PROOF OF THE BIRKHOFF ERGODIC THEOREM

We follow the strategy initiated by Bourgain, relying on the maximal ergodic inequality stated in the last
lecture. We prove this first, relying on the Vitali covering lemma. Throughout we assume that ¢ is real valued.

1. PROOF OF THE MAXIMAL ERGODIC INEQUALITY

We follow here the presentation of Einsiedler-Ward. To begin with, we start with the following observation,
which is a direct application of the Vitali covering lemma:

Lemma 1.1. Let {[a;,a; +1; — 1}, I; > 0, be a collection of intervals in Z. Then there is a disjoint
sub-collection of intervals

{[a’ikaai + llk - 1]}5:1

such that
N K
U[ai,aiJrli—l]C U[azkflzk+1,al+21%—2]
=1 k=1
K
C U[aik —lik7ai+2lik — 1]
k=1

This is immediate from the Vitali lemma, by interpreting the intervals as subintervals of R.

Let now (X,m) be a finite measure space, T : X — X measure preserving, and g € L'(X,dm). For
technical reasons, we shall assume that g only takes finite values. This can be achieved by replacing g by
X|g|<M * g and eventually passing to the limit M — +o0o. As all the bounds derived below will be independent
of M, the maximal ergodic inequality will then follow without the cutoff.

Recall that we intend to show that with

N-1
*(z) ;= sup N1 (T (
o7(0) = N3 ()

and a > 0, the set

Eo:={g"(x) > a}
has measure m(E,) < 3a~1 ||gHL1(X7dm). The strategy for proving this shall use the following trick: replacing
x by Tz for some a > 0, we get

N-1
T—a Ea _ * Ta — N~ 1 Ta+]
(Eo) ={g"(T"z) > a} {sup ;0 g ) > a}.

By measure preservation, we have
m(T=(E,)) = m(Ea).

Furthermore, we can write

m({sup N Jfg(w“(w» > a)) = [ () dm

The idea is now to sum over a a € [0,1,...,J — 1] for some large J, and to observe that for fized x

DX () (@) = [{al sup N 12 (T (@) > a}|
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2 PROOF OF THE BIRKHOFF ERGODIC THEOREM
The right hand side, when viewing supys; N~ Z;V:_ol g(T*(z)) as a function of a, is the cardinality of
the set where this maximal function is large. This is quite analogous to similar maximal functions used for
example to prove the Lebesgue differentiation result, and one can estimate the cardinality by using the Vitali
lemma, in terms of an expression not involving the supremum. At the same time, by measure preservation,
we have that

>om(T(Ea)) = {a}| - m(Ea).

a

Combining these observations will allow us to bound m(E,) in terms of || gH L , after carrying out the

X,dm)
z-integration.

We shall now rigorously implement this strategy. In order to do this, we shall for now fizx z € X and
consider a function on Z introduced as follows:

For a very large J > 1, where eventually we shall let J — 400, we set
o(j) :==g(T7z), j=0,...,J

and ¢(j) = 0 otherwise. This is a well-defined function on Z taking real values and such that ¢ € [1(Z). The
following is then the essential technical ingredient, namely the mazimal function estimate:

Lemma 1.2. (Mazimal function) Let

N—-1
* _ 1
¢*(a) sup N ; p(a+j)

Define (for a« >0)
E?:={a€Z|¢*(a) > a}.
Then we have

O‘|E£| <3 ||¢H11(Z)'

Proof. Let a1, as,...,ax be distinct integers in £¢. We show that oK is bounded by 3 - ||¢||11(Z), using the
Vitali lemma 1.1. By definition, for each ¢ € {1,..., K}, there exist I; > 1 and such that

1> glaj+i) > a
=0

By lemma 1.1, we can pick a subcollection a;,,...,a;, such that the intervals [aip, a;, +1;, — 1,p=1,...,R
are disjoint, and such that

C=
Cw=

[a;,a; +1; — 1] C [aip — lip,aip + Qlip —1]

i 1

Il
_

p

In particular, this implies that

R
K<3-) 1.
p=1

By choice of the a;,l; we have
l;—1
a-l; <> élai+j).

7=0
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Using this for the i = i,, p = 1,2..., R, and summing, while exploiting the disjointness of the intervals
lai,,a;, +1;, — 1], we find

Lip—1

R R
Q- Zl’p < Z alp +]) S ||¢||11(Z)

p:l p:l =0

Combining this with the above bound for K, we infer that

R
a-K<3a-) I, < 3|61y
p=1

O

We can now implement the strategy outlined at the beginning of this section to prove the maximal ergodic
inequality. We just have to be careful to take into account the truncations involved in the definition of ¢. We
shall prove the maximal ergodic inequality for the slightly modified maximal function

N-1
gp(z):= sup N7' Y g(T'(x))
P>N>1 =

where J > P > 1. By letting J, P — oo, the desired result will follow. We analogously define the modified
maximal function

N-1
“(a) == sup N1 a+
Opla) = sup ;)¢ 7).

The point is that then restricting a € [0,...,J — P], we have
¢p(a) = gp(T*(z)).

