
PROOF OF THE BIRKHOFF ERGODIC THEOREM

We follow the strategy initiated by Bourgain, relying on the maximal ergodic inequality stated in the last
lecture. We prove this first, relying on the Vitali covering lemma. Throughout we assume that g is real valued.

1. Proof of the maximal ergodic inequality

We follow here the presentation of Einsiedler-Ward. To begin with, we start with the following observation,
which is a direct application of the Vitali covering lemma:

Lemma 1.1. Let {[ai, ai + li − 1]}Ni=1, li > 0, be a collection of intervals in Z. Then there is a disjoint
sub-collection of intervals

{[aik , ai + lik − 1]}Kk=1

such that
N⋃
i=1

[ai, ai + li − 1] ⊂
K⋃
k=1

[aik − lik + 1, ai + 2lik − 2]

⊂
K⋃
k=1

[aik − lik , ai + 2lik − 1].

This is immediate from the Vitali lemma, by interpreting the intervals as subintervals of R.

Let now (X,m) be a finite measure space, T : X −→ X measure preserving, and g ∈ L1(X, dm). For
technical reasons, we shall assume that g only takes finite values. This can be achieved by replacing g by
χ|g|<M ·g and eventually passing to the limit M → +∞. As all the bounds derived below will be independent
of M , the maximal ergodic inequality will then follow without the cutoff.

Recall that we intend to show that with

g∗(x) := sup
N≥1

N−1
N−1∑
j=0

g(T j(x))

and α > 0, the set
Eα := {g∗(x) > α}

has measure m(Eα) ≤ 3α−1
∥∥g∥∥

L1(X,dm)
. The strategy for proving this shall use the following trick: replacing

x by T ax for some a ≥ 0, we get

T−a
(
Eα
)

= {g∗
(
T ax

)
> α} = {sup

N≥1
N−1

N−1∑
j=0

g(T a+j(x)) > α}.

By measure preservation, we have
m
(
T−a

(
Eα
))

= m(Eα).

Furthermore, we can write

m
(
{sup
N≥1

N−1
N−1∑
j=0

g(T a+j(x)) > α}
)

=

∫
X

χ
T−a
(
Eα

) dm
The idea is now to sum over a a ∈ [0, 1, . . . , J − 1] for some large J , and to observe that for fixed x∑

a

χ
T−a
(
Eα

)(x) =
∣∣∣{a | sup

N≥1
N−1

N−1∑
j=0

g(T a+j(x)) > α}
∣∣∣

1
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The right hand side, when viewing supN≥1N
−1∑N−1

j=0 g(T a+j(x)) as a function of a, is the cardinality of
the set where this maximal function is large. This is quite analogous to similar maximal functions used for
example to prove the Lebesgue differentiation result, and one can estimate the cardinality by using the Vitali
lemma, in terms of an expression not involving the supremum. At the same time, by measure preservation,
we have that ∑

a

m
(
T−a

(
Eα
))

=
∣∣{a}∣∣ ·m(Eα).

Combining these observations will allow us to bound m(Eα) in terms of
∥∥g∥∥

L1(X,dm)
, after carrying out the

x-integration.

We shall now rigorously implement this strategy. In order to do this, we shall for now fix x ∈ X and
consider a function on Z introduced as follows:

For a very large J ≥ 1, where eventually we shall let J −→ +∞, we set

φ(j) := g
(
T jx

)
, j = 0, . . . , J

and φ(j) = 0 otherwise. This is a well-defined function on Z taking real values and such that φ ∈ l1(Z). The
following is then the essential technical ingredient, namely the maximal function estimate:

Lemma 1.2. (Maximal function) Let

φ∗(a) := sup
N≥1

N−1
N−1∑
j=0

φ(a+ j).

Define (for α ≥ 0)

Eφα := {a ∈ Z |φ∗(a) > α}.

Then we have

α
∣∣Eφα∣∣ ≤ 3 ·

∥∥φ∥∥
l1(Z).

Proof. Let a1, a2, . . . , aK be distinct integers in Eφα. We show that αK is bounded by 3 ·
∥∥φ∥∥

l1(Z), using the

Vitali lemma 1.1. By definition, for each i ∈ {1, . . . ,K}, there exist lj ≥ 1 and such that

l−1j ·
lj−1∑
i=0

φ(aj + i) > α.

By lemma 1.1, we can pick a subcollection ai1 , . . . , aiR such that the intervals [aip , aip + lip − 1], p = 1, . . . , R
are disjoint, and such that

K⋃
i=1

[ai, ai + li − 1] ⊂
R⋃
p=1

[aip − lip , aip + 2lip − 1]

In particular, this implies that

K ≤ 3 ·
R∑
p=1

lip .

