
PROOF OF HARTMAN-GROBMAN THEOREM, AND ITS APPLICATION TO

SYSTEMS OF ODES

1. Proof of Proposition 4.2

Relying on Lemma 4.3 from the previous lecture, we can now furnish a proof of Prop. 4.2, which in turn
will lead to a proof of Hartman-Grobman:

Proof. (Prop. 4.2) We recall that we need to solve the equation

Aĥ− ĥ ◦ ψ = ψ̂ − φ̂ ◦ h, h(x) = x+ ĥ(x).

Letting the expression on the left be Lĥ, we have verified that L−1 acts boundedly on Cb

(
Rn,Rn

)
. We then

reformulate the previous equation as

ĥ = L−1
(
ψ̂ − φ̂ ◦ h

)
, h(x) = x+ ĥ(x).

which is a fixed point problem. To conclude that this admits a unique fixed point in Cb

(
Rn,Rn

)
, it suffices

to show that the right hand expression is a contraction on this space. In fact, for

ĥ1,2 ∈ Cb

(
Rn,Rn

)
,

setting hj(x) = x+ hj(x), j = 1, 2, we have the estimate

sup
x∈Rn

∥∥L−1(ψ̂ − φ̂ ◦ h1)(x)− L−1
(
ψ̂ − φ̂ ◦ h2

)
(x)
∥∥

= sup
x∈Rn

∥∥L−1(φ̂ ◦ h1 − φ̂ ◦ h2)(x)
∥∥

≤
∥∥L−1∥∥ · ε · sup

x∈Rn

∥∥(ĥ1 − ĥ2)(x)
∥∥.

Here ε is the Lipschitz constant associated with φ̂ and the norm
∥∥ · ∥∥:∥∥φ̂(x)− φ̂(y)

∥∥ ≤ ε · ∥∥x− y∥∥.
It follows that if ε > 0 is sufficiently small, so that

∥∥L−1∥∥ · ε < 1, then the map

ĥ −→ T (ĥ) := L−1
(
ψ̂ − φ̂ ◦ h

)
is a contraction, and hence admits a unique fixed point.

To see that the resulting map h = id + ĥ is a homeomorphism of Rn, we interchange the roles of φ, ψ,
obtaining by an identical argument a map

g = idRn + ĝ, ĝ ∈ Cb

(
Rn,Rn

)
with the property that

ψ ◦ g = g ◦ φ.
But then

ψ ◦ g ◦ h = g ◦ φ ◦ h = g ◦ h ◦ ψ.
Uniqueness of the map achieving the conjugation implies that

g ◦ h = idRn

and similarly

h ◦ g = idRn .
1
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It follows that h is a homeomorphism.

Finally, we show that if φ(0) = ψ(0) = 0, then h(0) = 0. In fact, since ĥ is obtained as fixed point of the
contraction map T displayed above, it follows that

ĥ = lim
j→∞

T j(0).

From Lemma 4.3, we conclude inductively that
(
T j(0)

)
(0) = 0, and the claim follows from this.

�

2. Proof of Hartman-Grobman via reduction to Proposition 4.2

The following lemma allows us to reduce the local information about the function φ to global information
for a modified function.

Lemma 2.1. Let r > 0. Then the function

f : Rn −→ Rn

given by

f(x) = x, |x| ≤ r
and

f(x) = r · x
|x|
, |x| ≥ r

is Lipschitz continuous with Lipschitz constant 2 with respect to the standard Euclidean norm.

Proof. We need to show ∣∣f(x)− f(y)
∣∣ ≤ 2

∣∣x− y∣∣
We distinguish between the cases (i):|x|, |y| ≤ r, (ii) |x| > r, |y| ≤ r, and (iii): |x|, |y| > r.

The case (i) is clear, with Lipschitz constant 1.

In the case (ii), we have |x| − r ≤ |x| − |y| ≤
∣∣x− y∣∣, and so∣∣f(x)− f(y)
∣∣ =

∣∣r · x
|x|
− y
∣∣

≤ |x| − r +
∣∣|x| · x

|x|
− y
∣∣

≤ |x− y|+
∣∣|x| · x

|x|
− y
∣∣

= 2|x− y|

The remaining case (iii) is more of the same. �

Finally we can provide

Proof. (Hartman-Grobman, Theorem 3.1 of Lecture 8) Let φ be as in the statement of Theorem 3.1 and write

φ(x) = Ax+ φ̂(x), A = Dφ(0).

