TOPICS IN PROBABILITY. PART II: UNIVERSALITY

Exercise sheet 8: Universality and strictly stable distributions

Exercise 1 (Characteristic functions of strictly stable laws).

Let $\phi_{\alpha,a}(t) = \exp(-a|t|^{\alpha})$. Show that $\phi_{\alpha,a}$ is a characteristic function of a random variable iff a > 0, $\alpha \in (0,2]$. Show that the latter ones are exactly characteristic functions of symmetric strictly stable α distributions.

Remark: Note that there are strictly stable distributions whose characteristic exponent is more complicated and involves imaginary terms, e.g. standard Lévy distribution or generalized Cauchy distribution (with non-zero location parameter).

Proof. Part 1: Let us first notice that α has to be positive since otherwise ϕ would have a singularity at zero or would be just a constant function e^{-a} , both can not happen if ϕ is a characteristic function. The same argument implies that a can not be 0 (except for the case X=0, which we exclude). Moreover, if a were negative, we would have $\phi(t)=e^{c|t|^{\alpha}}$ for a positive constant c, which is an unbounded function. This can not happen since the absolute value of a characteristic function is bounded by 1. So, we are left with the range $a>0, \alpha>0$.

Let us show that for $\alpha > 2$, $\phi_{\alpha,a}$ can not be a characteristic function. To this end, note that if X has characteristic function $\phi_{\alpha,a}$, then its law is symmetric and α -stable¹ with norming constants $c_n = n^{1/\alpha}$ (check it). Since the only strictly stable distribution with finite variance is normal (corresponds to $\alpha = 2$) — this follows by CLT — it suffices to show that if $\alpha > 2$, then the variance of X is finite. Let t be sufficiently large such that $\mathbb{P}[|X| > t] < 1/4$. Then also $\mathbb{P}[|S_n| > c_n t] < 1/4$ for $S_n = \sum_{i=1}^n X_i$. By symmetry of the distribution, we further obtain that $\mathbb{P}[|S_n| > c_n t] \ge \frac{1}{2}\mathbb{P}[\max_{i \le n} |X_i| > t]$. Indeed, let X^1 be the first term among X_1, \ldots, X_n that is largest in the absolute value and $S'_n := S_n - X^1$; then by i.i.d. assumption on X_i 's and symmetry of their law, the joint laws of (X^1, S'_n) and $(X^1, -S'_n)$ coincide. Thus,

$$\mathbb{P}[X^1 > c] \le \mathbb{P}[X^1 > 0, S'_n \le 0] + \mathbb{P}[X^1 > 0, S'_n \ge 0] = 2\mathbb{P}[X^1 > 0, S'_n \ge 0],$$

which, in turn, implies that

$$\mathbb{P}[|S_n| > c_n t] = 2\mathbb{P}[S_n > c_n t] \ge 2\mathbb{P}[X^1 > c_n t, S'_n \ge 0] \ge \mathbb{P}[X^1 > c_n t] = \frac{1}{2}\mathbb{P}[\max_{i \le n} |X_i| > c_n t].$$

by symmetry of X^1 , as desired. We furthermore have

$$\mathbb{P}[\max_{i \le n} |X_i| > t] = 1 - (1 - \mathbb{P}[|X| > c_n t])^n = 1 - e^{n \log(1 - \mathbb{P}[|X| > c_n t])} \ge 1 - e^{-n\mathbb{P}[|X| > c_n t]}.$$

Altogether, we have shown that

$$\frac{1}{2}(1 - \exp(-n\mathbb{P}[|X| > tc_n])) \le \mathbb{P}[|Y_n| > tc_n] < \frac{1}{4}.$$

 $^{^1}X$ has strictly α -stable law if for any n there exists $c_n \in \mathbb{R}$ such that $\frac{1}{c_n} \sum_{i=1}^n X_i$ for i.i.d. copies X_i of X has the same law as X

This implies that $(n\mathbb{P}[|X| > tc_n])_n$ is bounded, and since $c_n = n^{1/\alpha}$, also that $\mathbb{P}[|X| > x] \le Mx^{-\alpha}$ for some M > 0 and all x sufficiently large. This tail-asymptotic immediately yields that Var[X] is finite iff $\alpha > 2$.

So far we have shown that outside of the range a > 0, $\alpha \in (0, 2]$, $\phi_{\alpha,a}$ is not a characteristic function. Note that wlog we might restrict ourselves to a = 1, since for any other positive value b we obtain the desired characteristic function by considering $b^{\alpha}X$ for X with $\phi_{\alpha,1}$. For $\alpha = 2$, $\phi_{2,a}$ is the characteristic function of centered normal distribution (if a = 1, then with variance $\sqrt{2}$). So, it remains to show (for the first statement) that $\phi_{\alpha,1}$ is a characteristic function of some distribution for $\alpha \in (0, 2)$. This follows immediately from Exercise 3.

Part 2: We now complete the proof of the exercise by verifying that characteristic functions of symmetric strictly α -stable distributions (for $\alpha \in (0,2)$, $\alpha = 2$ corresponds to Gaussian) are of the form $\phi_{\alpha,a}$ for some a > 0. To this end, we show that the norming constants are given by $c_n = n^{1/\alpha}$, which then together with stability yields that for any $m, n \in \mathbb{N}$, $\phi_X(m/n) = \phi_X(1)^{|m|^{\alpha}/|n|^{\alpha}}$, and thus, $\phi_X(q) = \phi(1)^{|q|^{\alpha}}$ for all rational q. Using this relation and continuity of characteristic functions, we may conclude that $\phi_X(u) > 0$ for all u, so $c = -\log \phi(1) > 0$ and $\phi_X(t) = e^{-c|t|^{\alpha}}$ for all $t \in \mathbb{R}$.

For the norming constants, by stability we obtain,

$$c_{nm}X \stackrel{\text{law}}{=} Y_{mn} \stackrel{\text{law}}{=} \sum_{k=1}^{m} \sum_{i=(k-1)n+1}^{kn} X_i \stackrel{\text{law}}{=} \sum_{k=1}^{m} c_n X_k \stackrel{\text{law}}{=} c_m c_n X;$$

which by induction, in turn, leads to $c_{n^k} = c_n^k$ for all $n, k \in \mathbb{N}$. Analogously, by stability we conclude that

$$X \stackrel{\text{law}}{=} \frac{1}{c_{n+m}} Y_{m+n} \stackrel{\text{law}}{=} \frac{c_m}{c_{n+m}} X_1 + \frac{c_n}{c_{n+m}} X_2 := U.$$

Let x > 0, then by symmetry of distribution of X and independence:

$$\mathbb{P}[X > x] = \mathbb{P}[U > x] \ge \mathbb{P}\left[X_1 \ge 0, X_2 > \frac{c_{m+n}}{c_n}\right] \ge \frac{1}{2}\mathbb{P}\left[X > \frac{c_{m+n}}{c_n}\right].$$

This yields that c_n/c_{n+m} 's are bounded uniformly for all $m, n \in \mathbb{N}$ since otherwise there would have been a sequence of m, n such that $c_{n+m}/c_n \to 0$, which would lead to $\mathbb{P}[X > x] \ge 1/4$ for all x > 0. Contradiction, as X is a well-defined real-valued random variable. In particular, c_k/c_n 's are bounded for all k < n.

Fix $r, s \in \mathbb{N}$, then there are unique $\alpha, \beta \in (0, \infty)$ such that $c_r = r^{1/\alpha}, c_s = s^{1/\beta}$. Now, by the above observations we conclude that $c_n = n^{1/\alpha}$ for all $n = r^k$ with $k \in \mathbb{N}$ and $c_m = m^{1/\beta}$ for all $m = s^l$ with $l \in \mathbb{N}$. The goal is to show that $\alpha = \beta$, then it will follow that $c_n = n^{1/\alpha}$ for all $n \in \mathbb{N}$. Towards that end, note that for any $m = s^l$, there exists $n = r^k$ so that $n < m \le rn$. Hence,

$$c_m = m^{1/\beta} \le (nr)^{1/\beta} = r^{1/\beta} c_n^{\alpha/\beta}.$$

Since c_n/c_m 's are bounded for all m > n as above and since c_m 's are unbounded in m (follows from definition of stability), we obtain that $\alpha \geq \beta$. Reversing the roles of n and m gives that $\beta \leq \alpha$, so $\alpha = \beta$.

Exercise 2 (Strictly stable distribution: equivalent definition).

1) Random variable X has a strictly stable distribution iff the following condition holds: if X_1, X_2 are independent variables, each with the same distribution as X and a, b > 0, then there exists a constant c > 0 such that $aX_1 + bX_2$ has the same distribution as cX.

Hint: for "only if" direction, find the explicit norming parameters using previous exercise, understand for which choices of a, b one could directly conclude and how to extend the result to all a, b > 0.

- 2) Prove that if X has a strictly stable distribution with norming constant c_n , then so is the law of -X. Conclude that if Y is independent of X with the same distribution, then the distribution of X-Y is strictly stable with the same norming constant. Note that law of X-Y is as well symmetric w.r.t. 0.
- *Proof.* 1) Suppose that the condition holds, by induction we will conclude that the definition holds: for n=2 follows by taking a=b=1. Suppose we know that there exist norming parameters $c_1, \ldots, c_n > 0$ such that $\frac{1}{c_k} \sum_{i \leq n} X_i$ has the same law as X for $k \leq n$. Here X_i independent copies of X. By independence $X_1 + \ldots + X_{n+1}$ has the same distribution as $c_nX + X_{n+1}$. The latter, in turn, by our condition has the same distribution as cX for some c>0, X is an independent copy of X. Thus, by setting $c_{n+1}=c$, the claim follows.

For the reverse direction, we would use the fact that norming constants of X are given by $c_n = n^{1/\alpha}$ for some $\alpha > 0$ (which follows immediately from Exercise 1). This together with stability implies that for any $m, n \in \mathbb{N}$, $n^{1/\alpha}X_1 + m^{1/\alpha}X_2$ has the same distribution as $\sum_{i\leq m+n} X_i$ which, in turn, has the same law as $(n+m)^{1/\alpha}X$. By dividing both sides by an appropriate $k^{1/\alpha}$ for $k \in \mathbb{N}$, we obtain that for all rational q, p > 0, there exists c > 0 such that $q^{1/\alpha}X_1 + p^{1/\alpha}X_2 \stackrel{\text{law}}{=} cX$. Note that it suffices to work with the case a=1 and $b=r^{1/\alpha}$ for any r>0. Recall that we have the claim for $b=q^{1/\alpha}$ for an arbitrary rational q>0. But now by continuity of the stable distribution (follows from Exercise 1, the degenerate case is trivial), we conclude that taking the limit $q \in \mathbb{Q} \to r$ will deliver the result, the coefficient $c(r) = \lim_{q} c(q)$.

2) Let us show that -X has stable law with the same norming parameters c_n as X. Let X_1, \ldots, X_n be independent copies of X, then $-X_1, \ldots, -X_n$ is a sequence of independent variables each with the same distribution as -X. By stability $\sum_{i \le n} -X_i = -\sum_{i \le n} X_i$ has law of $c_n(-X)$. Let X,Y be independent with the same distribution, let Z_1,\ldots,Z_n be a sequence of independent variables with the same distribution as X-Y, then $\sum_i Z_i$ has the same distribution as $\sum_{i} X_{i} - \sum_{i} Y_{i}$, where X_{i} are independent variables with law of X, and Y_i are independent with law \overline{Y} , so that all X_i, Y_j are mutually independent. By stability, $\sum_{i} X_{i} - \sum_{i} Y_{i}$ has the same distribution as $c_{n}X - c_{n}Y = c_{n}(X - Y)$.

Exercise 3 (Heavy tailed CLT).

Consider a random variable X, whose law is symmetric around zero and that satisfies $\mathbb{P}[|X| > x] = x^{-\alpha}$ for $\alpha \in (0,2)$ for all $x \geq 1$. Now let X_1, X_2, \ldots be i.i.d. with the law of X. E.g. by using characteristic functions (or otherwise) prove that $\frac{1}{n^{1/\alpha}} \sum_{i=1}^{n} X_i$ converges to the symmetric α strictly stable law, i.e. the norming constant is $c_n = n^{1/\alpha}$ and the law is symmetric w.r.t. zero.

Proof. Note that from $\mathbb{P}[|X| > x] = x^{-\alpha}$ for $\alpha \in (0, 2)$ for all x > 1, we conclude that the random variable is supported on $\mathbb{R}\setminus[-1,1]$ and its density is given by $f_X(x) = \frac{\alpha/2}{|x|^{\alpha}+1}\mathbf{1}_{|x|\geq 1}$ (check it). Hence, the characteristic function of X, $\phi_X(t) = \int_{\mathbb{R}} e^{itx} f_X(x) dx = \int_1^{\infty} \cos(|t|x) \frac{\alpha}{x^{\alpha+1}} dx$. We have that for any $t \neq 0$ (interested in |t| small)

that for any
$$t \neq 0$$
 (interested in $|t|$ sman)
$$\phi_X(t) = 1 - \int_1^\infty (1 - \cos(|t|x)) \frac{\alpha}{x^{\alpha+1}} dx = |t|^\alpha \underbrace{\int_{|t|}^\infty (1 - \cos u) \frac{\alpha}{u^{\alpha+1}} du}_{\int_{|t|}^1 + \int_1^\infty}.$$

Note that for |t| small, in the above splitting the second integral is positive (as integrand is almost everywhere positive) and finite, the value does not depend on |t|. As for the first integral, note that $1-\cos u\approx u^2/2$ for small values of u, thus, the first integral is bounded by $c(\alpha)+b(\alpha)|t|^{2-\alpha}$, where $c(\alpha)$ is the constant appearing by evaluating F at x=1 and $b(\alpha)>0$ is an explicit constant depending only on α . Therefore, as |t| tends to 0, $\phi_X(t)\sim 1-C|t|^{\alpha}(1+o(1))$. Thus, as $n\to\infty$

$$\phi_{\frac{\sum_{i=1}^{n} X_{i}}{n^{1/\alpha}}}(t) = \phi_{X}(t/n^{1/\alpha})^{n} \sim \left(1 - C\frac{|t|^{\alpha}(1 + o(1))}{n}\right)^{n} \sim e^{-C|t|^{\alpha}}.$$

Those are exactly the characteristic functions of α stable symmetric distributions - see Exercise 1.

Exercise 4 ("Open question"). Find classes of functions $f_n : \mathbb{R}^n \to \mathbb{R}$ such that $f_n \in C^{\infty}$ and so that

$$\sup_{x} \left| \frac{\partial^{3}}{\partial x_{i}^{3}} f_{n}(x) \right| = o(n^{-1}) \quad \forall 1 \le i \le n,$$

for all n sufficiently large.

Proof. Proof of this exercise will be provided in a separate file.