By choice of the ai, li we have

α · li <
li−1∑
j=0

φ(ai + j).
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Using this for the i = ip, p = 1, 2 . . . , R, and summing, while exploiting the disjointness of the intervals
[aip , aip + lip − 1], we find

α ·
R∑
p=1

lip <

R∑
p=1

lip−1∑
j=0

φ(aip + j) ≤
∥∥φ∥∥

l1(Z).

Combining this with the above bound for K, we infer that

α ·K ≤ 3α ·
R∑
p=1

lip ≤ 3
∥∥φ∥∥

l1(Z).

�

We can now implement the strategy outlined at the beginning of this section to prove the maximal ergodic
inequality. We just have to be careful to take into account the truncations involved in the definition of φ. We
shall prove the maximal ergodic inequality for the slightly modified maximal function

g∗P (x) := sup
P≥N≥1

N−1
N−1∑
j=0

g(T j(x)),

where J � P � 1. By letting J, P → ∞, the desired result will follow. We analogously define the modified
maximal function

φ∗P (a) := sup
P≥N≥1

N−1
N−1∑
j=0

φ(a+ j).

The point is that then restricting a ∈ [0, . . . , J − P ], we have

φ∗P (a) = g∗P (T a(x)).

Also, introduce the set

EPα := { sup
P≥N≥1

N−1
N−1∑
j=0

g(T j(x)) > α}

According to the preceding lemma, we know that

∣∣{a ∈ [0, J − P ], |φ∗P (a) > α}
∣∣ ≤ ∣∣{a, |φ∗(a) > α}

∣∣ ≤ 3α−1
∥∥φ∥∥

l1(Z) ≤ 3α−1
J∑
j=0

∣∣g(T j(x)
)∣∣.

We now go back to the identity∑
0≤a≤J−P

χ
T−a
(
EPα

)(x) =
∣∣∣{0 ≤ a ≤ J − P | sup

P≥N≥1
N−1

N−1∑
j=0

g(T a+j(x)) > α}
∣∣∣

As before we conclude that(
J − P + 1

)
·m
(
EPα
)

=

∫
X

∣∣∣{0 ≤ a ≤ J − P | sup
P≥N≥1

N−1
N−1∑
j=0

g(T a+j(x)) > α}
∣∣∣ dm

At the same time, we have∣∣∣{0 ≤ a ≤ J − P | sup
P≥N≥1

N−1
N−1∑
j=0

g(T a+j(x)) > α}
∣∣∣ =

∣∣{0 ≤ a ≤ J − P |φ∗P (a) > α}
∣∣

≤ 3α−1
J∑
j=0

∣∣g(T j(x)
)∣∣,
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according to the preceding.
Carrying out the x-integral and taking advantage of the measure preservation property, we infer that

(
J − P + 1

)
·m
(
EPα
)
≤ 3α−1

∫
X

J∑
j=0

∣∣g(T j(x)
)∣∣ dm = 3α−1J ·

∥∥g∥∥
L1(X,dm)

.

Dividing by J and letting J → +∞ for fixed P leads to the conclusion

m
(
EPα
)
≤ 3α−1

∥∥g∥∥
L1(X,dm)

.

Finally letting P →∞, the maximal ergodic inequality follows.

2. Proof of the Birkhoff ergodic theorem

Let
(
X,m

)
be a finite measure space, and T : X −→ X a measure preserving map. Further, let f ∈

L1(X, dm). By an exercise in the last problem set, we know that

AN (f) :=
1

N

N−1∑
j=0

f ◦ T j

converges toward a function f∗ ∈ L1
(
X, dm

)
as N −→ +∞. We intend to show that AN (f) converges almost

everywhere to f∗. In fact, we shall show that

(2.1)
∣∣∣{x ∈ X | lim sup

N→∞

∣∣ANf(x)− f∗(x)
∣∣ > ε}

∣∣∣ < 12ε

for any ε > 0. This of course implies that ANf(x) −→ f∗(x) almost everywhere. In the particular case that
T is ergodic, the Birkohff theorem formulated in the last lecture follows.
We accomplish this in two steps:

Step 1: Proof of (2.1), assuming it is true for f ∈ L∞(X,m) ⊂ L1(X,m). Given ε > 0, pick a function
f0 ∈ L∞(X,m) such that ∥∥f − f0∥∥L1 < ε2.

Then, letting f0,∗ the L1-limit of ANf0, we have that

{x ∈ X | lim sup
N→∞

∣∣ANf(x)− f∗(x)
∣∣ > ε} ⊂ {x ∈ X | lim sup

N→∞

∣∣ANf0(x)− f0,∗(x)
∣∣ > ε

3
}

∪ {x ∈ X | lim sup
N→∞

∣∣AN (f − f0)(x)
∣∣ > ε

3
}

∪ {x ∈ X |
∣∣(f∗ − f0,∗)(x)

∣∣ > ε

3
}

By assumption, we have ∣∣∣{x ∈ X | lim sup
N→∞

∣∣ANf0(x)− f0,∗(x)
∣∣ > ε

3
}
∣∣∣ = 0.