Given ε > 0, there is a r > 0 such that we have for all x ∈ Br(0) ⊂ Rn∣∣Dφ̂(x)
∣∣ < ε.

This then implies that if f is as in the preceding lemma with this constant r, then∣∣φ̂ ◦ f(x1)− φ̂ ◦ f(x2)
∣∣ ≤ C · sup

x∈Br(0)

∣∣Dφ̂(x)
∣∣ · ∣∣f(x1)− f(x2)

∣∣
≤ 2Cε ·

∣∣x1 − x2∣∣.
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We pick ε small enough such that setting

φ̃(x) := Ax+ φ̂ ◦ f(x), ψ̃(x) := Ax,

the hypothesis of Proposition 4.2 from Lecture 8 is satisfied. It follows that there is a homeomorphism

h : Rn −→ Rn

with h(0) = 0 and such that

φ̃ ◦ h = h ◦ ψ̃.
Then if

V = h−1
(
Br(0)

)
,

we have for x ∈ V
φ̃ ◦ h(x) = φ ◦ h(x) = h ◦ ψ̃(x).

Alternatively, setting U = Br(0), and then h−1 : U −→ V , we get

h−1 ◦ φ(x) = ψ̃ ◦ h−1(x), x ∈ U.
�

3. A version of Hartman-Grobman for systems of ODEs

Consider an autonomous system of ordinary differential equations

ẏ1 = f1
(
y1, y2, . . . , yn

)
,

ẏ2 = f2
(
y1, y2, . . . , yn

)
,

. . .

ẏn = fn
(
y1, y2, . . . , yn

)
.

(3.1)

Here the functions fj ∈ C1
(
Rn,R

)
. This implies in particular that for any initial condition

y(0) =
(
y1(0), y2(0), . . . , yn(0)

)
∈ Rn,

there exist t0 > 0 such that (3.1) admits a unique solution y(t) ∈ C1
(
(−t0, t0),Rn

)
. Assume that y0 ∈ Rn is

a fixed point of (3.1). This means that

fj
(
y0,1, y0,2, . . . , y0,n

)
= 0, j = 1, 2, . . . , n.

In particular the constant function yj(t) = y0,j ,j = 1, 2, . . . , n, is a solution of (3.1).

Definition 3.1. The fixed point y0 ∈ Rn is called a hyperbolic fixed point for the ODE system, provided the
Jacobian matrix

Df(y0) =
(
∂yj

fk(y0)
)
≤j,k≤n

has only eigenvalues with non-vanishing real part. Equivalently the matrix

eDF (y0)

is hyperbolic in the earlier sense.

The natural problem is to understand the flow of the system (3.1) for initial conditions y∗ ∈ Rn close to
y0, a hyperbolic fixed point.

The simplest situation arises of course when

f(y) = A · y,

where we set f =


f1
f2
. . .
fn

, y =


y1
y2
. . .
yn

. Then the solution of (3.1) with initial condition y(0) ∈ Rn is given

by
y(t) = etAy(0).
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We note the following lemma, whose proof is left as exercise.

Lemma 3.2. If the matrix A is hyperbolic in the ODE system sense, so that eA is hyperbolic in the sense of
Lecture 8, then there is a splitting

Rn = E+ ⊕ E−
as well as constants c > 0, θ± ∈ (0, 1), such that we have etA|E± : E± −→ E±, and further, we have∣∣etAy0∣∣ ≤ c · θt+ · ∣∣y0∣∣, ∀y0 ∈ E+, t ≥ 0∣∣e−tAy0∣∣ ≤ c · θt− · ∣∣y0∣∣∀y0 ∈ E+, t ≥ 0.

The key issue now is to understand in what sense the preceding lemma, which gives the behavior of linear
systems of ODEs with hyperbolic fixed point 0, reflects the behavior of a system (3.1) near a hyperbolic fixed
point. In fact, another version of the Hartman-Grobman theorem addresses this issue. To formulate it, we
denote the flow associated to (3.1) by φ(t, y∗), meaning the solution of this system with initial condition

y(0) = y∗ ∈ Rn

is given by

φ(t, y∗)

at time t. Then the autonomous character of the system implies the following flow property:

φ(t+ s, y∗) = φ
(
t, φ(s, y∗)

)
.

Assume now that y0 = 0 is a hyperbolic fixed point for (3.1). Let φ(y∗) = φ(1, y∗) be the time one map of
the flow associated to (3.1). Note that we have

(3.2) f(y) = Df(0) · y + F (y), F (y) = o(|y|),

where we have lim|y|→0 |y|−1 · o(|y|) = 0. Then we can formulate

Lemma 3.3. Letting y∗ −→ φ(y∗) be as before the time one map of the flow, we have that φ is a C1-map,
and that Dφ(0) = eDf(0) is hyperbolic (i. e. all eigenvalues have absolute value |λ| 6= 1).

Proof. (sketch) We formulate the solution of (3.1) with initial data y(0) ∈ Rn as solution of the fixed point
problem

y(t) =

∫ t

0

e(t−s)Df(0) · F (y(s)) ds+ etDf(0) · y(0).

This admits a unique solution for small enough y(0) by the Banach fixed point theorem. Moreover, we have
that ∣∣ ∫ t

0

e(t−s)Df(0) · F (y(s)) ds
∣∣ = o(|y(0)|)∀t ∈ [0, 1].

It follows that

y(1) = φ(1, y(0)) = eDf(0) · y(0) + o(|y(0)|),
which implies the lemma. �

Theorem 3.4. (Hartman-Grobman) Let f , be as before, with fixed point 0 which is hyperbolic in the ODE-
sense, i. e. such that Df(0) has all eigenvalues with non-vanishing real part. Then there exist open neighbor-
hoods U, V of 0 as well as a homeomorphism

h : U −→ V, h(0) = 0,

such that we have

h ◦ φ(t, y(0)) = etA · h(y(0)), A = Df(0),

as long as φ(s, y(0)) ∈ U, y(0) ∈ U for all 0 ≤ s ≤ t.
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Proof. We will first modify f in order to ensure that the modified flow φ̃(t, y) is always globally defined and
agrees with the original flow φ(t, y) provided the latter point is sufficiently close to 0. For this pick r > 0 and

a C1-function f̃ : Rn −→ Rn with the property that f |Br(0) = f̃ |Br(0), and such that the flow φ̃(t, y) for the
system

ẏ = f̃(y)

is always globally defined. Moreover, we can arrange that f̃(y) = A · y for |y| ≥ 2r. By picking r suitably
small, we can ensure that then

φ̃(1, y) = eA · y + φ̂(y),

such that setting ψ̃ = eA · y, the maps φ̃(1, y), ψ̃ satisfy the assumptions of Proposition 4. 2 in Lecture 8 with

A replaced by eA. More generally, we have

φ̃(t, y) = etA · y + φ̂t(y)

with φ̂t(y) bounded for t in a compact set and y arbitrary.

Exercise: check this carefully.

Proposition 4. 2 then allows us to conclude that there is a homeomorphism h̃ : Rn −→ Rn with the
properties that

(3.3) h̃ ◦ φ̃(1, ·) = eA ◦ h̃, h̃(0) = 0.

Furthermore,

h̃(x) = x+ ĥ(x)

with ĥ ∈ Cb

(
Rn,Rn

)
, and it is the unique map of this form with the preceding property (by the proof of

Prop. 4.2).
Now we seek a homeomorphism H : Rn −→ Rn with the property that

H ◦ φ̃(t, y) = etA ◦H.
Alternatively, we seek H such that

(3.4) e−tA ·H ◦ φ̃(t, y) = H(y)

for all t ∈ R and y ∈ Rn.

To find such H, first introduce the following continuous action of the additive group R on C0(Rn;Rn),
defined by

(3.5) Ttg := e−tA · g ◦ φ̃(t, ·).
It is easily verified that this is indeed a group action in the sense that

Tt
(
Tsg
)

= Tt+s(g).

What we are looking for is a fixed point for this action namely

Tt(H) = H ∀t ∈ R.
Previously we have looked at discrete group actions (in case T was invertible) of the type g −→ g ◦ T j , j ∈ Z,
which you can think of as an action of Z on the space of functions. The ergodic theorems have taught us that
one way to arrive at an object invariant under such a group action is by averaging.
Now we have a continuous group actions, so averaging corresponds to computing an integral. So formally it
would be natural to set

H =

∫
R
TsGds

for some function G, since then formally

TtH =

∫
R
Tt
(
TsG

)
ds =

∫
R
Tt+sGds =

∫
R
TsGds = H.
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The problem is that such an infinite integral won’t converge in general (for non-zero G), and we would much
rather replace this by a finite integral

H =

∫ p

0

TsGds,

say, for some p > 0. But then we get

Tt(H) = Tt
( ∫ p

0

TsGds
)

=

∫ t+p

t

TsGds,

which differs in general from H, except when TsG is periodic of period p, i. e.

TpG = G.

However, such a G is given to us for free, namely

G = h̃

with h̃ as in (3.3), which implies p = 1 and T1h̃ = h̃. Hence we set

(3.6) H =

∫ 1

0

Ts(h̃) ds,

This then indeed satisfies Tt(H) = H for all t ∈ R. Further, we have

H =

∫ 1

0

e−sA ·
(
id+ ĥ

)
◦ (esA · id+ φ̂s) ds

= id+ Ĥ,

where Ĥ is uniformly bounded. But using that T1H = H which is also satisfied by h̃, the uniqueness of h̃

(solving T1h̃ = h̃ with the fine structure just established) shows that

h̃ = H.

This shows that h̃ already satisfies

Tth̃ = h̃

for all t ∈ R, and h̃ is a homeomorphism. Explicitly

e−tA · h̃ ◦ φ̃(t, y) = h̃(y)

But if
∣∣φ(s, y)

∣∣ is small enough for all 0 ≤ s ≤ t, then we have φ̃(t, y) = φ(t, y), and so indeed we have that

e−tA · h̃ ◦ φ(t, y) = h̃(y)

for such t, y. The Hartman-Grobman theorem then follows with U = Br(0) and h = h̃.
�

4. A basic example: the damped circular pendulum

Let a pendulum of mass m attached to a (massless) cord of length l be suspended from a point P in 3-space.
We describe the motion in terms of the angle θ(t), measured with respect to the (vertically down) position
of rest. The force driving the motion is the component of the gravitational force (0, 0,−mg) tangential to
the circle of motion, and a friction force proportional to the velocity. The magnitude of this force is mg sin θ,
whence according to Newton’s law of motion, we obtain

lθ′′(t) = − sin θ − kl

m
θ′

where we assume the friction force to be given by −klθ′, i. e. minus velocity times constant k. This is a
second order scalar equation which we re-cast as a first order system by introducing ω = θ′, which results in(

θ′

ω′

)
=

(
ω

− 1
l sin θ − k

mω

)
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whence f(θ, ω) is given by the right hand side. Clearly the point (ω, θ) = (0, 0) is an equilibrium, corresponding
to the pendulum hanging down at rest, and we can compute

Df(0) =

(
0 1
− 1

l − k
m

)
with eigenvalues

λ1,2 =
1

2
[− k
m
±
√

(
k

m
)2 − 4

l
]

In particular, for nonzero friction k > 0, the eigenvalues have negative real parts, whence the equilibrium
point (0, 0) is a hyperbolic fixed point. Hartman-Grobman and one of your exercises immediately imply
that sufficiently close excitations of this equilibrium converge back exponentially fast. This is of course not
too surprising. Note that we can no longer draw this conclusion if k = 0. Indeed, in that case, energy
conservation implies that the pendulum will swing back and forth forever. Note that the linearization has
non-real eigenvalues provided ( k

m )2 < 4
l . This appears to suggests that the system will swing back and forth

in this case (for small perturbations of the equilibrium), while we expect simple exponential approach to
equilibrium otherwise.


