
FIRST EXAMPLES OF DISCRETE DYNAMICAL SYSTEMS

We shall follow Zehnder’s ’Lectures on dynamical systems’ at first but include additional sources as the
course progresses. There will be lecture notes accompanying the course.

1. Introduction

The origins of the modern theory of dynamical systems can be traced back in part to the studies of solutions
of systems of ordinary differential equations at the end of the nineteenth century. Assume that

F : Rn −→ Rn

is a map in C1
(
Rn;Rn

)
. Given x0 ∈ Rn, we seek to describe the solution of the system of first order differential

equations

(1.1) ẋ(t) = F (x(t)), x(0) = x0,

where the function
x(·) : I −→ Rn

is defined at least on some open interval I 3 0. That the system (1.1) has at least a local solution
x ∈ C1

(
I;Rn

)
, which is unique on its interval of existence is well-known from the basic existence theory

of ODE.
In this course, the interest is directed toward the long-time qualitative behavior of the solutions. More specifi-
cally, we are interested in developing abstract tools, which may be useful to make progress towards this issue.

Assume that we know that solutions of (1.1) are known to exist a priori for all t ∈ R ( i. e. they are global
solutions). We can then set

x(1) = T (x0),

where again by basic local existence theory of ordinary differential equations the map T : Rn −→ Rn is
continuous and in fact a homeomorphism. To understand the long time behavior of x(t), it then makes sense
to understand the iterates

x(n) =
(
T ◦ T ◦ . . . ◦ T

)
(x0) =: Tn(x0).

In the first part of the course, we will do this in a much more abstract setting. Thus we shall consider
maps T : X −→ X, where X will be a set, which can be equipped with additional structures, namely either
topological, or measure theoretical, or both, and only later do we consider more refined structures, such as
differentiability, to infer deeper conclusions.
Our first task will be to understand some very basic generic phenomena by means of carefully chosen examples.

2. Abstract discrete dynamical systems

Let X be a (non-empty) set, and T : X −→ X a map. Given x ∈ X, we can define the images

x0 := T 0(x) := x, xj = T (xj−1) = T j(x), j ≥ 1.

The we make the

Definition 2.1. We call the sequence {T j(x)}j≥0 the parametrized orbit, and the set

O+(x) := ∪j≥0T j(x)

the un-parametrized orbit of x.
If T is bijective, so that T−1(y) is defined for all y ∈ X, we call {T−j(x)}j≥0 the parametrized negative orbit,
and

O−(x) := ∪j≥0T−j(x)

1
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the un-parametrized negative orbit. We then also call {T j(x)}j∈Z the full parametrized orbit, and analogously
for O(x).

A very particular situation is associated with

Definition 2.2. A point x is called periodic of period N ≥ 1 for T , provided we have

TN (x) = x, T j(x) 6= x, j ∈ {1, 2, . . . , N − 1}.

If x is a periodic point of period N for T , then clearly we have

O+(x) = {x, T (x), . . . , TN−1(x)}.

A very basic and not particularly interesting (from the point of view of dynamical systems) example is the
following:

Example 1: Let
(
X, d

)
be a complete metric space, and let T : X → X a contraction. Thus ∃a ∈ [0, 1)

such that

d
(
T (x), T (y)

)
≤ a · d

(
x, y
)
∀x, y ∈ X.

Then by the Banach fixed point theorem ∃!x∗ ∈ X such that T (x∗) = x∗; in fact, x∗ = limr→+∞ T r(x) for all
x ∈ X. This is the unique periodic point (of period N = 1) for T since if x = T k(x) for some k ≥ 1, then

x∗ = lim
l→+∞

T kl(x) = x.

A more interesting example in our present context, and which will accompany us through a portion of this
course, concerns rigid rotations of the circle.
Before we introduce this, we recall some basic facts from abstract topology, which will be useful in the sequel.
First

Definition 2.3. Let X,Y be topological spaces, and let π : X −→ Y a continuous map. Then (X,π) is called
a covering of Y , provided for every y ∈ Y , there exists an open neighborhood Uy ⊂ Y of y, such that

π−1
(
Uy
)

= ∪a∈AVa

where the {Va}a∈A form a disjoint collection of open sets in X, and π|Va
: Va → Uy is a homeomorphism.