By the maximal ergodic inequality, we have∣∣∣{x ∈ X | lim sup
N→∞

∣∣AN (f − f0)(x)
∣∣ > ε

3
}
∣∣∣ ≤ 3

∥∥f − f0∥∥L1

ε
3

< 9ε.

Finally, we have ∣∣{x ∈ X | ∣∣(f∗ − f0,∗)(x)
∣∣ > ε

3
}
∣∣ ≤ ∥∥f∗ − f0,∗∥∥L1

ε
3

< 3ε.

Inequality (2.1) follows.
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Step 2: Proof of (2.1) for f ∈ L∞
(
X, dm

)
. As before denote by f∗ ∈ L1(X, dm) the L1-limit of AN (f).

Then we have

AMf∗ = f∗

for any M ≥ 1. Given ε > 0, pick M large enough such that∥∥f∗ −AMf∥∥L1 < ε2.

Then consider

{x ∈ X | lim sup
N→∞

∣∣f∗(x)−ANf(x)
∣∣ > ε}.

Use the estimate

lim sup
N→∞

∣∣f∗(x)−ANf(x)
∣∣ ≤ lim sup

N→∞

∣∣f∗(x)−AN ◦AMf(x)
∣∣+ lim sup

N→∞

∣∣ANf −AN ◦AMf(x)
∣∣

= lim sup
N→∞

∣∣ANf∗(x)−AN ◦AMf(x)
∣∣+ lim sup

N→∞

∣∣ANf −AN ◦AMf(x)
∣∣.

We show that

• Using the L∞-bound for f , we have lim supN→∞
∣∣ANf −AN ◦AMf(x)

∣∣ = 0.
• Using the maximal ergodic inequality, we have∣∣∣{x ∈ X | lim sup

N→∞

∣∣ANf∗(x)−AN ◦AMf(x)
∣∣ > ε}

∣∣∣ < 3ε.

Combining these facts, we have∣∣∣{x ∈ X | lim sup
N→∞

∣∣f∗(x)−ANf(x)
∣∣ > ε}

∣∣∣ ≤ ∣∣∣{x ∈ X | lim sup
N→∞

∣∣ANf∗(x)−AN ◦AMf(x)
∣∣ > ε}

∣∣∣
< 3ε,

which proves (2.1) in our present situation.

Proof that lim supN→∞
∣∣ANf −AN ◦AMf(x)

∣∣ = 0. Observe that1

AN ◦AMf(x) =
1

NM

N−1∑
j=0

M−1∑
i=0

f
(
T j+i(x)

)
=

1

M

M−1∑
i=0

1

N

[N−1∑
j=0

f
(
T j(x)

)
−

(i−1)∑
j=0

f
(
T j(x)

)
+

N+(i−1)∑
j=N

f
(
T j(x)

)]
= AN (f)(x)− 1

NM

M−1∑
i=1

i−1∑
j=0

f
(
T j(x)

)
+

1

NM

M−1∑
i=1

N+i−1∑
j=N

f
(
T j(x)

)
.

Since we have the easily verified bounds∣∣∣ 1

NM

M−1∑
i=1

i−1∑
j=0

f
(
T j(x)

)∣∣∣ ≤ M

N
·
∥∥f∥∥

L∞
,
∣∣∣ 1

NM

M−1∑
i=1

N+i−1∑
j=N

f
(
T jx)

)∣∣∣ ≤ M

N
·
∥∥f∥∥

L∞
,

we conclude that

lim sup
N→∞

∣∣AN ◦AMf(x)−ANf(x)
∣∣ = 0.

1We nterpret sums of the form
∑b

i=a with b < a as equal to zero.
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Proof that
∣∣∣{x ∈ X | lim supN→∞

∣∣ANf∗(x) − AN ◦ AMf(x)
∣∣ > ε}

∣∣∣ < 3ε. This is a direct consequence of

the maximal ergodic inequality:∣∣∣{x ∈ X | lim sup
N→∞

∣∣ANf∗(x)−AN ◦AMf(x)
∣∣ > ε}

∣∣∣ ≤ ∣∣∣{x ∈ X | sup
N≥1

∣∣ANf∗(x)−AN ◦AMf(x)
∣∣ > ε}

∣∣∣
≤ 3ε−1 ·

∥∥f∗ −AMf∥∥L1

≤ 3ε.

The proof of the Birkhoff ergodic theorem is now complete.


