THE STRUCTURE OF DIFFEOMORPHISMS AROUND HYPERBOLIC FIXED POINTS: HARTMAN-GROBMAN THEOREM

1. Introduction; hyperbolic isomorphisms

We follow Zehnder in this chapter. Recall the doubling map $T_2: S^1 \longrightarrow S^1$, which is given by the simple expression $T_2(x) = 2x$ when working on the universal cover \mathbb{R} of S^1 . We have seen that suitably small perturbations of this map can be conjugated back into the original map by means of a homeomorphism, a fact we called structural stability. Thus if $\phi(x) = 2x + \widehat{\phi}(x)$ is sufficiently close to the doubling map in the sense that $\widehat{\phi}(x+1) = \widehat{\phi}(x)$ and $\widehat{\phi}$ satisfies a suitable smallness property (in terms of its Lipschitz constant), then there exists a homeomorphism $u: \mathbb{R} \longrightarrow \mathbb{R}$, u(x+1) = u(x) + 1, with the property that

$$u^{-1} \circ \phi \circ u = T_2$$
.

It is natural to pose the question whether aspects of this phenomenon can be generalized to higher dimensions and more general maps

$$\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n, \ \phi \in C^1(\mathbb{R}^n; \mathbb{R}^n),$$

which we assume to be diffeomorphisms.

It turns out that this question can be profitably investigated in a perturbative setting around a fixed point, which we may assume to be $x=0\in\mathbb{R}^n$. The idea then is to investigate the behavior of ϕ in a small neighborhood of the fixed point 0, where we may expect ϕ to be well approximated by its linearization $x \longrightarrow Ax$, $A = D\phi(0) \in \operatorname{Mat}(n \times n; \mathbb{R})$. We make the

Definition 1.1. Let $A \in Mat(n \times n; \mathbb{R})$ an invertible matrix with real entries. Then we call A hyperbolic, provided all the (complex) eigenvalues λ of A satisfy

$$|\lambda| \neq 1$$
.

In other words, we can partition the eigenvalues into two sets where either $|\lambda| \in (0,1)$ or $|\lambda| \in (1,\infty)$.

What matters to us is a decomposition of \mathbb{R}^n as a sum set of two components E_+, E_- on which A either grows or shrinks vectors asymptotically upon iteration:

Lemma 1.2. Let A be a hyperbolic matrix. Then there exists a direct sum decomposition (here either one of the summands can be the trivial vector space)

$$\mathbb{R}^n = E_+ \oplus E_-$$

and such that if we identify A with its multiplication action on \mathbb{R}^n and label $A|_{E_{\pm}} = A_{\pm}$, there exists a positive constant $c \in \mathbb{R}$ as well as $\theta_{\pm} \in (0,1)$ such that (here $|\cdot|$ is a fixed norm on \mathbb{R}^n)

$$|A_{+}^{n}(x)| \le c \cdot \theta_{+}^{n} \cdot |x|, x \in E_{+}, |A_{-}^{n}(x)| \le c \cdot \theta_{-}^{n} \cdot |x|, x \in E_{-}, n \ge 0.$$

Proof. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the eigenvalues with $|\lambda_j| \in (0,1)$, and $\lambda_{k+1}, \ldots, \lambda_n$ those with $|\lambda_j| \in (1,\infty)$. If $\lambda_i \in \mathbb{C} \setminus \mathbb{R}$, then its complex conjugate is also amongst the eigenvalues (since A has real entries), and of course of the same class. In this case, let

$$W_j \subset \mathbb{C}^n$$

be its generalized eigenspace, whence

$$\overline{W_i}$$

is the generalized eigenspace of $\overline{\lambda_i}$. If

$$\{e_{1j}, e_{2j}, \dots, e_{i_j j}\} \subset \mathbb{C}^n$$

2THE STRUCTURE OF DIFFEOMORPHISMS AROUND HYPERBOLIC FIXED POINTS: HARTMAN-GROBMAN THEOREM is a basis for W_j as \mathbb{C} -vectorspace, we consider the real vectors

$$f_{lj} = \frac{1}{2}(e_{lj} + \overline{e_{lj}}), g_{lj} = \frac{1}{2i}(e_{lj} - \overline{e_{lj}}), l = 1, 2, \dots, i_j.$$

If $\lambda_j \in \mathbb{R}$, then we can pick a real basis $\{h_{1j}, \ldots, h_{ijj}\}$ for W_j . If we declare $h_{lj} = 0 \in \mathbb{R}^n$ for non-real valued λ_j , and $f_{lj} = g_{lj} = 0$ for real valued λ_j , then we let

$$E_{+} := \bigoplus_{j=1}^{k'} \operatorname{span}\{f_{lj}, g_{lj}, h_{lj}\}_{l=1}^{i_{j}}, E_{-} := \bigoplus_{j=k+1}^{k''} \operatorname{span}\{f_{lj}, g_{lj}, h_{lj}\}_{l=1}^{i_{j}};$$

Here the for the first space we include only those basis vectors corresponding to $|\lambda| < 1$ (in particular $k' \leq k$), while for the second we use those with $|\lambda| > 1$. We leave it as an exercise to verify that there is indeed a direct sum decomposition of $E_+ \oplus E_- = \mathbb{R}^n$, and that E_{\pm} have the desired properties. For this recall the Jordan normal form.

The fact that we have the constant c in the preceding lemma is a bit of a nuisance, since we would like the maps A_+, A_-^{-1} to act like contractions on the spaces E_+, E_- , respectively. For this the following lemma is useful:

Lemma 1.3. Let $A \in Mat(n \times n; \mathbb{R})$ be a hyperbolic isomorphism of \mathbb{R}^n and let θ_{\pm} be as in the preceding lemma. Then there exist constants

$$\alpha \in (\theta_+, 1), \beta \in (\theta_-, 1)$$

and a norm $\|\cdot\|$ on \mathbb{R}^n with the property that

$$||A_+x|| \le \alpha \cdot ||x||, ||A_-^{-1}x|| \le \beta \cdot ||x||.$$

Proof. This relies on an averaging trick: Choose $\alpha \in (\theta_+, 1), \beta \in (\theta_-, 1)$. Pick a large enough constant $N \ge 1$ such that letting c be the constant in the preceding lemma, we have

$$c \cdot \left(\frac{\theta_+}{\alpha}\right)^N \le 1, \ c \cdot \left(\frac{\theta_-}{\beta}\right)^N \le 1.$$

Then introduce the norm (with $|\cdot|$ the norm used in the previous lemma)

$$||x|| := \sum_{j=0}^{N-1} \alpha^{-j} \cdot |A_+^j x|, x \in E_+,$$

and similarly

$$||x|| := \sum_{j=0}^{N-1} \beta^{-j} \cdot |A_{-}^{-j}x|, x \in E_{-}.$$

We can then set

$$||x|| := \max\{||x_1||, ||x_2||\},\$$

provided $x = x_1 + x_2$ with $x_1 \in E_+, x_2 \in E_-$, which defines $\|\cdot\|$ in general. We claim that this is the desired norm. In fact, we have for $x \in E_+$

$$||A_{+}x|| = \sum_{j=0}^{N-1} \alpha^{-j} \cdot |A_{+}^{j+1}x| = \alpha \cdot \sum_{j=1}^{N} \alpha^{-j} \cdot |A_{+}^{j}x| = \alpha \cdot [||x|| + \alpha^{-N}|A_{+}^{N}x| - |x|].$$

Here we have

$$\alpha^{-N}|A_+^N x| \le \alpha^{-N} \cdot c\theta_+^N \cdot |x| \le |x|$$

by choice of N. It follows that

$$||A_+x|| \le \alpha \cdot ||x||.$$

The argument for $x \in E_{-}$ is similar.

