ERGODIC THEOREMS

The ultimate goal of this lecture will be to provide a proof of the Birkhoff ergodic theorem, following the
approach via the maximal ergodic inequality initiated by J. Bourgain. To implement this approach we shall
also require the more elementary mean ergodic theorem due to Von Neumann, which is of interest in its own
right. Our presentation here is similar to the one in Finsiedler-Ward, Ergodic Theory.

1. THE ROLE OF L2(X,dm).

Let (X, m) be a finite measure space, and consider the Hilbert space L?(X,dm). Let T : X — X a
measure preserving map, not necessarily ergodic. We can then consider the operator

UTf = fOT.

Since T' is measure preserving, this operator is an isometry, i. e.

021 amy = [ o am= [ 17 dm =

From now on, we shall simply write H . H instead of || . ||L2(X dm)’

Our goal is to understand the averages
N-1
AN(f):=N""Y " f(Ta)
j=0
We observe that formally, we expect the limit of Ax(f) as N — oo, to be invariant under T. This motivates
the introduction of the space
V:={g € L*(X,dm), Urg= g}

Since Ur is a bounded, and hence continuous linear operator on L?(X,dm), the space V is a closed subspace.

Next, we introduce the space

W= {f - UT.f7 f € LQ(X7dm)}a
i. e. the closure in L?>(X,dm) of the sub space {f — Urf, f € L?(X,dm)}. These two subspaces actually
complement each other, in the sense that

L*(X,dm) =V & W.

This follows from

Lemma 1.1. We have that V =W+,

Proof. We first note that if g € V', we have for any f € L?(X,dm) that

(9,.f =Urf)={g,f) = {9, Urf)

=(9,f) = (Urg,Urf)
=9, ) — (9, 1)
=0.

Since the space {f — Urf, f € L?>(X,dm)} is dense in W, this implies that V C W+. Next, assume that
(9. f —Urf) =0Vf € L*(X,dm).
This implies that
(9 —Urg, f) = 0Vf € L*(X,dm),
which results in
g—Urg=0.
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But then we have
|2

0=lg—Urg
=2||g|* — 2Re (g, Uzg)
=2||g||* — 2Re (Urg, g)

The equality case for the Cauchy-Schwarz inequality then implies that
UTg =4g.
Hence W+ c V. O
2. THE MEAN ERcODIC THEOREM OF VON NEUMANN
Here we prove the following result:

Theorem 2.1. As before let (X7 m) be a finite measure space and T : X — X be measure preserving. Let
Pr be the orthogonal projection onto the subspace V' from the preceding section. The for any f € L*(X,dm),
we have the limiting relation

N —o0

N-1
lim N™' " foTV = Prf.
j=0

Thus the limit exists in L*(X,dm) and is invariant under T. In particular, if T is ergodic, we have the
relation

N-1
< 1
. -1 J_
P N R 10T = i [ fom
where the right hand side is a constant, and the limit is in the sense of L*(X,dm).

Proof. The preceding lemma implies that it suffices to verify the limiting relation for two cases: (i) f € V,
and (i) f e W.

(i) f € V. Here we have Urf = f and hence foT7 = f, j > 0. It follows that
N—-1
N7'N " foTV=fVN >1,
j=0
and so the claim is obvious.

(i) f € W. First assume that f = g — Urg, g € L?>(X,dm). Then we compute
foT!=goT/ —goT'™, j>0.

This implies that we arrive at a telescoping sum
N-1
N1 Z foT? :N_l(g—goT—i—goT—goTQ—l—...—l—goTN_1 —goTN>
j=0

:Nﬁl(g—goTN).

But then we conclude that

B

<2
,Ng

N—1
HN—1 S for
j=0

which converges toward 0. Moreover,
Prf=0.
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More generally, assume that f € W. Then there is a sequence of g; € L?(X,dm) such that

| f = (9: — Urgs)|| — 0
as ¢ — 400. Thus given € > 0, there is some ¢y such that

|15 = (gi0 = Urga) || <=
Then pick N large enough such that

HN*1 Z (gio — UTgio) OTjH <e.

