TOPICS IN PROBABILITY. PART II: UNIVERSALITY

EXERCISE SHEET 9: UNIVERSALITY AND SEMICIRCLE LAW

Exercise 1 (Moments of semicircle law).;

Let μ be the semicircle law, i.e., $\mu(dx) = \frac{1}{2\pi} \sqrt{4 - x^2} \mathbf{1}_{\{|x| \leq 2\}} dx$. Show that for $k \in \mathbb{N}_0$,

$$\mu[x^k] = \begin{cases} 0 & k \text{ odd;} \\ C_{k/2} & k \text{ even,} \end{cases}$$

where $C_k = \frac{1}{1+k} {2k \choose k}$ is the kth Catalan number.

Proof. Note that μ is symmetric, supported on a compact set, thus, all the moments exist and all odd moments are zero. Let $k \in \mathbb{N}$ be even, with the substitute $x = 2\sin(y)$ we obtain,

$$\mu[x^k] = \frac{1}{\pi} \int_0^2 x^k \sqrt{4 - x^2} dx = \frac{2^{k+2}}{\pi} \int_0^{\pi/2} \sin(y)^k \cos^2(y) dy$$
$$= \frac{2^{k+2}}{\pi} \left(\int_0^{\pi/2} \sin(y)^k dy - \int_0^{\pi/2} \sin(y)^{k+2} dy \right).$$

Using integration by parts formula, one easily obtains that $\int_0^{\pi/2} \sin(y)^k dy = \frac{k-1}{k} \int_0^{\pi/2} \sin(y)^{k-2} dy$. And iteratively, $\int_0^{\pi/2} \sin(y)^k dy = \frac{(k-1)!!}{k!!} \frac{\pi}{2}$. Therefore,

$$\mu[x^k] = 2^{k+1} \frac{(k-1)!!}{k!!} \left(1 - \frac{k+1}{k+2} \right) = 2^{k+1} \frac{(k-1)!!}{(k+2)!!} = \frac{2^{k+1}}{k+2} \frac{k!}{(2^{k/2}(k/2)!)^2}$$
$$= \frac{1}{1+k/2} \binom{k}{k/2} = C_{k/2}.$$

Exercise 2 (Trace, operator and Frobenius norms).;

Let $(A^i)_{i=1}^k$ be matrices of sizes $m_{i-1} \times m_i$ such that $m_0 = m_k$. Show that for any $1 \le i < i \le k$ $j \leq k$,

$$|\operatorname{Trace}(A^1 A^2 \dots A^k)| \le ||A^i||_F ||A^j||_F \prod_{l:l \ne i,j} ||A^l||_{op},$$

where $||A||_F = \sqrt{\text{Trace}(\bar{A}^t A)} = \sqrt{\sum_{i,j} |a_{ij}|^2}$ is the Frobenius norm and $||A||_{op} = \sup_{||x||_2 = 1} ||Ax||_2$ the operator norm.

Proof. Recall that $\operatorname{Trace}(AB) = \operatorname{Trace}(BA)$ and observe that $|\operatorname{Trace}(AB)| \leq ||A||_F ||B||_F$ (by Cauchy-Schwarz for vectors $(a_{ij})_{i,j}$ and $(b_{ij})_{ij}$ in \mathbb{R}^{mn} if A is an $m \times n$ -matrix). Furthermore, it holds $||AB||_F \leq ||A||_{op}||B||_F$. Indeed, write b_1, \ldots, b_m for the column vectors of B, then $AB = (Ab_1, \ldots, Ab_m)$ and by definition of the Frobenius norm,

$$||AB||_F^2 = \sum_{k=1}^m ||Ab_k||_2^2 \le ||A||_{op}^2 \sum_{k=1}^m ||b_k||_2^2 = ||A||_{op}^2 ||B||_F^2.$$

In particular, we obtain,

$$\begin{split} |\mathrm{Trace}(A^1A^2\dots A^k)| &= |\mathrm{Trace}(A^{j+1}\dots A^kA^1\dots A^i\dots A^j)| \\ &\leq \|A^{j+1}\dots A^kA^1\dots A^i\|_F \|A^{i+1}\dots A^j\|_F \\ &\leq \|A^{j+1}\dots A^kA^1\dots A^{i-1}\|_{op} \|A^i\|_F \|A^{i+1}\dots A^{j-1}\|_{op} \|A^j\|_F \\ &\leq \prod_{l\neq i,j} \|A^l\|_{op} \|A^i\|_F \|A^j\|_F. \end{split}$$

Exercise 3 (Bound on difference of eigenvalues).;

Let A, B be two Hermitian $n \times n$ matrices. Let us denote their eigenvalues $(\lambda_i^A)_{i=1}^n$ and $(\lambda_i^B)_i$, respectively. Show that

$$\inf_{\sigma} \sum_{i=1}^{n} |\lambda_{i}^{A} - \lambda_{\sigma(i)}^{B}|^{2} \le ||A - B||_{F}^{2},$$

where the infimum is taken over all permutations of n elements.

Proof. Let us start by showing that for any Hermitian matrix M (or more generally, any $n \times n$ complex valued matrix), $\sum_{k=1}^{n} |\lambda_k|^2 \leq \|M\|_F^2$. Indeed, by Schur decomposition, there exist a unitary matrix Q and an upper-triangular matrix U with the eigenvalues of M on its diagonal such that $M = QUQ^{-1}$ (in the case of Hermitian matrix, one can find unitary Q such that U is diagonal with real entries). Note further that $\|QA\|_F^2 = \text{Trace}((\overline{QA})^tQA) = \text{Trace}(\overline{A}^t\overline{Q}^tQA) = \text{Trace}(\overline{A}^tA) = \|A\|_F^2$ since Q is unitary; and analogously, $\|A\|_F = \|AQ^{-1}\|_F$. Therefore,

$$||M||_F^2 = ||QUQ^{-1}||_F^2 = ||U||_F^2 \ge \sum_{i=1}^n |\lambda_i|^2.$$

Note that if M is Hermitian, we get $\|M\|_F^2 = \sum_{i=1}^n \lambda_i^2$ (by the above observation in parenthesis). This immediately implies that to prove the desired claim for Hermitian A, B, it suffices to show that $\sup_{\sigma} \sum_{i=1}^n \lambda_i^A \lambda_{\sigma(i)}^B \geq \langle A, B \rangle_F (= \operatorname{Trace}(\bar{A}^t B) = \operatorname{Trace}(AB))$. Since both A and B are Hermitian, there exist unitary U, Q such that $A = QD_A\bar{Q}^t$, $B = UD_B\bar{U}^t$ for diagonal matrices D_A, D_B containing (real) eigenvalues of A and B, respectively. Note further that $\bar{Q}^t BQ$ has the same eigenvalues as B (if v is an eigenvector corresponding to $EV \lambda^B$ of B, then $\bar{Q}^t v$ is the eigenvector of $\bar{Q}^t BQ$ corresponding to λ^B). Together with properties of the trace, this implies that $\langle A, B \rangle_F = \sum_{i=1}^n \lambda_i^A (\bar{Q}^t BQ)_{ii} = \sum_i \lambda_i^A \sum_j \lambda_j^B |v_{ij}|^2 = \langle \lambda^A, W \lambda^B \rangle$, where $V = (v_{ij}) = \bar{Q}^t U$ (again unitary) and $W = (|v_{ij}|^2)_{ij}$. Note that W is doubly stochastic, meaning that the sum of the elements of any of its rows and columns is one. By Birkhoff-von Neumann theorem, there exist permutation matrices $(P_k)_{k=1}^m$ (for some m) and

 $a_k \geq 0$ such that $\sum_{k=1}^m a_k = 1$ and $W = \sum_{k=1}^m a_k P_k$. Therefore, as desired

$$\langle A, B \rangle_F = \langle \lambda^A, W \lambda^B \rangle = \sum_{k=1}^m a_k \underbrace{\langle \lambda^A, P_k \lambda^B \rangle}_{\leq \sup_{\sigma} \sum_{i=1}^n \lambda_i^A \lambda_{\sigma(i)}^B} \leq \sup_{\sigma} \sum_{i=1}^n \lambda_i^A \lambda_{\sigma(i)}^B.$$

Remark: there is an alternative proof that can be found in Terence Tao's blog.

Exercise 4 (Bound on the operator norm of Wigner matrix with bounded entries).;

Let X be a Wigner $N \times N$ matrix with mean-zero, uniformly bounded (wlog, by one) entries, i.e., $(X_{ij})_{i \leq j \leq N}$ are independent with $\mathbb{E}[X_{ij}] = 0$ and $|X_{ij}| \leq 1$ almost surely and $X_{ji} = \bar{X}_{ij}$. Show that there exists C, c > 0 (absolute constants independent of N) such that $\mathbb{P}[\|X\|_{op}/\sqrt{N} \geq t] \leq e^{-cNt^2}$ for all $t \geq C$.

You may proceed as follows:

- (1) Show (using an appropriate concentration of measure inequality you know) that for any unit vector $x \in \mathbb{C}^N$ and $N \times N$ -matrix \tilde{X} with (all!) mutually independent, uniformly bounded by one entries of mean zero, $\mathbb{P}[|\tilde{X}x|/\sqrt{N} > t] \leq e^{-cNt^2}$ for all $t \geq C$ for some appropriate absolute constant C > 0;
- (2) Prove that $\mathbb{P}[\|\tilde{X}\|_{op}/\sqrt{N} > t] \leq \mathbb{P}[\bigcup_{x \in G} \{|\tilde{X}x|/\sqrt{N} > t/2\}]$ for a maximal 1/2-net $G \subset \mathbb{C}^N \cap \mathbb{S}^{2N-1}$, i.e., all points of G are separated by a distance at least 1/2, and G is maximal w.r.t. set-inclusion;
- (3) Estimate the number of points of G appropriately and conclude the result for $\|\tilde{X}\|_{op}/\sqrt{N}$;
- (4) Conclude for $||X||_{op}/\sqrt{N}$.

Proof. (1): Let $x = (x_1, \ldots, x_n) \in \mathbb{C}^N$ be a unit vector, i.e., $\sum_{i=1}^N |x_i|^2$, and \tilde{X} any $N \times N$ -matrix with independent entries of mean zero and that are uniformly bounded by one. Let us denote its rows by \tilde{X}^i . By Azuma-Hoeffding inequality (applied to real and imaginary parts of $\pm X^i \cdot x$), for any $u \geq 0$,

$$\mathbb{P}[|\tilde{X}^i \cdot x| > u] < 4e^{-cu^2/\sum_{i=1}^N |x_i|^2} = 4e^{-cu^2}$$

for an appropriate c > 0. Therefore, using equivalent characterizations of sub-gaussian law, $\mathbb{E}[e^{c'|\tilde{X}^i \cdot x|^2}] \leq C$ for appropriate c', C > 0 (absolute constants depending only on the above c). This, in turn, implies that $\mathbb{E}[e^{c'|\tilde{X}x|^2}] \leq C^N$, and thus, by Markov's inequality,

$$\mathbb{P}[|\tilde{X}x|/\sqrt{N} > t] \le C^N e^{-(c')^2 N t^2} \le e^{-(c')^2 N t^2/2}$$

for all $t \ge 0 \lor (2 \log(C)/(c')^2)$.

(2): Note that $\|\tilde{X}\|_{op} = \sup_{x \in \mathbb{C}^n, \|x\|=1} |\tilde{X}x|$, and hence,

$$\{\|\tilde{X}\|_{op} \ge t\sqrt{N}\} = \bigcup_{x \in \mathbb{C}^n, \|x\| = 1} \{|\tilde{X}x| \ge t\sqrt{N}\}.$$

By compactness of the sphere, there exists unit vector x_0 such that the above supremum is attained at x_0 . Either $x_0 \in G$, or there exists $y \in G$ such that $|x - y| \le 1/2$ (by maximality of G). Note that in the latter case, since $|\tilde{X}(x - y)| \le ||\tilde{X}||_{op}/2$, by triangle inequality, $|\tilde{X}y| \ge ||\tilde{X}||_{op}/2$. This implies that, if $||\tilde{X}||_{op} \ge t\sqrt{N}$, then there exists $y \in G$ such that

 $|\tilde{X}y| > \sqrt{Nt}/2$, and so, for a maximal 1/2-net $G \subset \mathbb{C}^N \cap \mathbb{S}^{2N-1}$

$$\mathbb{P}[\|\tilde{X}\|_{op}/\sqrt{N} > t] \le \mathbb{P}[\bigcup_{x \in G} \{|\tilde{X}x|/\sqrt{N} > t/2\}].$$

(3): We now want to show that the cardinality of G is bounded by K^N for an appropriate absolute constant K > 0. To this end, consider 1/4-balls centered at points of G. By definition of G, these are disjoint. On the other hand, their union is contained in the ball of radius 3/2 centered at 0. Therefore, the cardinality of G is bounded by the ratio of the volumes of the latter ball and a 1/4-ball. This number is clearly bounded by K^N for an appropriate K > 4. Together with the previous parts, we obtain

$$\mathbb{P}[\|\tilde{X}\|_{op}/\sqrt{N} > t] \le K^N e^{-(c')^2 N t^2/2} \le e^{-(c')^2 N t^2/4}$$

for all $t \ge 0 \lor (\frac{4}{(c')^2} \log(K \lor C))$.

(4): Let X be the desired Wigner matrix. Note that \tilde{X} defined by $\tilde{X}_{ij} = X_{ij}$ for $i \leq j$ and 0 otherwise and \tilde{X}' by $\tilde{X}'_{ij} = X_{ij}$ for i > j and 0 otherwise, both satisfy assumptions of the previous parts. Thus, for appropriate c, C > 0

$$\mathbb{P}[\|X\|_{op}/\sqrt{N} > t] \leq \mathbb{P}[\|\tilde{X}\|_{op}/\sqrt{N} > t/2] + \mathbb{P}[\|\tilde{X}'\|_{op}/\sqrt{N} > t/2] \leq e^{-cNt^2}$$
 for all $t \geq C$.