2. The stable and unstable manifold of a hyperbolic fixed point

Definition 2.1. Let $\phi \in C^1(\mathbb{R}^n; \mathbb{R}^n)$ be a diffeomorphism with fixed point $x_0 \in \mathbb{R}^n$. Then we say that x_0 is a hyperbolic fixed point, provided

$$D\phi(x_0) \in Mat(n \times n; \mathbb{R})$$

is hyperbolic, whence gives rise to a hyperbolic isomorphism of \mathbb{R}^n .

It is straightforward to understand the *dynamics* of the discrete dynamical system (\mathbb{R}^n, A) where $A \in \text{Mat}(n \times n; \mathbb{R})$ is a fixed hyperbolic isomorphism which acts by multiplication. In fact, using the decomposition

$$\mathbb{R}^n = E_+ \oplus E_-,$$

we have that A maps each of the two sub spaces on the right into itself and we have that

$$E_{+} = \{x \in \mathbb{R}^{n}, \lim_{n \to +\infty} A^{n}x = 0\}, E_{-} = \{x \in \mathbb{R}^{n}, \lim_{n \to +\infty} A^{-n}x = 0\}.$$

We then call E_+ the stable manifold and E_- the unstable manifold associated to the (hyperbolic) fixed point $x_0 = 0$ for the map A. It is then natural to generalise these concepts to diffeomorphisms:

Definition 2.2. Let $\phi \in C^1(\mathbb{R}^n; \mathbb{R}^n)$ be a diffeomorphism, and let $x_0 \in \mathbb{R}^n$ be a hyperbolic fixed point. Then we call

$$W_+(\phi, x_0) := \{ x \in \mathbb{R}^n, \ \phi^n(x) \longrightarrow x_0 \ as \ n \to +\infty \}$$

the stable manifold of x_0 . Similarly, we let

$$W_{-}(\phi, x_0) := \{x \in \mathbb{R}^n, \ \phi^{-n}(x) \longrightarrow x_0 \ as \ n \to +\infty \}$$

the unstable manifold.

Our goal in the sequel will be to acquire a local understanding of these sets near the fixed point x_0 . From now on we assume for simplicity that $x_0 = 0$. Let us suppose that there is a homeomorphism $h : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ with the property that

$$h(0) = 0$$

and further such that

$$(2.1) h \circ \phi \circ h^{-1}(x) = A \cdot x$$

where $A = D\phi(0)$. Then we have that

$$\phi^n(y) = h^{-1}(A^n(h(y)),$$

and hence we have that

$$y \in W_{\pm}(\phi, 0) \iff h(y) \in E_{\pm}.$$

This means we can characterise the stable and unstable manifold at least as subsets of \mathbb{R}^n , albeit without any differentiability properties yet. Our goal is to give a partial solution for problem (2.1).

3. Statement of Hartman-Grobman

Finding a global solution of (2.1) is too ambitious since ϕ can be quite complicated in larger and larger sets, so we shall attempt to at least find h locally. This is accomplished in

Theorem 3.1. Let $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ a C^1 -diffeomorphism, for which $x_0 = 0$ is a hyperbolic fixed point, i. e. $\phi(0) = 0$ and

$$D\phi(0) \in Mat(n \times n; \mathbb{R})$$

is hyperbolic. Then there exist neighbourhoods U, V of 0 and a homeomorphism

$$h: U \longrightarrow V$$
,

such that h(0) = 0 and

$$h \circ \phi(x) = A \circ h(x),$$

provided both x and $\phi(x)$ are in U. It follows that

$$h \circ \phi^j \circ h^{-1}(x) = A^j x$$
.

provided $x \in V$ and $\phi^k(h^{-1}(x)) \in U$ for k = 1, ..., j.

4THE STRUCTURE OF DIFFEOMORPHISMS AROUND HYPERBOLIC FIXED POINTS: HARTMAN-GROBMAN THEOREM
The proof of this theorem, although in principle fairly elementary, requires a certain amount of preparations.

