline{y}(0)\|.$$

(3) Give an example of a non-diophantine irrational number $\alpha \in \mathbb{R}$ in the sense of Lecture 10.