ERGODIC THEOREMS

The ultimate goal of this lecture will be to provide a proof of the Birkhoff ergodic theorem, following the approach via the maximal ergodic inequality initiated by J. Bourgain. To implement this approach we shall also require the more elementary *mean ergodic theorem* due to Von Neumann, which is of interest in its own right. Our presentation here is similar to the one in *Einsiedler-Ward*, *Ergodic Theory*.

1. The role of
$$L^2(X, dm)$$
.

Let (X, m) be a finite measure space, and consider the Hilbert space $L^2(X, dm)$. Let $T: X \longrightarrow X$ a measure preserving map, not necessarily ergodic. We can then consider the operator

$$U_T f := f \circ T.$$

Since T is measure preserving, this operator is an *isometry*, i. e.

$$||U_T f||_{L^2(X,dm)}^2 = \int_X |f \circ T|^2 dm = \int_X |f|^2 dm = ||f||_{L^2(X,dm)}^2$$

From now on, we shall simply write $\|\cdot\|$ instead of $\|\cdot\|_{L^2(X,dm)}$.

Our goal is to understand the averages

$$A_N(f) := N^{-1} \sum_{j=0}^{N-1} f(T^j x)$$

We observe that formally, we expect the limit of $A_N(f)$ as $N \to \infty$, to be invariant under T. This motivates the introduction of the space

$$V := \{ g \in L^2(X, dm), \ U_T g = g \}.$$

Since U_T is a bounded, and hence continuous linear operator on $L^2(X,dm)$, the space V is a closed subspace.

Next, we introduce the space

$$W := \overline{\{f - U_T f, f \in L^2(X, dm)\}},$$

i. e. the closure in $L^2(X, dm)$ of the sub space $\{f - U_T f, f \in L^2(X, dm)\}$. These two subspaces actually complement each other, in the sense that

$$L^2(X, dm) = V \oplus W.$$

This follows from

Lemma 1.1. We have that $V = W^{\perp}$.

Proof. We first note that if $g \in V$, we have for any $f \in L^2(X, dm)$ that

$$\langle g, f - U_T f \rangle = \langle g, f \rangle - \langle g, U_T f \rangle$$

$$= \langle g, f \rangle - \langle U_T g, U_T f \rangle$$

$$= \langle g, f \rangle - \langle g, f \rangle$$

$$= 0.$$

Since the space $\{f - U_T f, f \in L^2(X, dm)\}$ is dense in W, this implies that $V \subset W^{\perp}$. Next, assume that

$$\langle g, f - U_T f \rangle = 0 \,\forall f \in L^2(X, dm).$$

This implies that

$$\langle g - U_T^* g, f \rangle = 0 \,\forall f \in L^2(X, dm),$$

which results in

$$g - U_T^* g = 0.$$

9

But then we have

$$0 = ||g - U_T^*g||^2$$

= $2||g||^2 - 2 \operatorname{Re} \langle g, U_T^*g \rangle$
= $2||g||^2 - 2 \operatorname{Re} \langle U_T g, g \rangle$

The equality case for the Cauchy-Schwarz inequality then implies that

$$U_T g = g$$
.

Hence $W^{\perp} \subset V$.

2. The Mean Ergodic Theorem of Von Neumann

Here we prove the following result:

Theorem 2.1. As before let (X, m) be a finite measure space and $T: X \longrightarrow X$ be measure preserving. Let P_T be the orthogonal projection onto the subspace V from the preceding section. The for any $f \in L^2(X, dm)$, we have the limiting relation

$$\lim_{N \to \infty} N^{-1} \sum_{j=0}^{N-1} f \circ T^j = P_T f.$$

Thus the limit exists in $L^2(X, dm)$ and is invariant under T. In particular, if T is ergodic, we have the relation

$$\lim_{N\to\infty} N^{-1} \sum_{i=0}^{N-1} f\circ T^j = \frac{1}{m(X)} \int_X f\,dm,$$

where the right hand side is a constant, and the limit is in the sense of $L^2(X, dm)$.

Proof. The preceding lemma implies that it suffices to verify the limiting relation for two cases: (i) $f \in V$, and (ii) $f \in W$.

(i) $f \in V$. Here we have $U_T f = f$ and hence $f \circ T^j = f$, $j \geq 0$. It follows that

$$N^{-1} \sum_{j=0}^{N-1} f \circ T^{j} = f \,\forall N \ge 1,$$

and so the claim is obvious.

(iI) $f \in W$. First assume that $f = g - U_T g$, $g \in L^2(X, dm)$. Then we compute

$$f \circ T^j = q \circ T^j - q \circ T^{j+1}, j > 0.$$

This implies that we arrive at a telescoping sum

$$N^{-1} \sum_{j=0}^{N-1} f \circ T^{j} = N^{-1} \Big(g - g \circ T + g \circ T - g \circ T^{2} + \dots + g \circ T^{N-1} - g \circ T^{N} \Big)$$
$$= N^{-1} \Big(g - g \circ T^{N} \Big).$$

But then we conclude that

$$\left\| N^{-1} \sum_{j=0}^{N-1} f \circ T^j \right\| \le \frac{2}{N} \|g\|,$$

which converges toward 0. Moreover,

$$P_T f = 0.$$

More generally, assume that $f \in W$. Then there is a sequence of $g_i \in L^2(X, dm)$ such that

$$||f - (g_i - U_T g_i)|| \longrightarrow 0$$

as $i \to +\infty$. Thus given $\varepsilon > 0$, there is some i_0 such that

$$||f - (g_{i_0} - U_T g_{i_0})|| < \varepsilon.$$

Then pick N large enough such that

$$\left\| N^{-1} \sum_{j=0}^{N-1} \left(g_{i_0} - U_T g_{i_0} \right) \circ T^j \right\| < \varepsilon.$$

