CONVERGENCE OF FOURIER SERIES.

The material in the lecture is based on the book by Muscalu and Schlag (Vol I).

1. INTRODUCTION

Let f(z) be a continuous function on the unit circle S' = R/Z. To such a function, we can associate its
Fourier coefficients:

1
fln) = /o f(z)e ™" g n € Z.

For example, assume that f(x) is of the form of a trigonometric polynomial, meaning

f(LL') _ i aneQﬂ'inz.

|n|=0
Then using the crucial orthogonality relations

1
/ 2= dy — 5, MM € Z,
0

we find that
f(n) = an,
and so we have that the corresponding Fourier series, given formally by
Z f(n)e%\'inx’
nez

in this case co-incides with f.

However, the Fourier series can be associated to much more general functions. In fact, we make

Definition 1.1. Given any L'-function on S, we define its Fourier series to be given by the formal series
1

S Fmene, fu) = [ e o

neZ 0

More generally, if ju is a measure on S*, we define its Fourier series correspondingly:
1

Zﬂ(n>62m‘mc7 ﬁ(n) _ / e—2m’nx dﬂ~

nez 0

It is then a very natural and extremely important question how to recover a function f (or measure p) from
its Fourier series. In particular, does the Fourier series converge to the function (or measure) in a suitable
sense? Put more succinctly, one may ask in what sense the sequence of partial Fourier sums

Snf(x):= Z f(n)ezmm7 N e Z.

[n|<N

converges toward f(z) as N — 4o0.

When taken in the most literal, pointwise, sense, this is a hard question which was only fully settled in the
1960s!
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2. CONVOLUTION

Working with Fourier series naturally leads to the convolution operation of two functions. We generally
define

Definition 2.1. Given f,g € L*(S'), we define

(F=9)e) = [ fla= oy
This is an L'-function via Fubini’s theorem:

1f*gllee < I flleellgller

In particular, L*(S') becomes an algebra under this operation.
It is then natural to investigate the relation between Fourier coefficients and convolutions. We have

Lemma 2.2. Let f,g € L*(S'). Then

—

F+g(n) = f(n)j(n)Vn € Z.

Proof. This is again an elementary consequence of Fubini’s theorem: we have
1 1
s = [ ([ ste = notw) dy) ds
0 0
1 1 _ _
_ / / 6727rzn(zfy)f(x _ y)6727rmyg(y) dy dz
o Jo

- (/Olf(:c)e—Q’“”’” da:)(/olg(y)e‘my dy)
O

At this point it is natural to enquire whether multiplication on the level of f, g (provided this is well-defined)
translates into convolution for the Fourier coefficients, provided this is suitable defined.

In fact, such a statement can be made rigorous, if one restricts f, g to a suitable sub space of the continuous
functions C°(S1).

Definition 2.3. One defines the Wiener algebra A(S*) to consist of all functions f € C°(S') with the property
that R

Do)l < oo

nez

We shall see later that the functions with this property form an algebra, and that if f,g € A(S!), then
indeed we have

(2.1) f;](n) = Z F(m)g(n —m), ¥n € Z.

mEeEZ
3. THE DIRICHLET KERNEL
We now come back the question of convergence of the Fourier series. Thus consider the partial Fourier sum

Z f(n)€27rinz _ Z ' e27rin(z7y)f(y) dy
)

In|]<N In|<N 7
1 2wi(2N+1)(z—
_ / e—QﬂiN(a:—y) e?mil @) —1
0

T e fy)dy

= fly)dy

/1 sin[(2N + D)w(z — y)]
0 sin[m(z —y)]
=Dy = f(z)
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Here Dy is the so-called Dirichlet kernel, given by
sin[(2N + 1)mx
sin[mx]

Observe that this kernel gets larger and larger at the origin, the larger N gets. On the other hand, due to
its highly oscillatory behavior, its integral is equal to 1:

/OIDN(x)dx:/Ol( > ) de =1,

[n|<N

The question of convergence of the partial Fourier series can thus be re-phrased as to whether
lim Dy * f(z) = f(x)
N —o0

in the pointwise sense, say. Unfortunately, due to the highly singular behavior of the Dirichlet kernel, this is
in general not true, even for continuous functions! Nonetheless, imposing a bit of reqularity on f, it will be
possible to show convergence.