Jj=

Then we conclude that

N-1 ‘
INTED D fot|
=0

N-—1 N-1
<IN (f = (910 — Urgi,)) o TV + HN—l S (930 — Urgio) oTjH
j=0 =0
<e4e
= 2¢.

Since € > 0 was arbitrary, we conclude that

N—-1
1 -1 J = =
Jim N jz::OfoT 0= Prf.

3. THE KEY TOOL TOWARDS THE BIRKHOFF ERGODIC THEOREM: MAXIMAL ERGODIC INEQUALITY

While the Mean Ergodic Theorem may seem quite close to the Birkhoff one, the pointwise almost every-
where convergence is indeed quite a bit more difficult to obtain. To appreciate this, recall that if a sequence
of functions {f, }n>1 converges in the sense of L? towards a limit f in L2, then it is not in general possible
to conclude the convergence of the f, to f almost everywhere. In fact, this is in general only possible for
a subsequence of the {fn}n>1. For comparison purposes, the convergence of the Fourier series of a function
f € L23(SY) towards f in the L?-sense is quite elementary by comparison to the extremely difficult proof of
almost everywhere convergence (due to L. Carleson 1966).

The key tool for the pointwise convergence is typically a so-called maximal inequality, which derives bounds
not just for individual functions of an approximating sequence, but for the maximal function associated for
such a sequence. What this means becomes clear in the following

Theorem 3.1. Let (X7 m) a finite measure space, and T : X — X measure preserving. For g € L'(X,dm)

a real-valued function, define
1 Nl
E,:={x€ X| sup — 9(T’z) > a}.
N>1 N =
Then the following estimate obtains:
a-m(E,) < 3HgHL1(X,dm)'
Remark 3.2. The key point in this inequality is of course the fact that we include the supremum over all
N > 0 on the left. If we simply fixed a particular NV > 0, then taking advantage of the elementary inequality

[{g>a}| <a™ -l
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for a real valued function and a > 0, we infer that

e | N=l
a j -1 || = J
e xig X o> ol <o |5 X o),

<ot HgHLl(X,dm)’

where the last inequality results from the fact that T is measure preserving.

The proof of this theorem will follow Bourgain’s strategy by taking advantage of a classical result in geo-
metric measure theory, the Vitali covering lemma. In fact, we shall use this in a somewhat unusual way.

Here is an abstract version of the Vitali covering lemma in the context of a metric space:

Lemma 3.3. Let (X,d) be a metric space and let {B(a;,r;)} a finite collection of closed balls. Then there
s a disjoint subcollection of balls

{B(ail ’ ril)}liil - {B(aia Ti)}z]'\]:l
such that
N K
U B(ai, ’I“i) C U B(ail,?n"il).
i=1 =1
Proof. We may assume that r; > 79 > ... > ry. Then set
i1 = 1.

Proceeding inductively, if i1,...,7; have been chosen, we continue as follows: either all B(a;,r;) with i > i
intersect one of the B(a;,,7;,), 1 <1 <k, or else we pick g1 > i minimal and such that

B(aik+1 y Vgt )
is disjoint from all the previously chosen balls. This process stops after finitely many steps, resulting in the
{B(aiz ) T4y )}llil

We claim that this collection of balls has the desired property. For let B(a;, ;) be one of the original balls.

If it is one of the chosen ones, it is clearly contained in the set

K

U B(ail 5 37'“ )

1=1
If it is not one of the chosen ones, then one of the B(a;,,r;,) with 4; < i needs to intersect it. For if not, letting
{i1,...,ip} be the chosen indices < i, then i would have been chosen at the p 4+ 1-th stage of the selection
process.
Then assuming that

B(ail,ml) n B(ai,m) # @,il <1,

then since r;, > r;, we infer that

B(ai7ri) C B(ai“?)n-l).



