
CONVERGENCE OF FOURIER SERIES.

The material in the lecture is based on the book by Muscalu and Schlag (Vol I).

1. Introduction

Let f(x) be a continuous function on the unit circle S1 = R/Z. To such a function, we can associate its
Fourier coefficients:

f̂(n) =

∫ 1

0

f(x)e−2πinx dx, n ∈ Z.

For example, assume that f(x) is of the form of a trigonometric polynomial, meaning

f(x) =

m∑
|n|=0

ane
2πinx.

Then using the crucial orthogonality relations∫ 1

0

e2πi(n−m)x dx = δnm, n,m ∈ Z,

we find that

f̂(n) = an,

and so we have that the corresponding Fourier series, given formally by∑
n∈Z

f̂(n)e2πinx,

in this case co-incides with f .

However, the Fourier series can be associated to much more general functions. In fact, we make

Definition 1.1. Given any L1-function on S1, we define its Fourier series to be given by the formal series∑
n∈Z

f̂(n)e2πinx, f̂(n) =

∫ 1

0

f(x)e−2πinx dx.

More generally, if µ is a measure on S1, we define its Fourier series correspondingly:∑
n∈Z

µ̂(n)e2πinx, µ̂(n) =

∫ 1

0

e−2πinx dµ.

It is then a very natural and extremely important question how to recover a function f (or measure µ) from
its Fourier series. In particular, does the Fourier series converge to the function (or measure) in a suitable
sense? Put more succinctly, one may ask in what sense the sequence of partial Fourier sums

SNf(x) :=
∑
|n|≤N

f̂(n)e2πinx, N ∈ Z.

converges toward f(x) as N → +∞.

When taken in the most literal, pointwise, sense, this is a hard question which was only fully settled in the
1960s!
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2. Convolution

Working with Fourier series naturally leads to the convolution operation of two functions. We generally
define

Definition 2.1. Given f, g ∈ L1(S1), we define

(f ∗ g)(x) :=

∫
S1

f(x− y)g(y) dy

This is an L1-function via Fubini’s theorem:

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1

In particular, L1(S1) becomes an algebra under this operation.

It is then natural to investigate the relation between Fourier coefficients and convolutions. We have

Lemma 2.2. Let f, g ∈ L1(S1). Then

f̂ ∗ g(n) = f̂(n)ĝ(n)∀n ∈ Z.

Proof. This is again an elementary consequence of Fubini’s theorem: we have

f̂ ∗ g(n) =

∫ 1

0

e−2πinx
( ∫ 1

0

f(x− y)g(y) dy
)
dx

=

∫ 1

0

∫ 1

0

e−2πin(x−y)f(x− y)e−2πinyg(y) dy dx

=
( ∫ 1

0

f(x)e−2πinx dx
)( ∫ 1

0

g(y)e−2πiny dy
)

�

At this point it is natural to enquire whether multiplication on the level of f, g (provided this is well-defined)
translates into convolution for the Fourier coefficients, provided this is suitable defined.
In fact, such a statement can be made rigorous, if one restricts f, g to a suitable sub space of the continuous
functions C0(S1).

Definition 2.3. One defines the Wiener algebra A(S1) to consist of all functions f ∈ C0(S1) with the property
that ∑

n∈Z
|f̂(n)| <∞

We shall see later that the functions with this property form an algebra, and that if f, g ∈ A(S1), then
indeed we have

(2.1) f̂g(n) =
∑
m∈Z

f̂(m)ĝ(n−m), ∀n ∈ Z.

3. The Dirichlet kernel

We now come back the question of convergence of the Fourier series. Thus consider the partial Fourier sum∑
|n|≤N

f̂(n)e2πinx =
∑
|n|≤N

∫ 1

0

e2πin(x−y)f(y) dy

=

∫ 1

0

e−2πiN(x−y) e
2πi(2N+1)(x−y) − 1

e2πi(x−y) − 1
f(y) dy

=

∫ 1

0

sin[(2N + 1)π(x− y)]

sin[π(x− y)]
f(y) dy

= DN ∗ f(x)
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Here DN is the so-called Dirichlet kernel, given by

DN (x) =
sin[(2N + 1)πx]

sin[πx]
.

Observe that this kernel gets larger and larger at the origin, the larger N gets. On the other hand, due to
its highly oscillatory behavior, its integral is equal to 1:∫ 1

0

DN (x) dx =

∫ 1

0

( ∑
|n|≤N

e2πinx
)
dx = 1.

The question of convergence of the partial Fourier series can thus be re-phrased as to whether

lim
N→∞

DN ∗ f(x) = f(x)

in the pointwise sense, say. Unfortunately, due to the highly singular behavior of the Dirichlet kernel, this is
in general not true, even for continuous functions! Nonetheless, imposing a bit of regularity on f , it will be
possible to show convergence.