4. Perturbations of linear maps on Banach spaces

In order to prove the Hartman-Grobman theorem, we shall work near linear maps. The first order of the day is to have a precise quantitative understanding of such maps:

Lemma 4.1. Let X be a Banach space and A a continuous linear isomorphism of X. Let

$$\phi(x) = Ax + g(x), x \in X,$$

where g is a Lipschitz continuous map from X into itself with

$$\varepsilon \cdot ||A^{-1}|| < 1,$$

where ε is the Lipschitz constant for g. Then ϕ is a homeomorphism of X and ϕ^{-1} is Lipschitz continuous.

Proof. (i): Injectivity of ϕ . Observe that if

$$Ax + g(x) = Ay + g(y),$$

then we obtain

$$x - y = -A^{-1}(g(x) - g(y)).$$

Then

$$|x-y| \le ||A^{-1}|| \cdot \varepsilon \cdot |x-y|.$$

Since $||A^{-1}|| \cdot \varepsilon < 1$, we conclude that |x - y| = 0, whence x = y.

(ii): Surjectivity. Given $y \in X$, we intend to solve the equation

$$y = Ax + g(x).$$

Then

$$x = A^{-1}y - A^{-1}g(x) =: T_{y}(x)$$

But the map $T_y(x)$ is a contraction due to the assumptions, and so admits a unique fixed point in X.

(iii): Lipschitz continuity of the inverse. Assume that

$$y = Ax + q(x), y' = Ax' + q(x').$$

Then

$$A^{-1}(y - y') = x - x' + A^{-1}(g(x) - g(x')).$$

By the triangle inequality we infer that

$$|A^{-1}(y - y')| \ge |x - x'| - |A^{-1}(g(x) - g(x'))|$$

 $\ge |x - x'| \cdot (1 - ||A^{-1}|| \cdot \varepsilon)$

It follows that

$$|x-x'| \le \frac{\|A^{-1}\|}{1-\|A^{-1}\| \cdot \varepsilon} \cdot |y-y'|.$$

The key for the proof of Hartman-Grobman is the following global perturbation result. We shall reduce to this result by a truncation trick:

Proposition 4.2. Let $A \in Mat(n \times n; \mathbb{R})$ hyperbolic, and let $\phi, \psi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by

$$\phi(x) = Ax + \widehat{\phi}(x), \ \psi(x) = Ax + \widehat{\psi}(x),$$

where $\widehat{\phi}, \widehat{\psi}$ are bounded and Lipschitz continuous with sufficiently small Lipschitz constant ε . Then ϕ, ψ are homeomorphisms, and there exists a unique homeomorphism

$$h(x) = x + \widehat{h}(x), \|\widehat{h}\|_{T\infty} < \infty,$$

conjugating ϕ into ψ :

$$\phi \circ h(x) = h \circ \psi(x), x \in \mathbb{R}^n.$$

If
$$\phi(0) = \psi(0) = 0$$
, we have $h(0) = 0$.

Let us see how to approach this: we compute

$$\phi \circ h(x) = \phi \circ (Id + \widehat{h})(x) = Ax + A\widehat{h}(x) + \widehat{\phi} \circ h(x),$$

$$h \circ \psi(x) = Ax + \widehat{\psi}(x) + \widehat{h} \circ \psi(x).$$

We conclude that we need to solve the following equation for \hat{h} :

$$(4.1) A\widehat{h} - \widehat{h} \circ \psi = \widehat{\psi} - \widehat{\phi} \circ h$$

Here the operator

$$\mathcal{L}\widehat{h} := A\widehat{h} - \widehat{h} \circ \psi$$

acts linearly. In fact, we shall let \mathcal{L} act on the space of continuous bounded functions $C_b(\mathbb{R}^n, \mathbb{R}^n)$, equipped with the norm

$$|\widehat{h}| := \sup_{x \in \mathbb{R}^n} ||\widehat{h}(x)||,$$

where we carefully use the norm

$$||x|| = \max\{||x_+||, ||x_-||\},$$

and $||x_{\pm}||$ are the norms constructed on E_{\pm} as in Lemma 1.3. Then we require the following

