
TOPICS IN PROBABILITY. PART II: UNIVERSALITY

Exercise sheet 8: Universality and strictly stable distributions

Exercise 1 (Characteristic functions of strictly stable laws).
Let ϕα,a(t) = exp(−a|t|α). Show that ϕα,a is a characteristic function of a random variable

iff a > 0, α ∈ (0, 2]. Show that the latter ones are exactly characteristic functions of
symmetric strictly stable α distributions.

Remark: Note that there are strictly stable distributions whose characteristic exponent is
more complicated and involves imaginary terms, e.g. standard Lévy distribution or general-
ized Cauchy distribution (with non-zero location parameter).

Proof. Part 1: Let us first notice that α has to be positive since otherwise ϕ would have a
singularity at zero or would be just a constant function e−a, both can not happen if ϕ is
a characteristic function. The same argument implies that a can not be 0 (except for the
case X = 0, which we exclude). Moreover, if a were negative, we would have ϕ(t) = ec|t|

α

for a positive constant c, which is an unbounded function. This can not happen since the
absolute value of a characteristic function is bounded by 1. So, we are left with the range
a > 0, α > 0.

Let us show that for α > 2, ϕα,a can not be a characteristic function. To this end, note that
if X has characteristic function ϕα,a, then its law is symmetric and α-stable1 with norming
constants cn = n1/α (check it). Since the only strictly stable distribution with finite variance
is normal (corresponds to α = 2) — this follows by CLT — it suffices to show that if α > 2,
then the variance of X is finite. Let t be sufficiently large such that P[|X| > t] < 1/4. Then
also P[|Sn| > cnt] < 1/4 for Sn =

∑n
i=1Xi. By symmetry of the distribution, we further

obtain that P[|Sn| > cnt] ≥ 1
2
P[maxi≤n |Xi| > t]. Indeed, let X1 be the first term among

X1, . . . , Xn that is largest in the absolute value and S ′
n := Sn−X1; then by i.i.d. assumption

on Xi’s and symmetry of their law, the joint laws of (X1, S ′
n) and (X1,−S ′

n) coincide. Thus,

P[X1 > c] ≤ P[X1 > 0, S ′
n ≤ 0] + P[X1 > 0, S ′

n ≥ 0] = 2P[X1 > 0, S ′
n ≥ 0],

which, in turn, implies that

P[|Sn| > cnt] = 2P[Sn > cnt] ≥ 2P[X1 > cnt, S
′
n ≥ 0] ≥ P[X1 > cnt] =

1

2
P[max

i≤n
|Xi| > cnt].

by symmetry of X1, as desired. We furthermore have

P[max
i≤n

|Xi| > t] = 1− (1− P[|X| > cnt])
n = 1− en log(1−P[|X|>cnt]) ≥ 1− e−nP[|X|>cnt].

Altogether, we have shown that
1

2
(1− exp(−nP[|X| > tcn])) ≤ P[|Yn| > tcn] <

1

4
.

1X has strictly α-stable law if for any n there exists cn ∈ R such that 1
cn

∑n
i=1 Xi for i.i.d. copies Xi of

X has the same law as X
1



This implies that (nP[|X| > tcn])n is bounded, and since cn = n1/α, also that P[|X| > x] ≤
Mx−α for some M > 0 and all x sufficiently large. This tail-asymptotic immediately yields
that Var[X] is finite iff α > 2.

So far we have shown that outside of the range a > 0, α ∈ (0, 2], ϕα,a is not a characteristic
function. Note that wlog we might restrict ourselves to a = 1, since for any other positive
value b we obtain the desired characteristic function by considering bαX for X with ϕα,1. For
α = 2, ϕ2,a is the characteristic function of centered normal distribution (if a = 1, then with
variance

√
2). So, it remains to show (for the first statement) that ϕα,1 is a characteristic

function of some distribution for α ∈ (0, 2). This follows immediately from Exercise 3.
Part 2: We now complete the proof of the exercise by verifying that characteristic functions

of symmetric strictly α-stable distributions (for α ∈ (0, 2), α = 2 corresponds to Gaussian)
are of the form ϕα,a for some a > 0. To this end, we show that the norming constants
are given by cn = n1/α, which then together with stability yields that for any m,n ∈ N,
ϕX(m/n) = ϕX(1)

|m|α/|n|α , and thus, ϕX(q) = ϕ(1)|q|
α for all rational q. Using this relation

and continuity of characteristic functions, we may conclude that ϕX(u) > 0 for all u, so
c = − log ϕ(1) > 0 and ϕX(t) = e−c|t|α for all t ∈ R.

For the norming constants, by stability we obtain,

cnmX
law
= Ymn

law
=

m∑
k=1

kn∑
i=(k−1)n+1

Xi
law
=

m∑
k=1

cnXk
law
= cmcnX;

which by induction, in turn, leads to cnk = ckn for all n, k ∈ N. Analogously, by stability we
conclude that

X
law
=

1

cn+m

Ym+n
law
=

cm
cn+m

X1 +
cn

cn+m

X2 := U.

Let x > 0, then by symmetry of distribution of X and independence:

P[X > x] = P[U > x] ≥ P
[
X1 ≥ 0, X2 >

cm+n

cn

]
≥ 1

2
P
[
X >

cm+n

cn

]
.

This yields that cn/cn+m’s are bounded uniformly for all m,n ∈ N since otherwise there would
have been a sequence of m,n such that cn+m/cn → 0, which would lead to P[X > x] ≥ 1/4 for
all x > 0. Contradiction, as X is a well-defined real-valued random variable. In particular,
ck/cn’s are bounded for all k < n.
Fix r, s ∈ N, then there are unique α, β ∈ (0,∞) such that cr = r1/α, cs = s1/β. Now, by the
above observations we conclude that cn = n1/α for all n = rk with k ∈ N and cm = m1/β for
all m = sl with l ∈ N. The goal is to show that α = β, then it will follow that cn = n1/α

for all n ∈ N. Towards that end, note that for any m = sl, there exists n = rk so that
n < m ≤ rn. Hence,

cm = m1/β ≤ (nr)1/β = r1/βcα/βn .

Since cn/cm’s are bounded for all m > n as above and since cm’s are unbounded in m (follows
from definition of stability), we obtain that α ≥ β. Reversing the roles of n and m gives
that β ≤ α, so α = β. □

Exercise 2 (Strictly stable distribution: equivalent definition).
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1) Random variable X has a strictly stable distribution iff the following condition holds:
if X1, X2 are independent variables, each with the same distribution as X and a, b > 0, then
there exists a constant c > 0 such that aX1 + bX2 has the same distribution as cX.

Hint: for "only if" direction, find the explicit norming parameters using previous exercise,
understand for which choices of a, b one could directly conclude and how to extend the result
to all a, b > 0.

2) Prove that if X has a strictly stable distribution with norming constant cn, then so is
the law of −X. Conclude that if Y is independent of X with the same distribution, then the
distribution of X − Y is strictly stable with the same norming constant. Note that law of
X − Y is as well symmetric w.r.t. 0.

Proof. 1) Suppose that the condition holds, by induction we will conclude that the definition
holds: for n = 2 follows by taking a = b = 1. Suppose we know that there exist norming
parameters c1, . . . , cn > 0 such that 1

ck

∑
i≤nXi has the same law as X for k ≤ n. Here Xi

independent copies of X. By independence X1 + . . . + Xn+1 has the same distribution as
cnX +Xn+1. The latter, in turn, by our condition has the same distribution as cX̃ for some
c > 0, X̃ is an independent copy of X. Thus, by setting cn+1 = c, the claim follows.

For the reverse direction, we would use the fact that norming constants of X are given
by cn = n1/α for some α > 0 (which follows immediately from Exercise 1). This together
with stability implies that for any m,n ∈ N, n1/αX1 +m1/αX2 has the same distribution as∑

i≤m+n Xi which, in turn, has the same law as (n+m)1/αX. By dividing both sides by an
appropriate k1/α for k ∈ N, we obtain that for all rational q, p > 0, there exists c > 0 such
that q1/αX1 + p1/αX2

law
= cX. Note that it suffices to work with the case a = 1 and b = r1/α

for any r > 0. Recall that we have the claim for b = q1/α for an arbitrary rational q > 0. But
now by continuity of the stable distribution (follows from Exercise 1, the degenerate case is
trivial), we conclude that taking the limit q ∈ Q → r will deliver the result, the coefficient
c(r) = limq c(q).

2) Let us show that −X has stable law with the same norming parameters cn as X. Let
X1, . . . , Xn be independent copies of X, then −X1, . . . ,−Xn is a sequence of independent
variables each with the same distribution as −X. By stability

∑
i≤n−Xi = −

∑
i≤nXi has

law of cn(−X). Let X, Y be independent with the same distribution, let Z1, . . . , Zn be a
sequence of independent variables with the same distribution as X − Y , then

∑
i Zi has the

same distribution as
∑

i Xi −
∑

i Yi, where Xi are independent variables with law of X, and
Yi are independent with law Y , so that all Xi, Yj are mutually independent. By stability,∑

i Xi −
∑

i Yi has the same distribution as cnX − cnY = cn(X − Y ). □

Exercise 3 (Heavy tailed CLT).
Consider a random variable X, whose law is symmetric around zero and that satisfies

P[|X| > x] = x−α for α ∈ (0, 2) for all x ≥ 1. Now let X1, X2, . . . be i.i.d. with the law of
X. E.g. by using characteristic functions (or otherwise) prove that 1

n1/α

∑n
i=1Xi converges

to the symmetric α strictly stable law, i.e. the norming constant is cn = n1/α and the law is
symmetric w.r.t. zero.

Proof. Note that from P[|X| > x] = x−α for α ∈ (0, 2) for all x ≥ 1, we conclude that the ran-
dom variable is supported on R\[−1, 1] and its density is given by fX(x) =

α/2
|x|α+1

1|x|≥1 (check
it). Hence, the characteristic function of X, ϕX(t) =

∫
R e

itxfX(x)dx =
∫∞
1

cos(|t|x) α
xα+1dx.
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We have that for any t ̸= 0 (interested in |t| small)

ϕX(t) = 1−
∫ ∞

1

(1− cos(|t|x)) α

xα+1
dx = |t|α

∫ ∞

|t|
(1− cosu)

α

uα+1
du︸ ︷︷ ︸∫ 1

|t| +
∫∞
1

.

Note that for |t| small, in the above splitting the second integral is positive (as integrand
is almost everywhere positive) and finite, the value does not depend on |t|. As for the
first integral, note that 1 − cosu ≈ u2/2 for small values of u, thus, the first integral is
bounded by c(α)+ b(α)|t|2−α, where c(α) is the constant appearing by evaluating F at x = 1
and b(α) > 0 is an explicit constant depending only on α. Therefore, as |t| tends to 0,
ϕX(t) ∼ 1− C|t|α(1 + o(1)). Thus, as n → ∞

ϕ∑n Xi

n1/α

(t) = ϕX(t/n
1/α)n ∼

(
1− C

|t|α(1 + o(1))

n

)n

∼ e−C|t|α .

Those are exactly the characteristic functions of α stable symmetric distributions - see Ex-
ercise 1. □

Exercise 4 ("Open question"). Find classes of functions fn : Rn → R such that fn ∈ C∞

and so that

sup
x

∣∣∣∣ ∂3

∂x3
i

fn(x)

∣∣∣∣ = o(n−1) ∀1 ≤ i ≤ n,

for all n sufficiently large.

Proof. Proof of this exercise will be provided in a separate file. □
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