
TRANSITIVITY IN DYNAMICAL SYSTEMS

1. A definition

In last lecture we studied the example of circle rotations φ : S1 −→ S1, which have the property that they
are either periodic (for α ∈ Q), or have orbits which are dense (for α ∈ R\Q). We shall soon study a more
complex map where orbits can be both periodic (with arbitrary given period) as well as dense (all for the
same map!).
This shall reveal that the existence of a dense orbit is often a delicate and non-obvious feature. The following
definition highlights the presence of a dense orbit for a map:

Definition 1.1. Assume
(
X, d

)
is a metric space, and let T : X → X a continuous map. Then the (discrete)

dynamical system
(
X,T

)
is said to be transitive, provided there exists an orbit

O+(x)

for some x ∈ X which is dense, i. e. such that

O+(x) = X.

The dynamical system
(
X,T

)
is called minimal, provided every orbit of T is dense.

Example 1: Every circle rotation with α ∈ R\Q is minimal. Every circle rotation with rational α is
non-transitive.

Example 2: If α ∈ Rn is such that
∑n
k=1 αk · jk /∈ Z for any j = (jk) ∈ Z\{0}, then the map

T (z) :=
(
e2πiαkzk

)n
k=1

: Tn −→ Tn

is transitive, and in effect minimal.

Example 3: We shall soon see that the ’doubling map’ z −→ z2 from S1 to itself is transitive but not
minimal.

Ona may also ask whether there are transitive maps on a non-compact domain, such as the plane. This
is indeed the case as an example by A. Besicovitch (1937) shows, but the construction is somewhat involved
(but excellent for a semester project!).

2. Birkhoff’s transitivity theorem

Assume that
(
X, d

)
is a metric space, and that T : X −→ X is transitive. Thus there is a trajectory O+(x)

which is dense in X, and hence ’hits’ every open set U ⊂ X. It may then be intuited that applying iterates
of T to an arbitrary open set U should result in sets Tn(U) which intersect any other open set V ⊂ X. It
turns out that this is indeed the case under a certain technical restriction on

(
X, d

)
, and that moreover the

opposite implication also holds (this is much more interesting than the first implication), under a different
and more subtle technical restriction on

(
X, d

)
.

Theorem 2.1. Assume
(
X, d

)
is a metric space and T : X −→ X is a continuous map.

(i) If (X, d) does not have an isolated point, and if T is transitive, then for every pair of non-empty open sets
U, V , there exists n ≥ 0 such that

Tn
(
U
)
∩ V 6= ∅.

(ii) If
(
X, d

)
is complete and has a countable basis of open sets, then if for every pair of nonempty open sets

U, V there is n ≥ 0 such that
Tn
(
U
)
∩ V 6= ∅,
1
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then T acts transitively. In fact, the set of points with dense orbit is dense.

Proof. (i) Assume that p ∈ X is such that its orbit is dense, O+(p) = X. Let U, V be nonempty open sets.
Then there is a k1 ≥ 0, which we may pick as small as possible, such that

T k1(p) ∈ V,
and since by assumption V 6= {T k1(p)}, and the set {T k1(p)} is closed, we have that

V \{T k1(p)}
is open and nonempty. Hence there is k2 > k1 minimal with the property that

T k2(p) ∈ V \{T k1(p)}.
Again by assumption we have V \{T k1(p)} 6= {T k2(p)}, and so the set

V \{T k1(p), T k2(p)}
is nonempty and open. Continuing inductively we find a sequence k1 < k2 < . . . < kn such that

T kn(p) ∈ V, n ≥ 1.

Further, by assumption there is l ≥ 0 such that T l(p) ∈ U . Then pick n∗ large enough such that kn∗ ≥ l.
Then we have

T kn∗−l
(
U
)
∩ V 6= ∅.

(ii) Let U, V be non empty open sets. By assumption, there is n ≥ 0 such that

Tn(U) ∩ V 6= ∅.
This in turn is equivalent to the fact that denoting the pre-images of V by

T−j(V ) := {x ∈ X |T j(x) ∈ V },
then

∪j≥0T−j(V ) ∩ U 6= ∅.
Since U is an arbitrary nonempty open set, this means that

∪j≥0T−j(V ) =: O−(V )

is dense in X, since we can set U = Bδ(x) for arbitrary x ∈ X and δ > 0.

Now let {Vj}j≥1 be a countable basis of open (nonempty) sets. This implies in particular that for every
open nonempty set V ⊂ X there is some Vj ⊂ V . As observed before each O−(Vj) is open and dense. Then
we invoke the famous

Theorem 2.2. (Baire category theorem) Let (X, d) be a complete metric space, and let Aj , j = 1, 2, . . . a
countable collection of closed sets such that ⋃

j

Aj

has non-empty interior. Then at least one of the Aj has non-empty interior.

We actually need the ’complemented version’ of this. Assume that Bj , j ≥ 1 is a countable collection
of open and dense sets. Then {Bcj}j≥1 is a collection of closed sets with empty interior. According to the
preceding theorem, this implies that ⋃

j

Bcj

has empty interior. Taking complements, we infer that⋂
j

Bj

is dense.
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Applying this observation with Bj = O−(Vj), we find that⋂
j

O−(Vj)

is dense. But if
x ∈

⋂
j

O−(Vj),

then its forward orbit is dense in X. In fact, given U ⊂ X open and non empty, there is

Vl ⊂ U
for some l, and since

x ∈ O−(Vl),

there is some k ≥ 0 with the property that
T k(x) ∈ Vl.

