
ERGODIC THEOREMS

The ultimate goal of this lecture will be to provide a proof of the Birkhoff ergodic theorem, following the
approach via the maximal ergodic inequality initiated by J. Bourgain. To implement this approach we shall
also require the more elementary mean ergodic theorem due to Von Neumann, which is of interest in its own
right. Our presentation here is similar to the one in Einsiedler-Ward, Ergodic Theory.

1. The role of L2(X, dm).

Let
(
X,m

)
be a finite measure space, and consider the Hilbert space L2(X, dm). Let T : X −→ X a

measure preserving map, not necessarily ergodic. We can then consider the operator

UT f := f ◦ T.
Since T is measure preserving, this operator is an isometry, i. e.∥∥UT f∥∥2L2(X,dm)

=

∫
X

∣∣f ◦ T ∣∣2 dm =

∫
X

∣∣f ∣∣2 dm =
∥∥f∥∥2

L2(X,dm)

From now on, we shall simply write
∥∥ · ∥∥ instead of

∥∥ · ∥∥
L2(X,dm)

.

Our goal is to understand the averages

AN (f) := N−1
N−1∑
j=0

f
(
T jx

)
We observe that formally, we expect the limit of AN (f) as N →∞, to be invariant under T . This motivates
the introduction of the space

V := {g ∈ L2(X, dm), UT g = g}.
Since UT is a bounded, and hence continuous linear operator on L2(X, dm), the space V is a closed subspace.

Next, we introduce the space
W := {f − UT f, f ∈ L2(X, dm)},

i. e. the closure in L2(X, dm) of the sub space {f − UT f, f ∈ L2(X, dm)}. These two subspaces actually
complement each other, in the sense that

L2(X, dm) = V ⊕W.
This follows from

Lemma 1.1. We have that V = W⊥.

Proof. We first note that if g ∈ V , we have for any f ∈ L2(X, dm) that

〈g, f − UT f〉 = 〈g, f〉 − 〈g, UT f〉
= 〈g, f〉 − 〈UT g, UT f〉
= 〈g, f〉 − 〈g, f〉
= 0.

Since the space {f − UT f, f ∈ L2(X, dm)} is dense in W , this implies that V ⊂W⊥. Next, assume that

〈g, f − UT f〉 = 0∀f ∈ L2(X, dm).

This implies that
〈g − U∗T g, f〉 = 0∀f ∈ L2(X, dm),

which results in
g − U∗T g = 0.
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But then we have

0 =
∥∥g − U∗T g∥∥2

= 2
∥∥g∥∥2 − 2 Re 〈g, U∗T g〉

= 2
∥∥g∥∥2 − 2 Re 〈UT g, g〉

The equality case for the Cauchy-Schwarz inequality then implies that

UT g = g.

Hence W⊥ ⊂ V . �

2. The Mean Ergodic Theorem of Von Neumann

Here we prove the following result:

Theorem 2.1. As before let
(
X,m

)
be a finite measure space and T : X −→ X be measure preserving. Let

PT be the orthogonal projection onto the subspace V from the preceding section. The for any f ∈ L2(X, dm),
we have the limiting relation

lim
N→∞

N−1
N−1∑
j=0

f ◦ T j = PT f.

Thus the limit exists in L2(X, dm) and is invariant under T . In particular, if T is ergodic, we have the
relation

lim
N→∞

N−1
N−1∑
j=0

f ◦ T j =
1

m(X)

∫
X

f dm,

where the right hand side is a constant, and the limit is in the sense of L2(X, dm).

Proof. The preceding lemma implies that it suffices to verify the limiting relation for two cases: (i) f ∈ V ,
and (ii) f ∈W .

(i) f ∈ V . Here we have UT f = f and hence f ◦ T j = f , j ≥ 0. It follows that

N−1
N−1∑
j=0

f ◦ T j = f ∀N ≥ 1,

and so the claim is obvious.

(iI) f ∈W . First assume that f = g − UT g, g ∈ L2(X, dm). Then we compute

f ◦ T j = g ◦ T j − g ◦ T j+1, j ≥ 0.

This implies that we arrive at a telescoping sum

N−1
N−1∑
j=0

f ◦ T j = N−1
(
g − g ◦ T + g ◦ T − g ◦ T 2 + . . .+ g ◦ TN−1 − g ◦ TN

)
= N−1

(
g − g ◦ TN

)
.

But then we conclude that ∥∥∥N−1 N−1∑
j=0

f ◦ T j
∥∥∥ ≤ 2

N

∥∥g∥∥,
which converges toward 0. Moreover,

PT f = 0.
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More generally, assume that f ∈W . Then there is a sequence of gi ∈ L2(X, dm) such that∥∥f − (gi − UT gi)∥∥ −→ 0

as i→ +∞. Thus given ε > 0, there is some i0 such that∥∥f − (gi0 − UT gi0)∥∥ < ε.