Lemma 4.3. Let A be a hyperbolic isomorphism. Then \mathcal{L} is a continuous linear isomorphism of $C_b(\mathbb{R}^n, \mathbb{R}^n)$, and in particular its inverse

$$\mathcal{L}^{-1}$$

is well-defined and bounded. If $\psi(0) = 0$ and g(0) = 0, we have that $(\mathcal{L}^{-1}g)(0) = 0$.

Proof. We show that the equation

$$\mathcal{L}v = g$$

admits a unique solution $v \in C_b(\mathbb{R}^n, \mathbb{R}^n)$ for given $g \in C_b(\mathbb{R}^n, \mathbb{R}^n)$. We do this by projecting this equation onto either component in the decomposition

$$\mathbb{R}^n = E_+ \oplus E_-.$$

In fact, decomposing for each $x \in \mathbb{R}^n$

$$v(x) = \sum_{\pm} v_{\pm}(x), v_{\pm}(x) \in E_{\pm},$$

and using the fact that A maps E_{\pm} into itself, we deduce that

$$(4.3) A_{\pm}v_{\pm} - v_{\pm} \circ \psi = g_{\pm},$$

where we denote $A|_{E_{\pm}} = A_{\pm}$. We reformulate these equations as follows¹:

(4.4)
$$v_{+} - A_{+}v_{+} \circ \psi^{-1} = -g_{+} \circ \psi^{-1}, \\ v_{-} - A^{-1}v_{-} \circ \psi = A^{-1}g_{-}.$$

¹Recall that ψ is a homeomorphism.

6THE STRUCTURE OF DIFFEOMORPHISMS AROUND HYPERBOLIC FIXED POINTS: HARTMAN-GROBMAN THEOREM The key point here is that the operators A_+, A_-^{-1} act as contractions on E_+, E_- , respectively, each equipped with $\|\cdot\|$. In fact, we have (for $\alpha \in [0,1)$)

$$\sup_{x \in \mathbb{R}^n} \|A_+ v_+ \circ \psi^{-1}(x) - A_+ w_+ \circ \psi^{-1}(x)\| \le \alpha \cdot \sup_{x \in \mathbb{R}^n} \|v_+ \circ \psi^{-1}(x) - w_+ \circ \psi^{-1}(x)\|$$
$$= \alpha \cdot \sup_{x \in \mathbb{R}^n} \|v_+ - w_+\|.$$

One proceeds similarly for $A_{-}^{-1}v_{-}\circ\psi$. The Banach fixed point theorem then implies the existence of unique $v_{\pm}\in C_b(\mathbb{R}^n, E_{\pm})$ satisfying (4.4). This also gives the estimate

$$\sup_{x \in \mathbb{R}^n} \left\| \mathcal{L}^{-1} g(x) \right\| \le C \cdot \sup_{x \in \mathbb{R}^n} \left\| g(x) \right\|$$

for a suitable constant C.

Finally, to see the last assertion of the lemma, setting for example $Tv_+ := A_+v_+ \circ \psi^{-1}$ for $v_+ \in C_b(\mathbb{R}^n, E_+)$, we find that the solution of the first equation in (4.4) can be written as

$$v_{+} = \sum_{j=0}^{\infty} T^{j} (-g_{+} \circ \psi^{-1})$$

But if $\psi(0) = 0$ and v(0) = 0, then also Tv(0) = 0, and so inductively we infer that if g(0) = 0, $\psi(0) = 0$, we have

$$T^{j}(-g_{+}\circ\psi^{-1})(0)=0, j\geq 0.$$

This implies that then also $v_{+}(0) = 0$. One uses a similar argument for v_{-} .