�

Remark 2.3. The conditions for (X, d) in (ii) are for example satisfied when X is a compact metric space.
Then completeness is clear, and for the countable base, it suffices to consider for each k ≥ 1 a covering of X
by the open balls

B 1
k

(x), x ∈ X.
By compactness, we can select a finite collection

B 1
k

(xkl), l = 1, 2, . . . , nk

which still covers X, and the collection

{B 1
k

(xkl), k = 1, 2, . . . , l = 1, 2, . . . , nk}

is countable and forms a basis.

For completeness’ sake, we also provide a proof of the Baire categorical theorem.

Proof. (Baire) Arguing buy contradiction, we assume that none of the Aj has non empty interior. Pick a ball

Bδ0(p0) ⊂
⋃
j≥1

Aj , δ0 > 0.

Then there is some p1 ∈ Bδ0(p0)\A1 since A1 has empty interior and in particular Bδ0(p0) * A1. By closedness

of A1, there is a δ1 <
δ0
2 and such that

Bδ1(p1) ⊂ Bδ0(p0)\A1.

Since Bδ1(p1) * A2, we can find p2, 0 < δ2 <
δ1
2 such that

Bδ2(p2) ⊂ Bδ1(p1)\A2.

Proceeding inductively, we construct a sequence pk, 0 < δk such that

Bδk(pk) ⊂ Bδk−1
(pk−1)\Ak, δk <

δk−1
2

.

This implies moreover that

Bδk(pk) ⊂
( ⋃
1≤j≤k

Aj
)c
,

and that the pk form a Cauchy sequence. By completeness this sequence converges to a limit p∗, and we have

p∗ ∈
⋂
k≥1

Bδk(pk) ⊂
( ⋃
1≤j<∞

Aj
)c
.

But at the same time we have
p∗ ∈ Bδ0(p0) ⊂

⋃
j≥1

Aj ,
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a contradiction. �

3. An interesting example of a transitive dynamical system; the doubling map of the circle

We consider now a map for which the orbits can be both periodic as well as dense. In fact, there is a
dense set of points giving rise to either type of orbit. This map is the innocuously looking doubling map
φ : S1 −→ S1 given by

φ(z) = z2.

As usual we can lift this to a map Φ : R −→ R given by

Φ(x) = 2x.

However, for later purposes, namely the remarkable identification with the shift map, it is better to use a
different lifting, which however agrees with Φ modulo Z, namely

Φ̂(x) =
{

2x, x ∈ [0, 12 )
2x− 1, x ∈ [ 12 , 1)

and continued periodically. The nice thing about Φ̂ is that it maps the fundamental domain [0, 1) into itself.

The action of Φ̂ is particularly neatly expressed in terms of binary expansions of points in [0, 1). In fact,
every x ∈ [0, 1) can be written in the form

x =
x1
2

+
x2
4

+ . . .+
xn
2n

+ . . . ,

where we make the assumption that there are always infinitely many non-zero digits, to make the represen-
tation unique. Then note that

Φ̂(x) =
x2
2

+ . . .+
xn

2n−1
+ . . . .

This means that if we identify [0, 1) with the set

F0 := {(xn)∞n=0, xn ∈ {0, 1}, infinitely many members non-zero},

then the map Φ̂ becomes the shift map σ : F0 −→ F0 defined by

σ
(
x1, x2, . . .

)
=
(
x2, x3, . . .

)
.

This identification shall be useful later on when establishing the existence of lots of dense orbits via the
Birkhoff transitivity theorem.

Here is the first remarkable result about the doubling map:

Theorem 3.1. (i) The set of points z ∈ S1 giving rise to a periodic orbit for φ is countable and dense.

(ii) The set of points z ∈ S1 with O+(z) = S1 is dense in S1.

Proof. (i) The orbit of z is periodic precisely if there is n ≥ 1 such that

φn(z) = z ⇐⇒ z2
n−1 = 1.

Thus z is gives rise to an orbit of period at most n precisely if z is a 2n − 1-th root of unity. These are of
course equally spaced on S1 for fixed n, and their union over all n ≥ 1 forms a dense set.

(ii) On account of the second part of the Birkhoff transitivity theorem, whose hypotheses are clearly
satisfied, it suffices to verify that for every pair of non-empty open sets U, V , there exists n ≥ 1 such that

φn(U) ∩ V 6= ∅.

For this the lifting Φ̂ and its interpretation as shift map come in handy. In fact, working on the covering R
and identifying U with an open set inside [0, 1), pick an interval

I = (
k

2l
,
k + 1

2l
] ⊂ U.
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Here 0 ≤ k < 2l − 1. Then we can write

k = x0 + x1 · 2 + . . .+ xl−1] · 2l−1,
for suitable xj ∈ {0, 1}. Then every number x inside I admits a binary expansion

x =
[xl−1

2
+ . . .+

x1
2l−1

+
x0
2l
]

+
yl+1

2l+1
+
yl+2

2l+2
+ . . . ,

where our assumption is again that an infinite number of the yj ∈ {0, 1} is non-zero. Keep in mind that the
yj can be varied freely, while the xj are held fixed.

Applying φ on S1 corresponds to applying Φ̂ on R, which in turn corresponds to the shift map for the sequence

of binary digits. Applying Φ̂ l times simply eliminates the first l entries and results in

Φ̂l(x) =
yl+1

21
+
yl+2

22
+ . . .

But the yl+j , j ≥ 1, can be chosen arbitrarily inside {0, 1} (up to infinitely many non-vanishing), and this
means that

{Φ̂l(x), x ∈ I} = [0, 1).

It follows that a fortiori we have
Φ̂l
(
U
)

= [0, 1).

In turn this implies that
φl(U) = S1,

which is of course much more than we need.
�


