
PROOF OF POINCARÉ-SIEGEL FOR THE SIEGEL CASE

We recall that our goal is to find a function h which is bi-holomorphic around z = 0 and such that

(0.1) h−1 ◦ f ◦ h = λ · z
for small enough |z|, where the holomorphic f is given by

f(z) = λ · z +

∞∑
k=2

akz
k,

and moreover λ = e2πiα with α ∈ R\Q a diophantine number. Assume that we can approximately solve this
equation so that

(0.2) h−1 ◦ f ◦ h = λ · z + u,

where u =
∑∞
k=2 bkz

k. Then we pick w so that

(0.3) w
(
λz
)
− λ · w(z) = u.

Since u vanishes quadratically at z = 0, given ε > 0 we can pick r > 0 such that

(0.4)
∣∣u′(z)∣∣ < ε, |z| < r.

Then we require precise pointwise control of w as well as w′ as in the following

Lemma 0.1. Assuming (0.4), and letting 0 < ρ ≤ r, 0 < 4 < 1, we have∣∣w(z)
∣∣ < ερ · C(c, d) · 4−d−1, |z| ≤ ρ · (1−4),∣∣w′(z)∣∣ < ε · C(c, d)

1−4
· 4−d−1, |z| ≤ r · (1−4).

Proof. We rely on Lemma 4.2 from Lecture 9. Thanks to assumption (0.4), as well as u(0) = 0, we infer that∣∣u(z)
∣∣ < ε · ρ, |z| ≤ ρ.

Then Lemma 4.2 implies that ∣∣w(z)
∣∣ < ε · ρ · C(c, d) · 4−d−1, |z| ≤ ρ(1−4).

This is the first estimate asserted by the lemma.
For the second bound, observe that if (0.3) holds, then we also have

zλw′
(
λz
)
− λ · zw′(z) =

(
(·) · w′(·)

)
(λz)− λ · zw′(z) = zu′

Again applying Lemma 4.2 we infer that∣∣z · w′(z)∣∣ ≤ ε · ρ · C(c, d) · 4−d−1, |z| ≤ ρ(1−4).

In particular, choosing |z| = ρ(1−4), we find∣∣w′(z)∣∣ ≤ ε · C(c, d)

1−4
· 4−d−1, |z| = ρ(1−4).

The right hand bound is independent of ρ, so this holds for any |z| ≤ r(1−4). �

Keeping in mind that our goal is to replace (0.2) by an improved version

(0.5)
(
id + w

)−1 ◦ h−1 ◦ f ◦ h ◦
(
id + w

)
= λ · z + u1,

we shall now have to establish two things

• Control the image of both
(
id + w

)−1
,
(
id + w

)
when restricted to small discs.
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• Establish a much improved bound for u1, and more precisely, that we essentially replace the smallness
ε for u as in (0.4) by ε2, at the expense of shrinking the disc a bit.

The following lemma takes care of the first point:

Lemma 0.2. Assuming the smallness conditions

C(c, d) · ε < 4d+2, 0 < 4 <
1

4

we have the properties (we use the shorthand Br := Br(0))(
id + w

)(
Br(1−44)

)
⊂ Br(1−34), Br(1−24) ⊂

(
id + w

)(
Br(1−4)

)
.

Here r is such that (0.4) holds.

Proof. Taking advantage of Lemma 0.1, we have for z ∈ Br(1−44)∣∣(id + w
)
(z)
∣∣ ≤ ∣∣z∣∣+

∣∣w(z)
∣∣ < r(1− 44) + εr · C(c, d) · 4−d−1 < r · (1− 34)

due to our assumption.
For the second part of the lemma, we recall Rouché’s theorem from complex analysis, which asserts for our
situation that if f, g are two holomorphic functions defined in the neighborhood of Br(1−4) and are such that∣∣g(z)

∣∣ < ∣∣f(z)
∣∣

for all z ∈ ∂Br(1−4), then the functions
f, f + g

have the same number of zeroes counted with multiplicity inside Br(1−4). Now pick an arbitrary

z0 ∈ Br(1−24)

and set
f = z − z0, g = w(z).

Then we have ∣∣f(z)
∣∣ ≥ r · 4, ∣∣g(z)

∣∣ < r · 4
by our assumption for any z ∈ ∂Br(1−4), and hence Rouché’s theorem applies. This means there is exactly
one z ∈ Br(1−4) with

z + w(z) = z0

for each z0 ∈ Br(1−24), proving the lemma. �

The preceding lemma allows us to make sense of(
id + w

)−1 ◦ h−1 ◦ f ◦ h ◦
(
id + w

)
=
(
id + w

)−1 ◦
(
λ · id + u

)
◦
(
id + w

)
Lemma 0.3. Assuming the bound (0.4) and further the smallness condition

ε · C(c, d) < 4d+2 · (1−4), 0 < ε < 4 <
1

5
,

the map (
id + w

)−1 ◦
(
λ · id + u

)
◦
(
id + w

)
: Br(1−44) −→ Br(1−4)

is defined and holomorphic.

