
THE STRUCTURE OF DIFFEOMORPHISMS AROUND HYPERBOLIC FIXED

POINTS: HARTMAN-GROBMAN THEOREM

1. Introduction; hyperbolic isomorphisms

We follow Zehnder in this chapter. Recall the doubling map T2 : S1 −→ S1, which is given by the simple
expression T2(x) = 2x when working on the universal cover R of S1. We have seen that suitably small
perturbations of this map can be conjugated back into the original map by means of a homeomorphism, a fact

we called structural stability. Thus if φ(x) = 2x + φ̂(x) is sufficiently close to the doubling map in the sense

that φ̂(x + 1) = φ̂(x) and φ̂ satisfies a suitable smallness property (in terms of its Lipschitz constant), then
there exists a homeomorphism u : R −→ R, u(x+ 1) = u(x) + 1, with the property that

u−1 ◦ φ ◦ u = T2.

It is natural to pose the question whether aspects of this phenomenon can be generalized to higher dimensions
and more general maps

φ : Rn −→ Rn, φ ∈ C1
(
Rn;Rn),

which we assume to be diffeomorphisms.
It turns out that this question can be profitably investigated in a perturbative setting around a fixed point,
which we may assume to be x = 0 ∈ Rn. The idea then is to investigate the behavior of φ in a small
neighborhood of the fixed point 0, where we may expect φ to be well approximated by its linearization
x −→ Ax, A = Dφ(0) ∈ Mat(n× n;R). We make the

Definition 1.1. Let A ∈ Mat(n × n;R) an invertible matrix with real entries. Then we call A hyperbolic,
provided all the (complex) eigenvalues λ of A satisfy∣∣λ∣∣ 6= 1.

In other words, we can partition the eigenvalues into two sets where either |λ| ∈ (0, 1) or |λ| ∈ (1,∞).

What matters to us is a decomposition of Rn as a sum set of two components E+, E− on which A either
grows or shrinks vectors asymptotically upon iteration:

Lemma 1.2. Let A be a hyperbolic matrix. Then there exists a direct sum decomposition (here either one of
the summands can be the trivial vector space)

Rn = E+ ⊕ E−
and such that if we identify A with its multiplication action on Rn and label A|E± = A±, there exists a positive

constant c ∈ R as well as θ± ∈ (0, 1) such that (here
∣∣ · ∣∣ is a fixed norm on Rn)∣∣An

+(x)
∣∣ ≤ c · θn+ · ∣∣x∣∣, x ∈ E+,

∣∣A−n− (x)
∣∣ ≤ c · θn− · ∣∣x∣∣, x ∈ E−, n ≥ 0.

Proof. Let λ1, λ2, . . . , λk be the eigenvalues with |λj | ∈ (0, 1), and λk+1, . . . , λn those with |λj | ∈ (1,∞). If
λi ∈ C\R, then its complex conjugate is also amongst the eigenvalues(since A has real entries), and of course
of the same class. In this case, let

Wj ⊂ Cn

be its generalized eigenspace, whence

Wj

is the generalized eigenspace of λj . If

{e1j , e2j , . . . , eijj} ⊂ Cn

1



2THE STRUCTURE OF DIFFEOMORPHISMS AROUND HYPERBOLIC FIXED POINTS: HARTMAN-GROBMAN THEOREM

is a basis for Wj as C-vectorspace, we consider the real vectors

flj =
1

2
(elj + elj), glj =

1

2i
(elj − elj), l = 1, 2, . . . , ij .