4. Convergence of the Fourier series for Holder continuous functions

Let us first introduce the class of Holder continuous functions on S1:

Definition 4.1. Let α ∈ (0, 1). We say that f ∈ Cα(S1), provided

[f ]α := sup
x,y∈[0,1]

|f(x)− f(y)|
|x− y|α

<∞

Thus we introduce a little extra regularity over the mere requirement of continuity in this definition. It
turns out that this already suffices to conclude convergence of the partial Fourier sums to the original function:

Theorem 4.2. Let f ∈ Cα(S1). Then we have

lim
N→∞

SNf(x) = lim
N→∞

(DN ∗ f)(x) = f(x)∀x ∈ S1.

Proof. To begin with, write

SNf(x)− f(x) =

∫ 1

0

[f(x− y)− f(x)]DN (y) dy

The strategy now is to split this integral into two: when |y| is very small, then DN (y) gets large (in the
L∞-sense), but we gain from the additional Holder regularity of f . On the other hand, if y is not too small,
we take advantage of the rapid oscillations of DN (y) to effectively carry out an integration by parts, which
also gains smallness.
Specifically, write ∫ 1

0

[f(x− y)− f(x)]DN (y) dy =

∫ 1
2

− 1
2

[f(x− y)− f(x)]DN (y) dy

=

∫
|y|≤δ

[f(x− y)− f(x)]DN (y) dy

+

∫
1
2>|y|>δ

[f(x− y)− f(x)]DN (y) dy

:= A+B.

Here we will pick δ at the end small in a way depending on N .

The estimate for A. We get

|A| ≤ [f ]α

∫
|y|<δ

yα|DN (y)| dy ≤ C[f ]α

∫
|y|<δ

yα−1 dy ≤ Cα[f ]αδ
α
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The estimate for B. Here we write

B =

∫
1
2>|y|>δ

[f(x− y)− f(x)]DN (y) dy =

∫
1
2>|y|>δ

hx(y) sin[(2N + 1)πy] dy

= −
∫

1
2>|y|>δ

hx(y) sin[(2N + 1)π(y +
1

2N + 1
)] dy

where we have introduced the notation

hx(y) =
f(x− y)− f(x)

sin(πy)

Observe that the second integral expression above can also be written as

−
∫

1
2>|z−

1
2N+1 |>δ

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz

= −
∫

1
2>|z|>δ

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz

+

∫
[δ,δ+ 1

2N+1 ]

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz

−
∫
[−δ,−δ+ 1

2N+1 ]

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz

Then we add all these terms to infer

2B =

∫
1
2>|y|>δ

[hx(y)− hx(y − 1

2N + 1
)] sin[(2N + 1)πy] dy

+

∫
[δ,δ+ 1

2N+1 ]

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz

−
∫
[−δ,−δ+ 1

2N+1 ]

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz.

Now we estimate each of these terms separately: first, using

|hx(y)− hx(z)| ≤ C|y|−1|y − z|α[f ]α + C(min{y, z})−2|y − z|‖f‖L∞ ,

we get (assuming δ � N−1)

|hx(y)− hx(y − 1

2N + 1
)| ≤ C[f ]αδ

−1N−α + C‖f‖L∞δ−2N−1

and so using the trivial bound for the integral∣∣ ∫
1
2>|y|>δ

[hx(y)− hx(y − 1

2N + 1
)] sin[(2N + 1)πy] dy

∣∣
≤ C[f ]αδ

−1N−α + C‖f‖L∞δ−2N−1

For the remaining two integrals above, we use

|hx(z − 1

2N + 1
)| ≤ Cδ−1‖f‖L∞
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provided |z| > δ � N−1, and so∣∣ ∫
[δ,δ+ 1

2N+1 ]

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz

∣∣
+
∣∣ ∫

[−δ,−δ+ 1
2N+1 ]

hx(z − 1

2N + 1
) sin[(2N + 1)πz] dz

∣∣
≤ Cδ−1N−1‖f‖L∞

In summary, one obtains

B ≤ C(f, α)[δ−1N−α + δ−2N−1]

Finally, making the choice δ = N−
α
3 , say, we get

A+B ≤ C(f, α)[N−
α2

3 +N−
2
3α +N−1+

2α
3 ]

and so we indeed conclude that in the limit N →∞ we get

lim
N→∞

[SNf(x)− f(x)] = 0∀x ∈ S1.

�

5. Convergence results for C0(S1); the Fejer kernel

It turns out that the preceding convergence result very much fails if extended to all of C0(S1). In fact,
one can construct continuous functions whose Fourier series diverges on a prescribed set of measure zero (but
this is non-elementary). In fact, a priori it is not even clear how to re-construct f in pointwise fashion from

its Fourier coefficients f̂(n). However there is a beautiful result due to Fejer which asserts that indeed one
can re-cover f ∈ C0(S1) from its Fourier coefficients, provided one averages over the partial Fourier sums.

Specifically, given f ∈ C0(S1), introduce the Cesaro means

σNf(x) :=
1

N

N−1∑
n=0

Snf(x)

Recalling the definition of Sn, we can also spell this out as follows:

σNf(x) =
1

N

N−1∑
n=0

∫ 1

0

(
∑
|k|≤n

e2πik(x−y))f(y) dy

=
1

N

∫ 1

0

[

N−1∑
|n|=0

(N − |n|)e2πin(x−y)]f(y) dy

Now the kernel function KN (x) := 1
N

∑N−1
|n|=0(N − |n|)e2πinx has the remarkable property that it can be

expressed as a perfect square:

N−1∑
|n|=0

(N − |n|)e2πinx =
[
e2πi

N−1
2 x + e2πi

N−3
2 x + . . .+ e−2πi

N−1
2 x
]2

=
[
e−πi(N−1)x

e2πiNx − 1

e2πix − 1

]2
=
[ sin(πNx)

sin(πx)

]2
,

and so KN (x) = 1
N

[ sin(πNx)
sin(πx)

]2
. It is the positivity which renders the Fejer kernel so much more useful than

the Dirichlet kernel. In fact, the family {KN}N≥1 forms an approximate identity:

Definition 5.1. A family of functions {ΦN (x)}N≥1 ⊂ L∞(S1) is called an approximate identity, provided
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•
∫ 1

0
ΦN (x) dx = 1.

• supN
∫ 1

0
|ΦN (x)| dx <∞.

• For any δ > 0, we have

lim
N→∞

∫
|x|>δ

|ΦN (x)| dx = 0.

Observe that since KN (x) := 1
N

∑N−1
|n|=0(N − |n|)e2πinx we have

∫ 1

0
KN (x) dx = 1, and since KN (x) ≥ 0

the second condition is immediate from the first. Finally, since

|KN (x) ≤ CN−1|x|−2,

the last condition is also fulfilled. Finally, we state

Proposition 5.2. Let {ΦN (x)}N≥1 be an approximate identity on S1. Then for any f ∈ C0(S1), we have

lim
N→∞

(ΦN ∗ f)(x) = f(x).

In particular, we can infer

Corollary 5.3. For any f ∈ C0(S1), we have

lim
N→∞

(KN ∗ f)(x) = f(x)∀x ∈ S1.

Proof. (Proposition) Put supN
∫ 1

0
|ΦN (x)| dx = M < ∞. Pick x ∈ S1. Also, fix ε > 0. By continuity of f ,

there exists δ > 0 such that |f(x)− f(y)| < ε
2M if |x− y| < δ. Then write

(ΦN ∗ f)(x)− f(x) =

∫ 1

0

ΦN (x− y)f(y) dy − f(x)

=

∫ 1

0

ΦN (x− y)[f(y)− f(x)] dy

=

∫
|x−y|<δ

ΦN (x− y)[f(y)− f(x)] dy

+

∫
|x−y|≥δ

ΦN (x− y)[f(y)− f(x)] dy

=: A+B.

Then we get

|A| ≤ ε

2M
sup
N

∫ 1

0

|ΦN (x)| dx < ε

2

uniformly in N . Moreover, for N large enough, we have

|B| ≤ 2‖f‖L∞
∫
|x|>δ

|ΦN (x)| dx < ε

2
.

It follows that for N large enough, we have

|(ΦN ∗ f)(x)− f(x)| < ε.

�

Note that the preceding proof shows that in ΦN ∗ f converges in fact uniformly toward f as N →∞.
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6. A property of A(S1).

Here we check the identity (2.1) and hence that A(S1) is indeed an algebra. First, assume that f is a
trigonometric polynomial, thus

f(x) =
∑
|k|≤n

ake
2πikx, ak ∈ C.

Then if g ∈ A(S1) we get

f̂g(m) =

∫ 1

0

( ∑
|k|≤n

ake
2πikx

)
g(x)e−2πimx dx =

∑
|k|≤n

ak

∫ 1

0

g(x))e−2πi(m−k)x dx =
∑
k

f̂(k)ĝ(m− k)

Next, for f, g ∈ A(S1) arbitrary, we have that KN ∗ f is a trigonometric polynomial, and so (writing F for
the Fourier transform and using Lemma 2.2 as well as the definition of KN )

F
(
[KN ∗ f ]g

)
(n) =

∑
k

(1− |k|
N

)+f̂(k)ĝ(n− k)

Letting N →∞ and using the dominated convergence theorem, we get

f̂g(n) =
∑
k

f̂(k)ĝ(n− k)

Moreover, since ∑
n

|f̂g(n)| ≤ |
∑
k

f̂(k)ĝ(n− k)| ≤ (
∑
k

|f̂(k)|)(
∑
n

|ĝ(n)|) <∞,

we see fg ∈ A(S1).


