
TOPICS IN PROBABILITY. PART II: UNIVERSALITY

Exercise sheet 9: Universality and semicircle law

Exercise 1 (Moments of semicircle law). ;
Let µ be the semicircle law, i.e., µ(dx) = 1

2π

√
4− x21{|x|≤2}dx. Show that for k ∈ N0,

µ[xk] =

{
0 k odd;
Ck/2 k even,

where Ck =
1

1+k

(
2k
k

)
is the kth Catalan number.

Proof. Note that µ is symmetric, supported on a compact set, thus, all the moments exist
and all odd moments are zero. Let k ∈ N be even, with the substitute x = 2 sin(y) we obtain,

µ[xk] =
1

π

∫ 2

0

xk
√
4− x2dx =

2k+2

π

∫ π/2

0

sin(y)k cos2(y)dy

=
2k+2

π

(∫ π/2

0

sin(y)kdy −
∫ π/2

0

sin(y)k+2dy

)
.

Using integration by parts formula, one easily obtains that
∫ π/2

0
sin(y)kdy = k−1

k

∫ π/2

0
sin(y)k−2dy.

And iteratively,
∫ π/2

0
sin(y)kdy = (k−1)!!

k!!
π
2
. Therefore,

µ[xk] = 2k+1 (k − 1)!!

k!!

(
1− k + 1

k + 2

)
= 2k+1 (k − 1)!!

(k + 2)!!
=

2k+1

k + 2

k!

(2k/2(k/2)!)2

=
1

1 + k/2

(
k

k/2

)
= Ck/2.

□

Exercise 2 (Trace, operator and Frobenius norms). ;
Let (Ai)ki=1 be matrices of sizes mi−1 ×mi such that m0 = mk. Show that for any 1 ≤ i <

j ≤ k,

|Trace(A1A2 . . . Ak)| ≤ ∥Ai∥F∥Aj∥F
∏

l:l ̸=i,j

∥Al∥op,

where ∥A∥F =
√

Trace(ĀtA) =
√∑

i,j |aij|2 is the Frobenius norm and ∥A∥op = sup∥x∥2=1∥Ax∥2
the operator norm.

Proof. Recall that Trace(AB) = Trace(BA) and observe that |Trace(AB)| ≤ ∥A∥F∥B∥F (by
Cauchy-Schwarz for vectors (aij)i,j and (bij)ij in Rmn if A is an m×n-matrix). Furthermore,
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it holds ∥AB∥F ≤ ∥A∥op∥B∥F . Indeed, write b1, . . . , bm for the column vectors of B, then
AB = (Ab1, . . . , Abm) and by definition of the Frobenius norm,

∥AB∥2F =
m∑
k=1

∥Abk∥22 ≤ ∥A∥2op
m∑
k=1

∥bk∥22 = ∥A∥2op∥B∥2F .

In particular, we obtain,

|Trace(A1A2 . . . Ak)| = |Trace(Aj+1 . . . AkA1 . . . Ai . . . Aj)|
≤ ∥Aj+1 . . . AkA1 . . . Ai∥F∥Ai+1 . . . Aj∥F
≤ ∥Aj+1 . . . AkA1 . . . Ai−1∥op∥Ai∥F∥Ai+1 . . . Aj−1∥op∥Aj∥F
≤
∏
l ̸=i,j

∥Al∥op∥Ai∥F∥Aj∥F .

. □

Exercise 3 (Bound on difference of eigenvalues). ;
Let A,B be two Hermitian n × n matrices. Let us denote their eigenvalues (λA

i )
n
i=1 and

(λB
i )i, respectively. Show that

inf
σ

n∑
i=1

|λA
i − λB

σ(i)|2 ≤ ∥A−B∥2F ,

where the infimum is taken over all permutations of n elements.

Proof. Let us start by showing that for any Hermitian matrix M (or more generally, any
n × n complex valued matrix),

∑n
k=1 |λk|2 ≤ ∥M∥2F . Indeed, by Schur decomposition,

there exist a unitary matrix Q and an upper-triangular matrix U with the eigenvalues
of M on its diagonal such that M = QUQ−1 (in the case of Hermitian matrix, one can
find unitary Q such that U is diagonal with real entries). Note further that ∥QA∥2F =
Trace((QA)tQA) = Trace(ĀtQ̄tQA) = Trace(ĀtA) = ∥A∥2F since Q is unitary; and analo-
gously, ∥A∥F = ∥AQ−1∥F . Therefore,

∥M∥2F = ∥QUQ−1∥2F = ∥U∥2F ≥
n∑

i=1

|λi|2.

Note that if M is Hermitian, we get ∥M∥2F =
∑n

i=1 λ
2
i (by the above observation in parenthe-

sis). This immediately implies that to prove the desired claim for Hermitian A,B, it suffices
to show that supσ

∑n
i=1 λ

A
i λ

B
σ(i) ≥ ⟨A,B⟩F (= Trace(ĀtB) = Trace(AB)). Since both A and

B are Hermitian, there exist unitary U,Q such that A = QDAQ̄
t, B = UDBŪ

t for diagonal
matrices DA, DB containing (real) eigenvalues of A and B, respectively. Note further that
Q̄tBQ has the same eigenvalues as B (if v is an eigenvector corresponding to EV λB of B,
then Q̄tv is the eigenvector of Q̄tBQ corresponding to λB). Together with properties of
the trace, this implies that ⟨A,B⟩F =

∑n
i=1 λ

A
i (Q̄

tBQ)ii =
∑

i λ
A
i

∑
j λ

B
j |vij|2 = ⟨λA,WλB⟩,

where V = (vij) = Q̄tU (again unitary) and W = (|vij|2)ij. Note that W is doubly sto-
chastic, meaning that the sum of the elements of any of its rows and columns is one. By
Birkhoff-von Neumann theorem, there exist permutation matrices (Pk)

m
k=1 (for some m) and
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ak ≥ 0 such that
∑m

k=1 ak = 1 and W =
∑m

k=1 akPk. Therefore, as desired

⟨A,B⟩F = ⟨λA,WλB⟩ =
m∑
k=1

ak ⟨λA, Pkλ
B⟩︸ ︷︷ ︸

≤supσ
∑n

i=1 λ
A
i λB

σ(i)

≤ sup
σ

n∑
i=1

λA
i λ

B
σ(i).

Remark: there is an alternative proof that can be found in Terence Tao’s blog.
□

Exercise 4 (Bound on the operator norm of Wigner matrix with bounded entries). ;
Let X be a Wigner N × N matrix with mean-zero, uniformly bounded (wlog, by one)

entries, i.e., (Xij)i≤j≤N are independent with E[Xij] = 0 and |Xij| ≤ 1 almost surely and
Xji = X̄ij. Show that there exists C, c > 0 (absolute constants independent of N) such that
P[∥X∥op/

√
N ≥ t] ≤ e−cNt2 for all t ≥ C.

You may proceed as follows:
(1) Show (using an appropriate concentration of measure inequality you know) that for

any unit vector x ∈ CN and N × N-matrix X̃ with (all!) mutually independent,
uniformly bounded by one entries of mean zero, P[|X̃x|/

√
N > t] ≤ e−cNt2 for all

t ≥ C for some appropriate absolute constant C > 0;
(2) Prove that P[∥X̃∥op/

√
N > t] ≤ P[

⋃
x∈G{|X̃x|/

√
N > t/2}] for a maximal 1/2-net

G ⊂ CN ∩ S2N−1, i.e., all points of G are separated by a distance at least 1/2, and G
is maximal w.r.t. set-inclusion;

(3) Estimate the number of points of G appropriately and conclude the result for ∥X̃∥op/
√
N ;

(4) Conclude for ∥X∥op/
√
N .

Proof. (1): Let x = (x1, . . . , xn) ∈ CN be a unit vector, i.e.,
∑N

i=1 |xi|2, and X̃ any N ×N -
matrix with independent entries of mean zero and that are uniformly bounded by one. Let
us denote its rows by X̃ i. By Azuma-Hoeffding inequality (applied to real and imaginary
parts of ±X i · x), for any u ≥ 0,

P[|X̃ i · x| ≥ u] ≤ 4e−cu2/
∑N

i=1 |xi|2 = 4e−cu2

for an appropriate c > 0. Therefore, using equivalent characterizations of sub-gaussian law,
E[ec′|X̃i·x|2 ] ≤ C for appropriate c′, C > 0 (absolute constants depending only on the above
c). This, in turn, implies that E[ec′|X̃x|2 ] ≤ CN , and thus, by Markov’s inequality,

P[|X̃x|/
√
N > t] ≤ CNe−(c′)2Nt2 ≤ e−(c′)2Nt2/2

for all t ≥ 0 ∨ (2 log(C)/(c′)2).
(2): Note that ∥X̃∥op = supx∈Cn,∥x∥=1 |X̃x|, and hence,

{∥X̃∥op ≥ t
√
N} =

⋃
x∈Cn,∥x∥=1

{|X̃x| ≥ t
√
N}.

By compactness of the sphere, there exists unit vector x0 such that the above supremum is
attained at x0. Either x0 ∈ G, or there exists y ∈ G such that |x− y| ≤ 1/2 (by maximality
of G). Note that in the latter case, since |X̃(x − y)| ≤ ∥X̃∥op/2, by triangle inequality,
|X̃y| ≥ ∥X̃∥op/2. This implies that, if ∥X̃∥op ≥ t

√
N , then there exists y ∈ G such that
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|X̃y| >
√
Nt/2, and so, for a maximal 1/2-net G ⊂ CN ∩ S2N−1,

P[∥X̃∥op/
√
N > t] ≤ P[

⋃
x∈G

{|X̃x|/
√
N > t/2}].

(3): We now want to show that the cardinality of G is bounded by KN for an appropriate
absolute constant K > 0. To this end, consider 1/4-balls centered at points of G. By
definition of G, these are disjoint. On the other hand, their union is contained in the ball
of radius 3/2 centered at 0. Therefore, the cardinality of G is bounded by the ratio of the
volumes of the latter ball and a 1/4-ball. This number is clearly bounded by KN for an
appropriate K > 4. Together with the previous parts, we obtain

P[∥X̃∥op/
√
N > t] ≤ KNe−(c′)2Nt2/2 ≤ e−(c′)2Nt2/4

for all t ≥ 0 ∨ ( 4
(c′)2

log(K ∨ C)).
(4): Let X be the desired Wigner matrix. Note that X̃ defined by X̃ij = Xij for i ≤ j

and 0 otherwise and X̃ ′ by X̃ ′
ij = Xij for i > j and 0 otherwise, both satisfy assumptions of

the previous parts. Thus, for appropriate c, C > 0

P[∥X∥op/
√
N > t] ≤ P[∥X̃∥op/

√
N > t/2] + P[∥X̃ ′∥op/

√
N > t/2] ≤ e−cNt2

for all t ≥ C. □
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