Then pick N large enough such that ∥∥∥N−1 N−1∑
j=0

(
gi0 − UT gi0

)
◦ T j

∥∥∥ < ε.

Then we conclude that∥∥N−1 N−1∑
j=0

f ◦ T j
∥∥

≤
∥∥N−1 N−1∑

j=0

(
f − (gi0 − UT gi0)

)
◦ T j

∥∥+
∥∥∥N−1 N−1∑

j=0

(
gi0 − UT gi0

)
◦ T j

∥∥∥
≤ ε+ ε

= 2ε.

Since ε > 0 was arbitrary, we conclude that

lim
N→∞

N−1
N−1∑
j=0

f ◦ T j = 0 = PT f.

�

3. The key tool towards the Birkhoff Ergodic Theorem: maximal ergodic inequality

While the Mean Ergodic Theorem may seem quite close to the Birkhoff one, the pointwise almost every-
where convergence is indeed quite a bit more difficult to obtain. To appreciate this, recall that if a sequence
of functions {fn}n≥1 converges in the sense of L2 towards a limit f in L2, then it is not in general possible
to conclude the convergence of the fn to f almost everywhere. In fact, this is in general only possible for
a subsequence of the {fn}n≥1. For comparison purposes, the convergence of the Fourier series of a function
f ∈ L2(S1) towards f in the L2-sense is quite elementary by comparison to the extremely difficult proof of
almost everywhere convergence (due to L. Carleson 1966).

The key tool for the pointwise convergence is typically a so-called maximal inequality, which derives bounds
not just for individual functions of an approximating sequence, but for the maximal function associated for
such a sequence. What this means becomes clear in the following

Theorem 3.1. Let
(
X,m

)
a finite measure space, and T : X −→ X measure preserving. For g ∈ L1(X, dm)

a real-valued function, define

Eα := {x ∈ X | sup
N≥1

1

N

N−1∑
j=0

g
(
T jx

)
> α}.

Then the following estimate obtains:

α ·m
(
Eα
)
≤ 3
∥∥g∥∥

L1(X,dm)
.

Remark 3.2. The key point in this inequality is of course the fact that we include the supremum over all
N > 0 on the left. If we simply fixed a particular N > 0, then taking advantage of the elementary inequality∣∣{g > α}

∣∣ < α−1 ·
∥∥g∥∥

L1
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for a real valued function and α > 0, we infer that∣∣∣{x ∈ X | 1

N

N−1∑
j=0

g
(
T jx

)
> α}

∣∣∣ < α−1 ·
∥∥∥ 1

N

N−1∑
j=0

g
(
T jx

)∥∥∥
L1(X,dm)

≤ α−1 ·
∥∥g∥∥

L1(X,dm)
,

where the last inequality results from the fact that T is measure preserving.

The proof of this theorem will follow Bourgain’s strategy by taking advantage of a classical result in geo-
metric measure theory, the Vitali covering lemma. In fact, we shall use this in a somewhat unusual way.

Here is an abstract version of the Vitali covering lemma in the context of a metric space:

Lemma 3.3. Let
(
X, d

)
be a metric space and let {B(ai, ri)}Ni=1 a finite collection of closed balls. Then there

is a disjoint subcollection of balls
{B(ail , ril)}Kl=1 ⊂ {B(ai, ri)}Ni=1

such that
N⋃
i=1

B(ai, ri) ⊂
K⋃
l=1

B(ail , 3ril).

Proof. We may assume that r1 ≥ r2 ≥ . . . ≥ rN . Then set

i1 = 1.

Proceeding inductively, if i1, . . . , ik have been chosen, we continue as follows: either all B(ai, ri) with i > ik
intersect one of the B(ail , ril), 1 ≤ l ≤ k, or else we pick ik+1 > ik minimal and such that

B(aik+1
, rik+1

)

is disjoint from all the previously chosen balls. This process stops after finitely many steps, resulting in the
{B(ail , ril)}Kl=1.

We claim that this collection of balls has the desired property. For let B(ai, ri) be one of the original balls.
If it is one of the chosen ones, it is clearly contained in the set

K⋃
l=1

B(ail , 3ril).

If it is not one of the chosen ones, then one of the B(ail , ril) with il < i needs to intersect it. For if not, letting
{i1, . . . , ip} be the chosen indices < i, then i would have been chosen at the p + 1-th stage of the selection
process.
Then assuming that

B(ail , ril) ∩B(ai, ri) 6= ∅, il < i,

then since ril ≥ ri, we infer that

B(ai, ri) ⊂ B(ail , 3ril).

�


