THE STRUCTURE OF DIFFEOMORPHISMS AROUND HYPERBOLIC FIXED
POINTS: HARTMAN-GROBMAN THEOREM

1. INTRODUCTION; HYPERBOLIC ISOMORPHISMS

We follow Zehnder in this chapter. Recall the doubling map 75 : S* — S!, which is given by the simple
expression Tp(z) = 2x when working on the universal cover R of S'. We have seen that suitably small
perturbations of this map can be conjugated back into the original map by means of a homeomorphism, a fact
we called structural stability. Thus if ¢(x) = 2z + (E(x) is sufficiently close to the doubling map in the sense

that g’g(m +1) = ;g(x) and 5 satisfies a suitable smallness property (in terms of its Lipschitz constant), then
there exists a homeomorphism « : R — R, u(x 4+ 1) = u(z) + 1, with the property that

wlogou="T,.

It is natural to pose the question whether aspects of this phenomenon can be generalized to higher dimensions
and more general maps

¢:R" —R", ¢ € C'(R";R"),
which we assume to be diffeomorphisms.
It turns out that this question can be profitably investigated in a perturbative setting around a fixed point,
which we may assume to be + = 0 € R™. The idea then is to investigate the behavior of ¢ in a small

neighborhood of the fixed point 0, where we may expect ¢ to be well approximated by its linearization
x — Az, A= D¢(0) € Mat(n x n;R). We make the

Definition 1.1. Let A € Mat(n x n;R) an invertible matriz with real entries. Then we call A hyperbolic,
provided all the (complex) eigenvalues \ of A satisfy

|A| # 1.
In other words, we can partition the eigenvalues into two sets where either |A| € (0,1) or |A] € (1,00).

What matters to us is a decomposition of R™ as a sum set of two components F,, E_ on which A either
grows or shrinks vectors asymptotically upon iteration:

Lemma 1.2. Let A be a hyperbolic matriz. Then there exists a direct sum decomposition (here either one of
the summands can be the trivial vector space)

]Rn = E+ @ E_
and such that if we identify A with its multiplication action on R™ and label A|g, = Ay, there exists a positive
constant ¢ € R as well as 04 € (0,1) such that (here | . ‘ is a fized norm on R™)
At ()| <c- 0} - |z|, v € By, |[AZ"(2)| < c- 0" - |z, 2 € E_, n > 0.

Proof. Let A1, Ag, ..., \; be the eigenvalues with |A;| € (0,1), and Agt1,..., A, those with |A;]| € (1,00). If
A; € C\R, then its complex conjugate is also amongst the eigenvalues(since A has real entries), and of course
of the same class. In this case, let

w; cC"
be its generalized eigenspace, whence
W
is the generalized eigenspace of )\7 If

{61j,62j7...,6ijj} ccr
1
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is a basis for WW; as C-vectorspace, we consider the real vectors

1 . _ .
fij = 5(61]‘ +e5), g5 = Z(elj —e5), l=1,2,...,ij.
If A\; € R, then we can pick a real basis {hij,...,h;,;} for W;. If we declare hj; = 0 € R™ for non-real valued
Aj, and fi; = gi; = 0 for real valued )A;, then we let

k:/ k//
Ey =@ span{fi;, gij, hi}ily, B- == €D span{fi;, g5, hij Hlys
j=1 j=k+1

Here the for the first space we include only those basis vectors corresponding to |A\| < 1 (in particular k¥’ < k),
while for the second we use those with |A\| > 1. We leave it as an exercise to verify that there is indeed a
direct sum decomposition of EF, @& E_ = R™, and that EL have the desired properties. For this recall the
Jordan normal form. O

The fact that we have the constant ¢ in the preceding lemma is a bit of a nuisance, since we would like
the maps A, , AZ! to act like contractions on the spaces E., F_, respectively. For this the following lemma
is useful:

Lemma 1.3. Let A € Mat(n x n;R) be a hyperbolic isomorphism of R™ and let 01 be as in the preceding
lemma. Then there exist constants

a€(0y,1), € (6-,1)
and a norm || . || on R™ with the property that

|42l < - fle], [|[A= 2] < 8- [l

Proof. This relies on an averaging trick: Choose o € (04,1),5 € (f_,1). Pick a large enough constant N > 1
such that letting ¢ be the constant in the preceding lemma, we have

c-(%)NSLC-(%)NSL

Then introduce the norm (with | . ’ the norm used in the previous lemma)
N-1 ‘
HmH = Z a™l. ‘Aix ,x € By,
j=0
and similarly
N-1 ‘
||| == Z B |Az|,z € E_.
§=0
We can then set
]| := max{[|a], |2},

provided & = x1 + xo with 21 € E4,z2 € E_, which defines || . || in general.
We claim that this is the desired norm. In fact, we have for z € E

[Avall = > a7 |4 e[ =a- ) a7 - |Ala] = a- [Jo] + a7 "]ATa| - [a]].
j=0 j=1

Here we have
oM AYa] < = ctY - [o] < o
by choice of N. It follows that
[Aval] < o[l

The argument for z € E_ is similar. g
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2. THE STABLE AND UNSTABLE MANIFOLD OF A HYPERBOLIC FIXED POINT
Definition 2.1. Let ¢ € C* (R”;R”) be a diffeomorphism with fized point xo € R™. Then we say that xzq is
a hyperbolic fixed point, provided
Do¢(z0) € Mat(n x n;R)
s hyperbolic, whence gives rise to a hyperbolic isomorphism of R™.

It is straightforward to understand the dynamics of the discrete dynamical system (R",A) where A €
Mat(n xn; R) is a fixed hyperbolic isomorphism which acts by multiplication. In fact, using the decomposition
R"=FE, dE_,

we have that A maps each of the two sub spaces on the right into itself and we have that
Ei={zeR", lim A"z =0}, F_={zeR", lim A "z =0}.
n——+o0o n—-+oo
We then call E; the stable manifold and E_ the unstable manifold associated to the (hyperbolic) fixed point
g = 0 for the map A. It is then natural to generalise these concepts to diffeomorphisms:

Definition 2.2. Let ¢ € C* (R";R") be a diffeomorphism, and let xg € R™ be a hyperbolic fized point. Then
we call
Wi (¢, x0) :=={z € R", ¢"(x) — xo as n — +oo}
the stable manifold of xg. Similarly, we let
W_(¢,z0) :=={z €R", ¢ "(x) — 20 as n — 400}
the unstable manifold.

Our goal in the sequel will be to acquire a local understanding of these sets near the fixed point xy. From
now on we assume for simplicity that zg = 0. Let us suppose that there is a homeomorphism h : R — R"
with the property that

h(0)=0

and further such that
(2.1) hopoh ™ (z)=A -z
where A = D¢(0). Then we have that

¢"(y) = h=" (A" (h(y)),
and hence we have that

y € Wi (¢,0) <= h(y) € Ex.

This means we can characterise the stable and unstable manifold at least as subsets of R™, albeit without any
differentiability properties yet. Our goal is to give a partial solution for problem (2.1).

3. STATEMENT OF HARTMAN-GROBMAN

Finding a global solution of (2.1) is too ambitious since ¢ can be quite complicated in larger and larger
sets, so we shall attempt to at least find h locally. This is accomplished in

Theorem 3.1. Let ¢ : R® — R" a C'-diffeomorphism, for which xo = 0 is a hyperbolic fized point, i. e.
¢(0) =0 and
D¢(0) € Mat(n x n;R)
1s hyperbolic. Then there exist neighbourhoods U,V of 0 and a homeomorphism
h:U—YV,

such that h(0) =0 and
ho¢(zx) = Aoh(zx),
provided both x and ¢(x) are in U. It follows that
ho@’ oh™(z) = Alz,
provided x € V and ¢*(h~Y(x)) € U fork=1,...,5.
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The proof of this theorem, although in principle fairly elementary, requires a certain amount of preparations.

4. PERTURBATIONS OF LINEAR MAPS ON BANACH SPACES

In order to prove the Hartman-Grobman theorem, we shall work near linear maps. The first order of the
day is to have a precise quantitative understanding of such maps:

Lemma 4.1. Let X be a Banach space and A a continuous linear isomorphism of X. Let
d(x) = Az + g(x), x € X,
where g is a Lipschitz continuous map from X into itself with
e-||A7Y <1,
where € is the Lipschitz constant for g. Then ¢ is a homeomorphism of X and ¢! is Lipschitz continuous.,
Proof. (i): Injectivity of ¢. Observe that if
Az +g(z) = Ay + 9(v),
then we obtain
x—y=—-A"(9(x) - g(y))-
Then
o=yl < A7 e fo =yl

Since ||[A7!|| <& < 1, we conclude that |z — y| = 0, whence z = y.