Remark 2.4. For us Y will always be connected, in which case it can be shown that π is automatically
surjective and the cardinality of A does not depend on y ∈ Y .

Example: Consider the map π : R −→ T := S1 ↪→ C given by x −→ e2πix. This is a covering map. More
generally, the map π : Rn −→ Tn given by (x1, . . . , xn) −→ (e2πix1 , . . . , e2πixn) is a covering map.

In the sequel, we shall sometimes use the lifting property for such coverings. An abstract version is given
by the following

Theorem 2.5. Assume that X,Y,W are pathwise connected and locally pathwise connected, Further assume
W is simply connected. Then if

π : X −→ Y

is a covering map, w0 ∈W, y0 ∈ Y, x0 ∈ X are given with π(x0) = y0, and

f : W −→ Y, f(w0) = y0,

is a given continuous map, there is a unique ’lifting’

g : W −→ X

such that

π ◦ g = f, g(w0) = x0.



FIRST EXAMPLES OF DISCRETE DYNAMICAL SYSTEMS 3

Example: Let π : R −→ S1 be given by π(x) = e2πix. Then if f : S1 −→ S1 is a continuous map, and
x0, y0 ∈ R with f(e2πix0) = e2πiy0 , there is a unique continuous map

g : R −→ R
with the properties that

π ◦ g = f ◦ π, g(x0) = y0.

We now turn to the second abstract discrete dynamical system:

Example 2: Let S1 ↪→ C the unit circle, and let α ∈ R. Then we define the rotation map by angle α as
follows:

φ(z) := e2πiα · z, z ∈ S1.

Of course if z = e2πix, then φ(z) = e2πi(x+α). It follows that the map

Φ : R −→ R, Φ(x) = x+ α

is a lifting of the map φ, in the sense that φ ◦ π = π ◦ Φ.

The orbits in this second example are of fundamentally different character than in the first example. In
fact, depending on the character of α, one distinguishes between two types of scenarios:

Proposition 2.6. (i) Assume that α = p
q ∈ Q, with p ∈ Z, q ∈ N relatively prime. Then every orbit of φ is

periodic with period q.
(ii) If α ∈ R\Q is irrational, then every orbit of φ is dense:

O+(z) = S1 ∀z ∈ S1.

Proof. (i) Note that
(
e2piα

)l
= e2πil·

p
q 6= 1 for l = 1, 2, . . . , q − 1, while

(
e2piα

)q
= 1. This proves part (i).

(ii) Let x ∈ R, and consider the ’lifted’ orbit {Φn(x)}n≥0 = {x+nα}n≥0. We consider the ’reduction’ of these
mod 1, i. e. we consider their projection in R\Z ' [0, 1). Given ε = 1

N > 0, N � 1, divide [0, 1) into equal

intervals of length ε. Then amongst the points {Φn(x)}N≥n≥0, at least two, say Φj(x), Φk(x), N ≥ k > j ≥ 0,
fall into the same interval I. Hence

x+ jα = x+ kα+ cεmod 1

for some c with |c| ∈ (0, 1], whence (k − j)α = cεmod 1. This means that the point

φk−j(e2πix) = e2πi[(k−j)α+x]

on the circle S1 is at a distance of at most 2πε from the φ0(x). Furthermore, the points

φl(k−j)(e2πix), l = 1, 2, . . . ,

advance by steps of length 2πcε for a fixed c ∈ (0, 1], either clockwise or counter clockwise around the circle.
Thus given e2πix∗ ∈ S1, there is a l∗ ∈ N such that∣∣φl∗(k−j)(e2πix)− e2πix∗

∣∣ ≤ 2πε.

Since ε > 0 was arbitrary, the density of the orbit follows. �

3. More detailed considerations on the preceding examples; structural stability

Aside from the fact that the structure of the orbits of the preceding examples 1 and 2 is quite distinct,
they are also different in terms of their structural stability. By this we loosely mean that if we add a small

perturbation to the map T , replacing it by T̃ , then the orbit structure of T̃ is the same.
To see that this is the case for example 1, we can for example state the following immediate

Lemma 3.1. Let
(
X, d

)
be a complete metric space, and T : X → X a contraction. Then if T̃ : X → X is

close to T in the precise sense that∣∣d(T (x), T (y)
)
− d
(
T̃ (x), T̃ (y)

)∣∣ ≤ c · d(x, y)

for some c sufficiently small (depending on T ), then X̃ is also a contraction.
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Proof. It suffices to pick c < 1− λ, where λ ∈ [0, 1) is the contraction parameter for T . �

By contrast, circle rotations are structurally unstable, by the simple fact that any rational number is
arbitrarily well approximated by irrational numbers, and vice versa.

4. More detailed considerations on the preceding examples; equidistribution for circle
rotations

Let φ = φα be the circle rotation by angle α ∈ R\Q. We know that all its orbits are dense in S1, and it is
natural to ask more refined questions. For example, are there regions on S1 where ’more points of an orbit
accumulate asymptotically’ than other regions, depending on α?
A beautiful classical theorem of Weyl affirms that this is not the case, and that the points in each orbit are
equidistributed asymptotically, in a precise quantitative way. This result is important in particular since it
also foreshadows the deep Birkhoff ergodic theorem, covering vastly more general dynamical systems.

We shall rely on some basic facts from the theory of Fourier series on S1. In particular, we rely on Fejer’s
theorem, whose proof is contained in a supplementary document. We recall

Definition 4.1. Let f ∈ L1(S1). Then we define the Fourier coefficients f̂(n), n ∈ Z, by the formula

f̂(n) =

∫ 1

0

e−2πinxf(x) dx,

where we identify f with its periodic lifting on R. We denote the formal Fourier series associated to f by

Sf(x) :=
∑
n∈Z

e2πinx · f̂(n),

and the truncated Fourier series by

SNf(x) :=
∑
|n|≤N

e2πinx · f̂(n), N ≥ 0.

As far as convergence of Fourier series to a function are concerned, we have the following averaged version:

Theorem 4.2. (Fejer) Assume that f ∈ C0(S1). Then we have

lim
N→∞

1

N

N−1∑
j=0

Sjf(x) = f(x)

uniformly in x ∈ S1.

Remark 4.3. In general it is not true that

lim
N→∞

SNf(x) = f(x)

for every x ∈ S1 if we only require that f ∈ C0(S1).

With these preparations, we now state the following

Theorem 4.4. (Weyl) Let f be Riemann integrable on S1, and assume α ∈ R\Q. Then the relation

lim
N→+∞

1

N

N−1∑
j=0

f(φj(z)) =
1

2π

∫
S1

f(w) dσ ∀z ∈ S1

holds.

Proof. It suffices to work with the ’lift’ of f to R, meaning we think of f as a periodic function of f : R −→ R
which is periodic, of period 1. Moreover, the map φ is then given by φ(x) = x+ α, and the integral average
becomes ∫ 1

0

f(x) dx.
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The proof now proceeds in two steps:

Step 1: assume that f is a trigonometric polynomial. More specifically assume f(x) = e2πinx, n ∈ Z.

(1): n = 0. Here we obviously have

lim
N→+∞

1

N

N−1∑
j=0

f(φj(z)) = 1 =

∫ 1

0

f(x) dx.

(2): n ∈ Z\{0}. Here we evaluate the geometric series (for z ∈ R)

N−1∑
j=0

f(φj(z)) =

N−1∑
j=0

e2πin(jα+z) = e2πinz · e
2πiNnα − 1

e2πinα − 1
.

Since by assumption e2πinα 6= 1, and
∣∣e2πiNnα − 1

∣∣ ≤ 2, we infer that

lim
N→∞

1

N

N−1∑
j=0

f(φj(z)) = 0 =

∫ 1

0

f(x) dx.

By linear dependence of both the average as well as the integral on the function, it follows that the desired
identity also holds for trigonometric polynomials.