Then we conclude that

$$\|N^{-1} \sum_{j=0}^{N-1} f \circ T^{j}\|$$

$$\leq \|N^{-1} \sum_{j=0}^{N-1} \left(f - (g_{i_{0}} - U_{T} g_{i_{0}}) \right) \circ T^{j}\| + \|N^{-1} \sum_{j=0}^{N-1} \left(g_{i_{0}} - U_{T} g_{i_{0}} \right) \circ T^{j}\|$$

$$\leq \varepsilon + \varepsilon$$

$$= 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we conclude that

$$\lim_{N \to \infty} N^{-1} \sum_{j=0}^{N-1} f \circ T^j = 0 = P_T f.$$

3. The key tool towards the Birkhoff Ergodic Theorem: maximal ergodic inequality

While the Mean Ergodic Theorem may seem quite close to the Birkhoff one, the pointwise almost everywhere convergence is indeed quite a bit more difficult to obtain. To appreciate this, recall that if a sequence of functions $\{f_n\}_{n\geq 1}$ converges in the sense of L^2 towards a limit f in L^2 , then it is not in general possible to conclude the convergence of the f_n to f almost everywhere. In fact, this is in general only possible for a subsequence of the $\{f_n\}_{n\geq 1}$. For comparison purposes, the convergence of the Fourier series of a function $f \in L^2(S^1)$ towards f in the L^2 -sense is quite elementary by comparison to the extremely difficult proof of almost everywhere convergence (due to L. Carleson 1966).

The key tool for the pointwise convergence is typically a so-called *maximal inequality*, which derives bounds not just for individual functions of an approximating sequence, but for the maximal function associated for such a sequence. What this means becomes clear in the following

Theorem 3.1. Let (X,m) a finite measure space, and $T: X \longrightarrow X$ measure preserving. For $g \in L^1(X,dm)$ a real-valued function, define

$$E_{\alpha} := \{ x \in X \mid \sup_{N \ge 1} \frac{1}{N} \sum_{j=0}^{N-1} g(T^{j}x) > \alpha \}.$$

Then the following estimate obtains:

$$\alpha \cdot m(E_{\alpha}) \le 3 \|g\|_{L^1(X,dm)}.$$

Remark 3.2. The key point in this inequality is of course the fact that we include the supremum over all N > 0 on the left. If we simply fixed a particular N > 0, then taking advantage of the elementary inequality

$$\left|\{g>\alpha\}\right|<\alpha^{-1}\cdot\left\|g\right\|_{L^{1}}$$

for a real valued function and $\alpha > 0$, we infer that

$$\left| \left\{ x \in X \mid \frac{1}{N} \sum_{j=0}^{N-1} g(T^{j}x) > \alpha \right\} \right| < \alpha^{-1} \cdot \left\| \frac{1}{N} \sum_{j=0}^{N-1} g(T^{j}x) \right\|_{L^{1}(X,dm)}$$

$$\leq \alpha^{-1} \cdot \left\| g \right\|_{L^{1}(X,dm)},$$

where the last inequality results from the fact that T is measure preserving

The proof of this theorem will follow Bourgain's strategy by taking advantage of a classical result in geometric measure theory, the *Vitali covering lemma*. In fact, we shall use this in a somewhat unusual way.

Here is an abstract version of the Vitali covering lemma in the context of a metric space:

Lemma 3.3. Let (X,d) be a metric space and let $\{B(a_i,r_i)\}_{i=1}^N$ a finite collection of closed balls. Then there is a disjoint subcollection of balls

 $\{B(a_{i_l}, r_{i_l})\}_{l=1}^K \subset \{B(a_i, r_i)\}_{i=1}^N$

such that

$$\bigcup_{i=1}^{N} B(a_i, r_i) \subset \bigcup_{l=1}^{K} B(a_{i_l}, 3r_{i_l}).$$

Proof. We may assume that $r_1 \geq r_2 \geq \ldots \geq r_N$. Then set

$$i_1 = 1$$
.

Proceeding inductively, if i_1, \ldots, i_k have been chosen, we continue as follows: either all $B(a_i, r_i)$ with $i > i_k$ intersect one of the $B(a_{i_l}, r_{i_l})$, $1 \le l \le k$, or else we pick $i_{k+1} > i_k$ minimal and such that

$$B(a_{i_{k+1}}, r_{i_{k+1}})$$

is disjoint from all the previously chosen balls. This process stops after finitely many steps, resulting in the $\{B(a_{i_l}, r_{i_l})\}_{l=1}^K$.

We claim that this collection of balls has the desired property. For let $B(a_i, r_i)$ be one of the original balls. If it is one of the chosen ones, it is clearly contained in the set

$$\bigcup_{l=1}^K B(a_{i_l}, 3r_{i_l}).$$

If it is not one of the chosen ones, then one of the $B(a_{i_l}, r_{i_l})$ with $i_l < i$ needs to intersect it. For if not, letting $\{i_1, \ldots, i_p\}$ be the chosen indices < i, then i would have been chosen at the p+1-th stage of the selection process.

Then assuming that

$$B(a_i, r_i) \cap B(a_i, r_i) \neq \emptyset, i_l < i,$$

then since $r_{i_l} \geq r_i$, we infer that

$$B(a_i, r_i) \subset B(a_{i_l}, 3r_{i_l}).$$