(ii): Surjectivity. Given y € X, we intend to solve the equation
y= Az +g(z).
Then
r=A"1y— A"l g(z) = Ty(2)

But the map Ty (x) is a contraction due to the assumptions, and so admits a unique fixed point in X.

(iii): Lipschitz continuity of the inverse. Assume that
y= Az +g(z), y = Az’ + g(2').
Then
ATy —y) =2 —a' + A7 (g() — g(«")).
By the triangle inequality we infer that
A Ny —y)| = [z — 2| = [A7 (g(@) — g(="))]|
2|z —a'|- (1A -¢)

It follows that
[P

—_— / S . L . S—
S ey

ly =y
O

The key for the proof of Hartman-Grobman is the following global perturbation result. We shall reduce to
this result by a truncation trick:
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Proposition 4.2. Let A € Mat(n x n;R) hyperbolic, and let ¢, : R® — R™ defined by

$(z) = Az + ¢(x), ¥(x) = Az + P(=),

where (E,@ are bounded and Lipschitz continuous with sufficiently small Lipschitz constant €. Then ¢, are
homeomorphisms, and there exists a unique homeomorphism

hz) == +?L(x), }EHLOO < 00,

conjugating ¢ into P:
poh(x)=hoy(zx), x € R".
If $(0) = ¢(0) = 0, we have h(0) = 0.
Let us see how to approach this: we compute

poh(x)=¢o (Id—f—/ﬁ)(x) = Ax —i—A/ﬁ(x) t+éo h(z),

how(z) = Az +¥(z) + ho(z).
We conclude that we need to solve the following equation for h
(4.1) Ah—hoyp =1 —doh
Here the operator

Lh:=Ah —hot

acts linearly. In fact, we shall let £ act on the space of continuous bounded functions Cj (R”, R"), equipped

with the norm

|m ;= sup ||E(a:)||,
reR™

where we carefully use the norm

)

b

and ||x:|: || are the norms constructed on F as in Lemma 1.3. Then we require the following

e = ma( | [l

Lemma 4.3. Let A be a hyperbolic isomorphism. Then L is a continuous linear isomorphism of C (R”, ]R”),
and in particular its inverse
ﬁ—l
is well-defined and bounded. If ¢¥(0) = 0 and g(0) = 0, we have that (L) (0) = 0.
Proof. We show that the equation
(4.2) Lyv=g

admits a unique solution v € C} (R", R”) for given g € Cy (R", ]R”). We do this by projecting this equation
onto either component in the decomposition

R'=E,®E_.

In fact, decomposing for each x € R”

v(x) =Y vi(x), vi(e) € B,
-

and using the fact that A maps F. into itself, we deduce that

(4.3) Atvy — v 0t = gy,

where we denote A|p, = AL. We reformulate these equations as follows':
vy — Aoy ol = —gr o,

4.4
(4.4) v —ATlv_ o= ATg .

1Recall that 1 is a homeomorphism.
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The key point here is that the operators A, A~1 act as contractions on E., E_, respectively, each equipped
with || - ||. In fact, we have (for a € [0,1))

sup HA+U+ o (z) — Aywy o w_l(x)H < a- sup Hv+ op ™ (z) —wy o z/)_l(x)H
zER™ z€R™
=a- sup Hv+ — w+H
rER™
One proceeds similarly for A= v_ o). The Banach fixed point theorem then implies the existence of unique
vy € Cy (R”, Ei) satisfying (4.4). This also gives the estimate
sup [|£7 g(x)[| < C- sup [|g(z)]
rER™ rER™

for a suitable constant C.
Finally, to see the last assertion of the lemma, setting for example Tw, := A vy oyp~! for vy € Cj (IR”, E+),
we find that the solution of the first equation in (4.4) can be written as

vy =Y T/ (—groy™)
i=0

But if (0) = 0 and v(0) = 0, then also Tw(0) = 0, and so inductively we infer that if g(0) = 0, ¥(0) = 0, we
have

T7(~gso™1)(0)=0,j>0.
This implies that then also v4(0) = 0. One uses a similar argument for v_. O



