TOPICS IN PROBABILITY. PART II: UNIVERSALITY

EXERCISE SHEET 8: UNIVERSALITY AND STRICTLY STABLE DISTRIBUTIONS

Exercise 1 (Characteristic functions of strictly stable laws).

Let ¢o.o(t) = exp(—alt|®). Show that ¢, is a characteristic function of a random variable
iff a > 0, a € (0,2]. Show that the latter ones are exactly characteristic functions of
symmetric strictly stable o distributions.

Remark: Note that there are strictly stable distributions whose characteristic exponent s
more complicated and involves imaginary terms, e.qg. standard Lévy distribution or general-
ized Cauchy distribution (with non-zero location parameter).

Proof. Part 1: Let us first notice that o has to be positive since otherwise ¢ would have a
singularity at zero or would be just a constant function e~ both can not happen if ¢ is
a characteristic function. The same argument implies that a can not be 0 (except for the
case X = 0, which we exclude). Moreover, if a were negative, we would have ¢(t) = e
for a positive constant ¢, which is an unbounded function. This can not happen since the
absolute value of a characteristic function is bounded by 1. So, we are left with the range
a>0,a>0.

Let us show that for o > 2, ¢, , can not be a characteristic function. To this end, note that
if X has characteristic function ¢, 4, then its law is symmetric and a-stable! with norming
constants ¢, = n'/* (check it). Since the only strictly stable distribution with finite variance
is normal (corresponds to aw = 2) — this follows by CLT — it suffices to show that if o > 2,
then the variance of X is finite. Let ¢ be sufficiently large such that P[|X| > ¢] < 1/4. Then
also P[|S,,| > cut] < 1/4 for S, = " | X;. By symmetry of the distribution, we further
obtain that P[|S,| > ¢,t] > $P[max;<, |X;| > t]. Indeed, let X' be the first term among
X1,..., X, that is largest in the absolute value and S/, := S,, — X'!; then by i.i.d. assumption
on X;’s and symmetry of their law, the joint laws of (X!, S’) and (X!, —S/) coincide. Thus,

PX!'> <P[X'>0,59 <0]+PX'>0,5 >0 =2PX'>0,9 >0,

which, in turn, implies that

1
P[|S,| > cnt] = 2P[S, > cut] > 2P[X' > ¢,t, S, > 0] > P[X' > c,t] = §P[m<ax |X;] > cnt].

by symmetry of X!, as desired. We furthermore have

Plmax | X;| > ] = 1 — (1 = P[IX] > c,t])" =1 — enlos(-PlX[>ent]) > 1 _ o=nPlIX|>ent],
Altogether, we have shown that

51— exp(—nB[[X| > te,])) < B[V > te] <

A

LX has strictly a-stable law if for any n there exists ¢, € R such that Ci >, X, for iid. copies X; of

X has the same law as X
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This implies that (nP[|X| > tc,]), is bounded, and since ¢, = n'/®, also that P[|X| > 2] <
Max~ for some M > 0 and all x sufficiently large. This tail- asymptotlc immediately yields
that Var[X] is finite iff a > 2.

So far we have shown that outside of the range a > 0, € (0, 2], ¢, is not a characteristic
function. Note that wlog we might restrict ourselves to a = 1, since for any other positive
value b we obtain the desired characteristic function by considering 06X for X with ¢, ;. For
a = 2, ¢o, is the characteristic function of centered normal distribution (if @ = 1, then with
variance v/2). So, it remains to show (for the first statement) that ¢ is a characteristic
function of some distribution for o € (0,2). This follows immediately from Exercise 3.

Part 2: We now complete the proof of the exercise by verifying that characteristic functions
of symmetric strictly a-stable distributions (for « € (0,2), o = 2 corresponds to Gaussian)
are of the form ¢,, for some a > 0. To this end, we show that the norming constants
are given by ¢, = n/®, which then together with stability yields that for any m,n € N,
dx(m/n) = ¢x(1)M/I"* “and thus, ¢x(q) = #(1)1" for all rational q. Using this relation
and continuity of characteristic functions, we may conclude that ¢y (u) > 0 for all u, so
c=—log¢(l) > 0 and ¢x(t) = e " for all t € R.

For the norming constants, by stability we obtain,

law law laW law
CnmX Ymn 5 g X Xk = Cmch;

k=1 i=(k—1)n+1 k=1

which by induction, in turn, leads to c,» = ¢ for all n,k € N. Analogously, by stability we
conclude that

1 law  Cm Cn
Yern = X+ X, =U.
cn—l—m Cn+m Cn+m

law
X =

Let z > 0, then by symmetry of distribution of X and independence:

PX >z =P[U >2] >P|X, >0,X, > C’Z*”} > %IP’ {X > C’Z*"} .

This yields that ¢, /¢, 1’ are bounded uniformly for all m, n € N since otherwise there would
have been a sequence of m, n such that ¢, 4, /¢, — 0, which would lead to P[X > z] > 1/4 for
all z > 0. Contradiction, as X is a well-defined real-valued random variable. In particular,
ck/cn’s are bounded for all k& < n.

Fix r, s € N, then there are unique «, 3 € (0, 00) such that ¢, = r'/* ¢, = s'/5. Now, by the
above observations we conclude that ¢, = n'/* for all n = r* with k € N and ¢,, = m'/? for
all m = s' with [ € N. The goal is to show that a = ﬁ, then it will follow that cn = nl/e
for all n € N. Towards that end, note that for any m = s', there exists n = r* so that
n < m < rn. Hence,

Con = ml/P < (ma)l/ﬁ — rl/ﬁcg/ﬁ.
Since ¢, /c,,’s are bounded for all m > n as above and since ¢,,’s are unbounded in m (follows

from definition of stability), we obtain that o > . Reversing the roles of n and m gives
that § < «, so a = £. O

Exercise 2 (Strictly stable distribution: equivalent definition).
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1) Random wvariable X has a strictly stable distribution iff the following condition holds:
if X1, Xs are independent variables, each with the same distribution as X and a,b > 0, then
there exists a constant ¢ > 0 such that a X, + bXy has the same distribution as cX.

Hint: for "only if" direction, find the explicit norming parameters using previous exercise,
understand for which choices of a,b one could directly conclude and how to extend the result
to all a,b > 0.

2) Prove that if X has a strictly stable distribution with norming constant c,, then so is
the law of —X. Conclude that if Y is independent of X with the same distribution, then the
distribution of X — Y is strictly stable with the same norming constant. Note that law of
X =Y is as well symmetric w.r.t. 0.

Proof. 1) Suppose that the condition holds, by induction we will conclude that the definition
holds: for n = 2 follows by taking a = b = 1. Suppose we know that there exist norming
parameters cq,...,c, > 0 such that i > ien X; has the same law as X for k& < n. Here X;
independent copies of X. By independence X; + ...+ X, has the same distribution as
cnX + X, 11. The latter, in turn, by our condition has the same distribution as cX for some
¢> 0, X is an independent copy of X. Thus, by setting Cn+1 = ¢, the claim follows.

For the reverse direction, we would use the fact that norming constants of X are given
by ¢, = n'/® for some o > 0 (which follows immediately from Exercise 1). This together
with stability implies that for any m,n € N, n'/*X; + m!'/*X, has the same distribution as
> i<min Xi which, in turn, has the same law as (n + m)"/*X. By dividing both sides by an

appropriate kY for k € N, we obtain that for all rational ¢,p > 0, there exists ¢ > 0 such

law

that ¢'/*X; + p/*X, £ ¢X. Note that it suffices to work with the case ¢ = 1 and b = r/®
for any r > 0. Recall that we have the claim for b = ¢'/* for an arbitrary rational ¢ > 0. But
now by continuity of the stable distribution (follows from Exercise 1, the degenerate case is
trivial), we conclude that taking the limit ¢ € Q — r will deliver the result, the coefficient
c(r) = lim, ¢(q).

2) Let us show that —X has stable law with the same norming parameters ¢, as X. Let
Xq,..., X, be independent copies of X, then —X,..., —X,, is a sequence of independent
variables each with the same distribution as —X. By stability > .. —X; = —>",. X, has
law of ¢,(—X). Let X,Y be independent with the same distribution, let Zy,...,Z, be a
sequence of independent variables with the same distribution as X — Y, then ) . Z; has the
same distribution as ), X; — > . Y;, where X; are independent variables with law of X, and
Y; are independent with law Y, so that all X;,Y; are mutually independent. By stability,
> Xi — >, Y, has the same distribution as ¢, X — ¢,Y = ¢,(X =Y. O

Exercise 3 (Heavy tailed CLT).

Consider a random variable X, whose law is symmetric around zero and that satisfies
P[|X]| > x] = a7 for a € (0,2) for all x > 1. Now let Xy, Xo,... be i.i.d. with the law of
X. E.g. by using characteristic functions (or otherwise) prove that # Yo X converges

1/a

to the symmetric o strictly stable law, i.e. the norming constant is ¢, = n'/* and the law is

symmetric w.r.t. zero.

Proof. Note that from P[|X| > 2| = 27 for « € (0, 2) for all x > 1, we conclude that the ran-

a/2

dom variable is supported on R\ [—1, 1] and its density is given by fx(x) = a1 Hol=1 (check

it). Hence, the characteristic function of X, ¢x(t) = [, €™ fx(z)dz = [ cos(|t|z)-2+dz.
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We have that for any ¢t # 0 (interested in |¢| small)

ox(t) =1~ [ (1= cos(ltfo)) —Srzdo = I /u (1~ cosu) % du.

fﬁ\ + f1oo
Note that for |¢| small, in the above splitting the second integral is positive (as integrand
is almost everywhere positive) and finite, the value does not depend on [t|. As for the
first integral, note that 1 — cosu ~ u?/2 for small values of u, thus, the first integral is
bounded by c(a) +b(a)[t|*~*, where c(«) is the constant appearing by evaluating F at z = 1
and b(a) > 0 is an explicit constant depending only on «. Therefore, as |t| tends to 0,
Ox(t) ~1—=CJt|*(1 4+ o(1)). Thus, as n — oo

bz (1) = ox(t/nte) ~ (1 - ow) e,

Those are exactly the characteristic functions of a stable symmetric distributions - see Ex-

ercise 1. O

Exercise 4 ("Open question"). Find classes of functions f, : R™ — R such that f, € C*
and so that

9
sgp a—m?fn(x) =o(n™ ') V1<i<n,
for all n sufficiently large.
Proof. Proof of this exercise will be provided in a separate file. 0
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