Proof. From the preceding lemma we know that under the present assumptions, we have(
id + w

)(
Br(1−44)

)
⊂ Br(1−34).

Next, we have ∣∣∣(λ · id + u
)
(z)
∣∣∣ ≤ r(1− 34) + ε · r ≤ r(1− 24), z ∈ Br(1−34).

Again using the preceding lemma, the map(
id + w

)−1
: Br(1−24) −→ Br(1−4)
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is defined and holomorphic. Indeed, observe that id + w maps Br(1−4) injectively onto its open image
U ⊃ Br(1−24). To see this, observe that for z, z′ ∈ Br(1−4), we have∣∣w(z)− w(z′)

∣∣ =
∣∣(z − z′)∣∣ · ∣∣ ∫ 1

0

w′(tz + (1− t)z′) dt
∣∣

≤ 1

5
·
∣∣(z − z′)∣∣.

It follows that ∣∣(id + w)(z)− (id + w)(z′)
∣∣ ≥ 4

5
·
∣∣(z − z′)∣∣,

which implies the injectivity. The fact that there is a holomorphic inverse

(id + w)−1 : U −→ Br(1−4)

follows. �

We can then write (
id + w

)−1 ◦
(
λ · id + u

)
◦
(
id + w

)
= λ · z + u1,

and the linchpin is now to establish the following much improved estimate for u1:

Lemma 0.4. Under the same hypotheses as for the previous lemma and also assuming r ≤ 1, we have the
estimate ∣∣u′1(z)

∣∣ ≤ ε2 · 5C(c, d)

44d+2

provided z ∈ Br(1−54).

Note that we need to estimate the derivative u′1 since that was our starting point for u. Also, note that we
have the much smaller parameter ε2 here compared to ε before.

Proof. We write the equation defining u1 in the form(
id + w

)(
λ · z + u1

)
=
(
λ · id + u

)
◦
(
id + w

)
,

which can be written more explicitly as

λz + u1(z) + w
(
λ · z + u1

)
= λz + λ · w(z) + u

(
z + w(z)

)
We arrange this in the form of a fixed point equation for u1:

u1(z) = −w
(
λ · z + u1

)
+ λ · w(z) + u

(
z + w(z)

)
= −w

(
λz
)

+ λ · w(z) + u(z) +
[
w
(
λz
)
− w

(
λ · z + u1

)]
+
[
u
(
z + w(z)

)
− u(z)

]
The sum of the first three terms on the right vanishes thanks to our choice of w. We next estimate the terms
in parentheses at the end, for z ∈ Br(1−44). Note that by the preceding lemma, we have

λz + u1(z) ∈ Br(1−4)

for such z, and further any point on the straight line segment linking λz to λz + u1(z) is in Br(1−4). We
conclude that ∣∣∣w(λz)− w(λ · z + u1

)∣∣∣ =
∣∣∣ ∫ 1

0

w′
(
λ · z + t · u1

)
· u1(z) dt

∣∣∣
≤
∣∣u1(z)

∣∣ · ε · C(c, d)

1−4
· 4−d−1,

where we have taken advantage of Lemma 0.1. Our assumptions then imply that the preceding can be bounded
by ∣∣u1(z)

∣∣ · ε · C(c, d)

1−4
· 4−d−1 ≤

∣∣u1(z)
∣∣

5
.
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We further have the estimate∣∣∣u(z + w(z)
)
− u(z)

∣∣∣ ≤ ∣∣w(z)
∣∣ · ∫ 1

0

∣∣u′(z + tw(z)
)∣∣ dt

≤ εr · C(c, d) · 4−d−1 · ε.
Here we have again used Lemma 0.1. Also recalling the assumption r ≤ 1, we then find∣∣u1(z)

∣∣ ≤ 5

4
· C(c, d) · 4−d−1 · ε2, z ∈ Br(1−44).

Invoking the Cauchy formula, we can infer a derivative bound from this at the expense of shrinking the domain
to Br(1−54): ∣∣u′1(z)

∣∣ ≤ 5

4
· C(c, d) · 4−d−2 · ε2, z ∈ Br(1−54).

�

Let us summarise what we have achieved thus far: starting from the assumption (0.4) and the relation
(0.2), we have constructed a slightly modified

h̃ = h ◦
(
id + w

)
,

such that on the slightly smaller disc
Br(1−54)

for some 0 < 4 < 1
5 , we have the relation

h̃−1 ◦ f ◦ h̃ = λz + u1,

where now u1 satisfies the estimate stated in the preceding lemma. This estimate is much sharper than the
one for u′, provided ε is small enough in relation to 4.