Also, introduce the set

N-1
EY = N!
o= ; 9(T? (x)) > a}
According to the preceding lemma, we know that
J
{a € 0.7~ P|. |6p(a) > a}| < [{a. |6"(@) > a}] < 30" [|¢]|,, 5, < 30D [o(T(a))].
j=0

We now go back to the identity

2

-1

S ey 02z 7-P) s 53 ey > ol
0<a<J—P " P>N>1 ;

I
o

As before we conclude that

N-1

(J7P+1)-m(Ef):/’{0§a§J7P| sup N~! (T (x >a}‘dm
X P2N>1 —

.

At the same time, we have

‘{OSaSJ—P| sup N~ Z (T (z ))>a}‘:|{O§a§J—P|¢}Z(a)>a}|

P>N2>1

J

<3a™t Y |g(TV ()],

Jj=0



4 PROOF OF THE BIRKHOFF ERGODIC THEOREM

according to the preceding.
Carrying out the z-integral and taking advantage of the measure preservation property, we infer that

J
(J—P+1)-m(EY) <3a™! /X Z |9(Tj($))|dm =3a"'J - HgHLl(X,dm)'
=0

Dividing by J and letting J — 400 for fixed P leads to the conclusion
P -1
m(Ea) < 3o H9||L1(X,dm)'

Finally letting P — oo, the maximal ergodic inequality follows.

2. PROOF OF THE BIRKHOFF ERGODIC THEOREM

Let (X , m) be a finite measure space, and T : X — X a measure preserving map. Further, let f €
L'(X,dm). By an exercise in the last problem set, we know that

| V-1 ‘
AN(f) = N > foT!
=0

converges toward a function f, € L! (X , dm) as N — +oo. We intend to show that An(f) converges almost
everywhere to f,. In fact, we shall show that

(2.1) ){x € X | limsup |An f(2) — fu(z)| > 5}‘ < 12¢
N—oo

for any € > 0. This of course implies that AN f(x) — fi(x) almost everywhere. In the particular case that
T is ergodic, the Birkohff theorem formulated in the last lecture follows.
We accomplish this in two steps:

Step 1: Proof of (2.1), assuming it is true for f € L°>(X,m) C L*(X,m). Given € > 0, pick a function
fo € L (X, m) such that
1F = foll 2 <&
Then, letting fo . the L!-limit of Ay fo, we have that

{reX| 1ij{/nsup|ANf(a:) — fulx)] > e} c{r e X| li]{[nsup‘ANfo(x) — fou()| > %}

Ufw e X | limsup |Ax(f ~ fo)(x)| > 3}

Uf{z e XH(f* _fO,*)($)| > g}

By assumption, we have
) €
‘{x € X | limsup |ANf0(:E) — fo,*(aﬂ)| > g}‘ =0.
N—o00
By the maximal ergodic inequality, we have

’{az € X | limsup [An(f — fo)(z)| > %}’ < M < 9e.
N—oo 3

Finally, we have

3

{z € X ||(fe — fo)(@)| > 3}| < M

< 3e.

Inequality (2.1) follows.
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Step 2: Proof of (2.1) for f € L>(X,dm). As before denote by f, € L*(X,dm) the L'-limit of Ay(f).
Then we have

AMf* = f*
for any M > 1. Given € > 0, pick M large enough such that

| fe = Ancf]| 0 < €%
Then consider

{r e X| 111{[11jup |fe(@) — An f(2)| > €}

Use the estimate
folz) = An f(2)] < hlrvnsup | fe(2) — An o Apr f(2)] —I—hmsup |Anf — Ay o Ay f(z)|
—00

:1imsup|ANf*() Ano Ay f(x |+hmbup’ANf Anyo Ay f(x )|

N—o0

lim sup
N—o0

We show that

e Using the L*°-bound for f, we have limsupy_, ., ‘ANf —Ano AMf(x)| =0.
e Using the maximal ergodic inequality, we have

‘{x € X | limsup [Ay fi(z) — Ay 0 Ay f(2)] > 5}‘ < 3e.
N—o0
Combining these facts, we have

{r e X| liJ{Insup‘f*(x) — Anf(z)| > 8}‘ < ‘{x €X| li]{]nsup|ANf*(x) — An o Ay f(z)]| > 6}’

< 3e,
which proves (2.1) in our present situation.
Proof that lim sup y_, |ANf Ay o Ay f(x ’ = 0. Observe that?
;] Normn
AN OAMf( ) W P ; f(TJ+Z(I))
| Mol Nl (i—1) N+(i—1)
= ﬁ[Z F(T (@) = > f(T @)+ Y f(T())]
=0 7=0 7=0 j=N
1 M—-11i1—1 1 M—1N+i—1
= Av(N@) = 537 F @)+ 537 22 2 F(T@)
i=1 j=0 i=1 j=N
Since we have the easily verified bounds
M—-1i—1 M—1N+i—1
M 1 < M
i o A @)| < 5 Wl |7 G EET
i=1 j=0 i=1 j=N
we conclude that
limsup [Ay o Ay f(z) — Axf(z)| = 0.

N —oo

e nterpret sums of the form Zf with b < a as equal to zero.

=a
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Proof that ‘{x € X |limsupy_, o |[Anfi(z) = Ax 0 Ay f(2)] > 5}‘ < 3e. This is a direct consequence of
the maximal ergodic inequality:

‘{x € X| lijgnsup|ANf*(x) — Ay o Ay f(z)| > 6}‘ < ’{x € X| ]svu>p1 |AN fu(z) — An o Apr f ()| > s}‘

<3| 7~ Aue
< 3e.

The proof of the Birkhoff ergodic theorem is now complete.