Step 2: assume that f is a general Riemann integrable function In particular, we assume that f is bounded.
Given ε > 0, we can find a partition P = {Ij}Nj=1 of [0, 1] such that we have

0 ≤ U
(
f,P

)
− L

(
f,P

)
< ε,

where

U
(
f,P

)
=

N∑
j=1

|Ij | · sup
t∈Ij

f(t), L
(
f,P

)
=

N∑
j=1

|Ij | · inf
t∈Ij

f(t)

Now we approximate the step function f+ := δ +
∑N
j=1 χIj · supt∈Ij f(t), where δ > 0 is a small parameter,

from above by a continuous function g+ and the step function f− := −δ +
∑N
j=1 χIj · inft∈Ij f(t) from below

by the continuous function g− such that we have

0 <

∫ 1

0

g+(x) dx−
∫ 1

0

g−(x) dx < 2ε,

and furthermore by construction we have

g+ − δ ≥ f ≥ g− + δ.

This can be arranged by choosing δ > 0 small enough. From Fejer’s theorem we know that there exist
trigonometric polynomials T1,2(x) such that∣∣g+(x)− T1(x)

∣∣ < δ,
∣∣g−(x)− T2(x)

∣∣ < δ ∀x ∈ [0, 1],

and furthermore

0 ≤
∫ 1

0

T1(x) dx−
∫ 1

0

T2(x) dx < 3ε.

Moreover, since T2(x) ≤ f(x) ≤ T1(x) for all x ∈ [0, 1], we have∫ 1

0

T2(x) dx ≤
∫ 1

0

f(x) dx ≤
∫ 1

0

T1(x) dx.

By step 1, we can pick M � 1 such that∣∣ 1

M

M−1∑
j=0

Tk(φj(x))−
∫ 1

0

Tk(x) dx
∣∣ < ε, k = 1, 2.
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Then we finally infer

−ε ≤ 1

M

M−1∑
j=0

T2(φj(x))−
∫ 1

0

T2(x) dx

≤ 1

M

M−1∑
j=0

f(φj(x))−
∫ 1

0

f(x) dx+ 3ε

≤ 1

M

M−1∑
j=0

T1(φj(x))−
∫ 1

0

T1(x) dx+ 6ε

≤ 7ε.

Thus we get

∣∣ 1

M

M−1∑
j=0

f(φj(x))−
∫ 1

0

f(x) dx
∣∣ ≤ 4ε.

Since ε > 0 was arbitrary, the claim follows. �

Corollary 4.5. Let I ⊂ S1 an open interval, and x ∈ S1. Then we have

lim
N→∞

1

N
·
∣∣∣{n ∈ {1, 2, . . . , N − 1} |x+ nα− bx+ nαc ∈ I} =

∣∣I∣∣.
Proof. Apply the preceding corollary to the characteristic function f = χI . �

Remark 4.6. The preceding theorem is false in general if f is only Lebesgue integrable. However, a far reaching
generalisation, namely the Birkhoff ergodic theorem, shows that the conclusion still holds for most orbits in
a suitable sense.

The essentially identical argument yields the following higher dimensional generalisation. Denote by Tn =
S1 × . . .× S1 the n-dimensional torus. The natural projection

π : Rn −→ Tn

is a covering map. For
(
α1, . . . , αn

)
∈ Rn, we let

φ : Tn −→ Tn

the ’rotation map’

z :=
(
z1, . . . , zn

)
∈ Tn −→ φ(z) :=

(
e2πiα1z1, . . . , e

2πiαnzn
)
.

Then the following holds:

Theorem 4.7. Let α :=
(
α1, . . . , αn

)
∈ Rn such that

n∑
k=1

αk · jk /∈ Z∀j =
(
j1, . . . , jn

)
∈ Zn\{0}.

Then if f : Tn → R is Riemann integrable (in the sense that its representation on [0, 1]n is Riemann integrable),
then the limiting relation (where z ∈ Tn is arbitrary)

lim
N→+∞

1

N

N−1∑
k=0

f
(
φk(z)

)
=

1

(2π)N
·
∫
Tn

f(w) dσ.

Corollary 4.8. Let α be as in the theorem. Then for any z ∈ Tn, the orbit {φ(z)}j≥0 is dense in Tn. More
precisely, if I ⊂ Tn is an open interval, i. e.

I = π
(
I1 × I2 × . . . In

)
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with Ij ⊂ [0, 1) open intervals, then

lim
N→+∞

1

N

N−1∑
k=0

χI

(
φk(z)

)
=
|I|
|Tn|