If λj ∈ R, then we can pick a real basis {h1j , . . . , hijj} for Wj . If we declare hlj = 0 ∈ Rn for non-real valued
λj , and flj = glj = 0 for real valued λj , then we let

E+ :=

k′⊕
j=1

span{flj , glj , hlj}
ij
l=1, E− :=

k′′⊕
j=k+1

span{flj , glj , hlj}
ij
l=1;

Here the for the first space we include only those basis vectors corresponding to |λ| < 1 (in particular k′ ≤ k),
while for the second we use those with |λ| > 1. We leave it as an exercise to verify that there is indeed a
direct sum decomposition of E+ ⊕ E− = Rn, and that E± have the desired properties. For this recall the
Jordan normal form. �

The fact that we have the constant c in the preceding lemma is a bit of a nuisance, since we would like
the maps A+, A

−1
− to act like contractions on the spaces E+, E−, respectively. For this the following lemma

is useful:

Lemma 1.3. Let A ∈ Mat(n × n;R) be a hyperbolic isomorphism of Rn and let θ± be as in the preceding
lemma. Then there exist constants

α ∈ (θ+, 1), β ∈ (θ−, 1)

and a norm
∥∥ · ∥∥ on Rn with the property that∥∥A+x

∥∥ ≤ α · ∥∥x∥∥, ∥∥A−1− x
∥∥ ≤ β · ∥∥x∥∥.

Proof. This relies on an averaging trick: Choose α ∈ (θ+, 1), β ∈ (θ−, 1). Pick a large enough constant N ≥ 1
such that letting c be the constant in the preceding lemma, we have

c ·
(θ+
α

)N ≤ 1, c ·
(θ−
β

)N ≤ 1.

Then introduce the norm (with
∣∣ · ∣∣ the norm used in the previous lemma)

∥∥x∥∥ :=

N−1∑
j=0

α−j ·
∣∣Aj

+x
∣∣, x ∈ E+,

and similarly ∥∥x∥∥ :=

N−1∑
j=0

β−j ·
∣∣A−j− x

∣∣, x ∈ E−.
We can then set ∥∥x∥∥ := max{

∥∥x1∥∥,∥∥x2∥∥},
provided x = x1 + x2 with x1 ∈ E+, x2 ∈ E−, which defines

∥∥ · ∥∥ in general.
We claim that this is the desired norm. In fact, we have for x ∈ E+∥∥A+x

∥∥ =

N−1∑
j=0

α−j ·
∣∣Aj+1

+ x
∣∣ = α ·

N∑
j=1

α−j ·
∣∣Aj

+x
∣∣ = α ·

[∥∥x∥∥+ α−N
∣∣AN

+x
∣∣− ∣∣x∣∣].

Here we have

α−N
∣∣AN

+x
∣∣ ≤ α−N · cθN+ · ∣∣x∣∣ ≤ ∣∣x∣∣

by choice of N . It follows that ∥∥A+x
∥∥ ≤ α · ∥∥x∥∥.

The argument for x ∈ E− is similar. �
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2. The stable and unstable manifold of a hyperbolic fixed point

Definition 2.1. Let φ ∈ C1
(
Rn;Rn

)
be a diffeomorphism with fixed point x0 ∈ Rn. Then we say that x0 is

a hyperbolic fixed point, provided
Dφ(x0) ∈ Mat(n× n;R

)
is hyperbolic, whence gives rise to a hyperbolic isomorphism of Rn.

It is straightforward to understand the dynamics of the discrete dynamical system
(
Rn, A

)
where A ∈

Mat(n×n;R
)

is a fixed hyperbolic isomorphism which acts by multiplication. In fact, using the decomposition

Rn = E+ ⊕ E−,
we have that A maps each of the two sub spaces on the right into itself and we have that

E+ = {x ∈ Rn, lim
n→+∞

Anx = 0}, E− = {x ∈ Rn, lim
n→+∞

A−nx = 0}.

We then call E+ the stable manifold and E− the unstable manifold associated to the (hyperbolic) fixed point
x0 = 0 for the map A. It is then natural to generalise these concepts to diffeomorphisms:

Definition 2.2. Let φ ∈ C1
(
Rn;Rn

)
be a diffeomorphism, and let x0 ∈ Rn be a hyperbolic fixed point. Then

we call
W+

(
φ, x0

)
:= {x ∈ Rn, φn(x) −→ x0 as n→ +∞}

the stable manifold of x0. Similarly, we let

W−
(
φ, x0

)
:= {x ∈ Rn, φ−n(x) −→ x0 as n→ +∞}

the unstable manifold.

Our goal in the sequel will be to acquire a local understanding of these sets near the fixed point x0. From
now on we assume for simplicity that x0 = 0. Let us suppose that there is a homeomorphism h : Rn −→ Rn

with the property that
h(0) = 0

and further such that

(2.1) h ◦ φ ◦ h−1(x) = A · x
where A = Dφ(0). Then we have that

φn(y) = h−1
(
An(h(y)

)
,

and hence we have that
y ∈W±

(
φ, 0
)
⇐⇒ h(y) ∈ E±.

This means we can characterise the stable and unstable manifold at least as subsets of Rn, albeit without any
differentiability properties yet. Our goal is to give a partial solution for problem (2.1).

3. Statement of Hartman-Grobman

Finding a global solution of (2.1) is too ambitious since φ can be quite complicated in larger and larger
sets, so we shall attempt to at least find h locally. This is accomplished in

Theorem 3.1. Let φ : Rn −→ Rn a C1-diffeomorphism, for which x0 = 0 is a hyperbolic fixed point, i. e.
φ(0) = 0 and

Dφ(0) ∈ Mat(n× n;R)

is hyperbolic. Then there exist neighbourhoods U, V of 0 and a homeomorphism

h : U −→ V,

such that h(0) = 0 and
h ◦ φ(x) = A ◦ h(x),

provided both x and φ(x) are in U . It follows that

h ◦ φj ◦ h−1(x) = Ajx,

provided x ∈ V and φk(h−1(x)) ∈ U for k = 1, . . . , j.
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The proof of this theorem, although in principle fairly elementary, requires a certain amount of preparations.

4. Perturbations of linear maps on Banach spaces

In order to prove the Hartman-Grobman theorem, we shall work near linear maps. The first order of the
day is to have a precise quantitative understanding of such maps:

Lemma 4.1. Let X be a Banach space and A a continuous linear isomorphism of X. Let

φ(x) = Ax+ g(x), x ∈ X,

where g is a Lipschitz continuous map from X into itself with

ε ·
∥∥A−1∥∥ < 1,

where ε is the Lipschitz constant for g. Then φ is a homeomorphism of X and φ−1 is Lipschitz continuous.,

Proof. (i): Injectivity of φ. Observe that if

Ax+ g(x) = Ay + g(y),

then we obtain

x− y = −A−1
(
g(x)− g(y)

)
.

Then ∣∣x− y∣∣ ≤ ∥∥A−1∥∥ · ε · ∣∣x− y∣∣.
Since

∥∥A−1∥∥ · ε < 1, we conclude that
∣∣x− y∣∣ = 0, whence x = y.

(ii): Surjectivity. Given y ∈ X, we intend to solve the equation

y = Ax+ g(x).

Then

x = A−1y −A−1g(x) =: Ty(x)

But the map Ty(x) is a contraction due to the assumptions, and so admits a unique fixed point in X.

(iii): Lipschitz continuity of the inverse. Assume that

y = Ax+ g(x), y′ = Ax′ + g(x′).

Then

A−1(y − y′) = x− x′ +A−1(g(x)− g(x′)).

By the triangle inequality we infer that∣∣A−1(y − y′)
∣∣ ≥ ∣∣x− x′∣∣− ∣∣A−1(g(x)− g(x′))

∣∣
≥
∣∣x− x′∣∣ · (1− ∥∥A−1∥∥ · ε)

It follows that ∣∣x− x′∣∣ ≤ ∥∥A−1∥∥
1−

∥∥A−1∥∥ · ε · ∣∣y − y′∣∣.
�

The key for the proof of Hartman-Grobman is the following global perturbation result. We shall reduce to
this result by a truncation trick:
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Proposition 4.2. Let A ∈ Mat(n× n;R) hyperbolic, and let φ, ψ : Rn −→ Rn defined by

φ(x) = Ax+ φ̂(x), ψ(x) = Ax+ ψ̂(x),

where φ̂, ψ̂ are bounded and Lipschitz continuous with sufficiently small Lipschitz constant ε. Then φ, ψ are
homeomorphisms, and there exists a unique homeomorphism

h(x) = x+ ĥ(x),
∥∥ĥ∥∥

L∞
<∞,

conjugating φ into ψ:

φ ◦ h(x) = h ◦ ψ(x), x ∈ Rn.