4. CONVERGENCE OF THE FOURIER SERIES FOR HOLDER CONTINUOUS FUNCTIONS
Let us first introduce the class of Holder continuous functions on S!:
Definition 4.1. Let o € (0,1). We say that f € C*(S'), provided

fx) — fly
e wp EZIOL
z,y€[0,1] \x - y|
Thus we introduce a little extra regularity over the mere requirement of continuity in this definition. It
turns out that this already suffices to conclude convergence of the partial Fourier sums to the original function:

Theorem 4.2. Let f € C*(S'). Then we have

Jim Sy f(x) = Jim (Dy * f)(x) = f(x) ¥z € 5.

Proof. To begin with, write

S f(z) — f(z) = / (@ —y) — f(@)|Dx(y) dy

The strategy now is to split this integral into two: when |y| is very small, then Dy (y) gets large (in the
L*°-sense), but we gain from the additional Holder regularity of f. On the other hand, if y is not too small,
we take advantage of the rapid oscillations of Dy (y) to effectively carry out an integration by parts, which
also gains smallness.

Specifically, write

1

/0 [F@ — ) — f(@)]Dx(y) dy = / “ @ —y) - f@)Dxly) dy

[N

[f(z —y) — f(=)|Dn(y) dy

Il
—

|

s -9 - @Dt dy
>ly|>6

=A+B.

Here we will pick é at the end small in a way depending on N.

y|<s

The estimate for A. We get

1A] < [fla /| VD@l = Ol / YV dy < Colflad®
Yy

lyl<o
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The estimate for B. Here we write

B = /é>|y>5[f(ﬂfy)f(x)]DN(y) dy = / oy @ ICN + Dl dy

1

v 1) W

= —[> . he(y)sin[(2N + D7 (y +

where we have introduced the notation

flz—y) — f(z)

haly) = sin(my)

Observe that the second integral expression above can also be written as

1
- hy(z — ————)sin[(2N + 1)7z] dz
‘/§>|Z_2Nl+1|>‘S 2N +1

1
=— hy(z — ————)sin[(2N + 1)7z] dz
/;>|z|>5 2N +1

1 .
+/ ) hy(z — m) sin[(2N + 1)wz] dz
[6:0+ 575 77]

— hy(z — sin[(2N + 1)wz|dz
/MHM (= = g7 Snl(2N + s

Then we add all these terms to infer

1 .
2B — / ypoglie®) — by = sl sinl(2N + Dymy]dy
+

)sin[(2N + 1)wz] dz

1
ho(z = s
/[57“ NSy

2N+1

1
— hy(z — ———)sin|[(2N + 1 dz.
/[_6,_64_21\,1“] (2 SN 1 )sin[(2N + 1)wz] dz

Now we estimate each of these terms separately: first, using
|he(y) = ho(2)] < Clyl ™y — 2|%[f]a + C(min{y, 23) "2[y — 2[[| fl| 1=

we get (assuming 6 > N 1)

1

. < —1aT—o 52Nt
7)) < Clflad™ N+ Ol =6 2N

|hw (y) — hy (y

and so using the trivial bound for the integral

1 .
| /;>|y>a““(y) = haly = gy 1sinl@N + Dmy) dy|
< Olf]ad IN" 4+ O| fllp=6"2N""

For the remaining two integrals above, we use

1

Iha(z = o377

< CoMIf |l




CONVERGENCE OF FOURIER SERIES. 5
provided |z| > § > N~1, and so

1
hy(z — sin[(2N + 1)7z| dz
[, G gy snlN + s

2N+1
1 :
+|/6 e hw(z—m)sm[(QN—i—l)ﬂ'z]dz’
[ + vl

< CoTINTH|fllz

In summary, one obtains
B<C(f,a)[§ !N~ + 62N 1]
Finally, making the choice § = N~ %, say, we get
Oé2 (3
A+B<C(f,a)[N~ % + N 3% 4 N~1H%]
and so we indeed conclude that in the limit N — oo we get

]\}iirlm[SNf(x) — f(z)] =0vz € S*.

5. CONVERGENCE RESULTS FOR C°(S'); THE FEJER KERNEL

It turns out that the preceding convergence result very much fails if extended to all of C°(S?). In fact,
one can construct continuous functions whose Fourier series diverges on a prescribed set of measure zero (but
this is non-elementary). In fact, a priori it is not even clear how to re-construct f in pointwise fashion from
its Fourier coefficients f ( ). However there is a beautiful result due to Fejer which asserts that indeed one
can re-cover f € CY(S1) from its Fourier coefficients, provided one averages over the partial Fourier sums.

Specifically, given f € C°(S'), introduce the Cesaro means

onflx): NZSf

Recalling the definition of S;,, we can also spell this out as follows:

on Sz NZ/ S ) f(y) dy

|k|<n
1 N 1
-+ N — )20 y) dy
0
|n| 0
Now the kernel function Ky(x) := % Z|n\ (N — |n])e*™* has the remarkable property that it can be
expressed as a perfect square:
N-1
Z (N — |n|)e?™ns = [62wi%x +e2mifFe Ly 6727”.1\,27196]2
|n|=0

_ [e—ﬂ'i(N—l);v e2miNe 1]2
- 627ria: _ 1
sin(rNz),2

= I

and so Ky(z) = + [31?1(1?75\;9)5)]2 It is the positivity which renders the Fejer kernel so much more useful than

the Dirichlet kernel. In fact, the family {Ky}n>1 forms an approzimate identity:

sin(mx)

Definition 5.1. A family of functions {®y(z)}n>1 C L(S?) is called an approzimate identity, provided
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1
o [, n(z)dz=1.

e supy fol | N (x)] de < 0.
e For any d > 0, we have

lim |®n(x)|dz = 0.
N—00 |’I'|>5

Observe that since Kn(z) = E\nl " (N = [n])e*™" we have fol Kn(z)dr = 1, and since Kx(z) > 0
the second condition is immediate from the first. Finally, since

|Kn(x) < CN"Ha| 72,
the last condition is also fulfilled. Finally, we state
Proposition 5.2. Let {®n(x)}n>1 be an approzimate identity on S*. Then for any f € C°(S'), we have
Jim (@ + f)(z) = f(z).
In particular, we can infer
Corollary 5.3. For any f € C°(S%), we have

]Vli_r>noo(KN * f)(z) = f(z)Vz € S*.

Proof. (Proposition) Put supy fol |®n(z)|dz = M < co. Pick z € S*. Also, fix ¢ > 0. By continuity of f,
there exists 0 > 0 such that |f(x) — f(y)| < 557 if [z —y| < J. Then write

@+ 1)) = Fle) = [ Onle =) i)y~ 1)
_ / Oz —y)[f(y) — f(2)] dy
_ / el - @)l dy

4 / Oz —y)[f(y) — ()] dy
lz—y|>8
=: A+ B.
Then we get
1< o [ lovoas <

uniformly in N. Moreover, for N large enough, we have

g
Bl<2flu- [ Jen(e)de<

|z|>8

It follows that for N large enough, we have

(®n * f)(z) — f(z)] <e.

Note that the preceding proof shows that in ® * f converges in fact uniformly toward f as N — oo.
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6. A PROPERTY OF A(S!).

Here we check the identity (2.1) and hence that A(S') is indeed an algebra. First, assume that f is a
trigonometric polynomial, thus
= Z ape?™*e g, e C.

|k|<n
Then if g € A(S') we get

fg / Z akQQﬂka ) —2mimx dr — Z ak/ 727rz(m k)x do — Zf m k)
|[k|<n |k|<n

Next, for f,g € A(S') arbitrary, we have that Ky * f is a trigonometric polynomial, and so (writing F for
the Fourier transform and using Lemma 2.2 as well as the definition of Ky)

F(ikn + flo)m) = 1 - W) Fiwygn — k)

k
Letting N — oo and using the dominated convergence theorem, we get

n) = f(k)g(n—
k

Moreover, since

ST IFam) <13 Fk)gn —k |<Z|f DO lGn))) < o

k
we see fg € A(S?).