But now we can re-start the whole process, with r replaced by r(1− 54) and u replaced by u1. We then
simply need to choose the parameters suitably that the whole process converges (very rapidly!) to the desired
conjugation map. For this, we make the following choices:

rn =
r

2
·
(
1 + 2−n

)
(0.6)

where r ≤ 1 is chosen as in (0.4) with ε = ε0 sufficiently small, as determined below. Next, we set

(0.7) 4n =
1

10(2n + 1)
, n ≥ 1,

which implies that

rn+1

rn
=

1 + 2−n−1

1 + 2−n
= 1− 2−n−1

1 + 2−n
= 1− 54n.

Now assuming that ∣∣u′n∣∣ < εn

on Brn with n ≥ 1, then we get from the preceding lemma and the corresponding choice of wn that∣∣u′n+1(z)
∣∣ ≤ ε2

n ·
5C(c, d)

44d+2
n

≤ C1(c, d) ·
(
2n + 1

)d+2 · ε2
n, z ∈ Brn+1(0).

Thus we can set
εn+1 = C1(c, d) ·

(
2n + 1

)d+2 · ε2
n.

It follows that if we introduce the new sequence

γn := C2(c, d) ·
(
2n + 1

)d+2 · εn,
where C2 is chosen so that

C2 = M · (C1 + 1) · 2d+2,



PROOF OF POINCARÉ-SIEGEL FOR THE SIEGEL CASE 5

with M ≥ 1 a large enough constant which we will chosen below, then we find that

γn+1 = C1(c, d) ·
(
2n + 1

)d+2 ·
(
2n+1 + 1

)d+2 · C2 · ε2
n

= C−1
2 · C1(c, d) ·

(
2n+1 + 1

)d+2(
2n + 1

)d+2
· γ2
n

≤ γ2
n.

In particular if we pick the smallness constant ε0 such that

(0.8) C2(c, d) ·
(
20 + 1

)d+2 · ε0 <
1

2
,

then the γn and a fortiori the εn will converge faster than exponentially toward zero. Specifically, we obtain
that

(0.9)
∣∣γn∣∣ ≤ 2−2n

,
∣∣εn∣∣ ≤ C−1

2 · 2−2n(
2n + 1

)−d−2 ≤M−1 · 2−2n(
2n + 1

)−d−2
.

We observe that if M is chosen sufficiently large, then the smallness condition of Lemma 0.3 is automatically
satisfied for 4n, ε, n ≥ 0. From Lemma 0.1 we deduce that∣∣wn(z)

∣∣ ≤ C3 · Cn4 · 2−2n

for z ∈ Brn+1(0) and suitable constants C3,4.
The conjugating map h which achieves

h−1 ◦ f ◦ h(z) = λ · z
on B r

2
(0) is then given by

h = lim
n→∞

(
id + w1

)
◦
(
id + w2

)
◦ . . . ◦

(
id + wn

)
That this indeed converges on B r

2
(0) follows by observing that (using Lemma 0.2)(

id + w1

)
◦
(
id + w2

)
◦ . . . ◦

(
id + wn

)∣∣∣
Brn+1

(0)
: Brn+1

(0) −→ Br(0)(0.10)

But then calling
hn :=

(
id + w1

)
◦
(
id + w2

)
◦ . . . ◦

(
id + wn

)
,

we infer that ∣∣hn+1 − hn
∣∣(z) =

∣∣hn ◦ (id + wn+1

)
(z)− hn(z)

∣∣
≤
∣∣wn+1(z)

∣∣ · sup
z′∈Brn+1·(1−34n+1)

∣∣h′n(z′)
∣∣,

provided z ∈ B r
2
⊂ Brn+2

. But then using the Cauchy integral formula we deduce that

sup
z′∈Brn+1·(1−34n+1)

∣∣h′n(z′)
∣∣ ≤ C(r, d) · 4−1

n+1 ≤ C(r, d) ·Dn,

for suitable constants C(r, d), D. Thanks to the rapid decrease of the wn, we then deduce that∣∣hn+1 − hn
∣∣(z) ≤ 2−( 3

2 )n , z ∈ B r
2
(0),

for large enough n, which implies the convergence of the hn on B r
2
(0).

Since
h−1
n ◦ f ◦ hn = λ · z + un, z ∈ B r

2
(0)

by construction and |un| → 0 rapidly there, we obtain that

h−1 ◦ f ◦ h(z) = λ · z, z ∈ B r
2
(0),

as desired.