If φ(0) = ψ(0) = 0, we have h(0) = 0.

Let us see how to approach this: we compute

φ ◦ h(x) = φ ◦
(
Id+ ĥ

)
(x) = Ax+Aĥ(x) + φ̂ ◦ h(x),

h ◦ ψ(x) = Ax+ ψ̂(x) + ĥ ◦ ψ(x).

We conclude that we need to solve the following equation for ĥ:

(4.1) Aĥ− ĥ ◦ ψ = ψ̂ − φ̂ ◦ h
Here the operator

Lĥ := Aĥ− ĥ ◦ ψ
acts linearly. In fact, we shall let L act on the space of continuous bounded functions Cb

(
Rn, Rn

)
, equipped

with the norm ∣∣ĥ∣∣ := sup
x∈Rn

∥∥ĥ(x)
∥∥,

where we carefully use the norm ∥∥x∥∥ = max{
∥∥x+∥∥, ∥∥x−∥∥},

and
∥∥x±∥∥ are the norms constructed on E± as in Lemma 1.3. Then we require the following

Lemma 4.3. Let A be a hyperbolic isomorphism. Then L is a continuous linear isomorphism of Cb

(
Rn, Rn

)
,

and in particular its inverse

L−1

is well-defined and bounded. If ψ(0) = 0 and g(0) = 0, we have that
(
L−1g

)
(0) = 0.

Proof. We show that the equation

(4.2) Lv = g

admits a unique solution v ∈ Cb

(
Rn, Rn

)
for given g ∈ Cb

(
Rn, Rn

)
. We do this by projecting this equation

onto either component in the decomposition

Rn = E+ ⊕ E−.
In fact, decomposing for each x ∈ Rn

v(x) =
∑
±
v±(x), v±(x) ∈ E±,

and using the fact that A maps E± into itself, we deduce that

(4.3) A±v± − v± ◦ ψ = g±,

where we denote A|E± = A±. We reformulate these equations as follows1:

v+ −A+v+ ◦ ψ−1 = −g+ ◦ ψ−1,
v− −A−1− v− ◦ ψ = A−1− g−.

(4.4)

1Recall that ψ is a homeomorphism.
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The key point here is that the operators A+, A
−1
− act as contractions on E+, E−, respectively, each equipped

with
∥∥ · ∥∥. In fact, we have (for α ∈ [0, 1))

sup
x∈Rn

∥∥A+v+ ◦ ψ−1(x)−A+w+ ◦ ψ−1(x)
∥∥ ≤ α · sup

x∈Rn

∥∥v+ ◦ ψ−1(x)− w+ ◦ ψ−1(x)
∥∥

= α · sup
x∈Rn

∥∥v+ − w+

∥∥.
One proceeds similarly for A−1− v− ◦ ψ. The Banach fixed point theorem then implies the existence of unique

v± ∈ Cb

(
Rn, E±

)
satisfying (4.4). This also gives the estimate

sup
x∈Rn

∥∥L−1g(x)
∥∥ ≤ C · sup

x∈Rn

∥∥g(x)
∥∥

for a suitable constant C.
Finally, to see the last assertion of the lemma, setting for example Tv+ := A+v+ ◦ψ−1 for v+ ∈ Cb

(
Rn, E+

)
,

we find that the solution of the first equation in (4.4) can be written as

v+ =

∞∑
j=0

T j
(
− g+ ◦ ψ−1

)
But if ψ(0) = 0 and v(0) = 0, then also Tv(0) = 0, and so inductively we infer that if g(0) = 0, ψ(0) = 0, we
have

T j
(
− g+ ◦ ψ−1

)
(0) = 0, j ≥ 0.

This implies that then also v+(0) = 0. One uses a similar argument for v−. �


