TOPICS IN PROBABILITY. PART II: UNIVERSALITY

EXERCISE SHEET 7: UNIVERSALITY AND CLT

Exercise 1. Does the CLT remain true if we do not assume that variances of the variables are finite? More precisely, let $(X_i)_i$ be i.i.d. random variables with mean zero and infinite variance. Does $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$ converge in law (to normal distribution)?

 \star : Suppose X_i 's are symmetric with $\mathbb{P}[|X_i| > x] = x^{-\alpha}$ for $\alpha \in (0,2)$ for all $x \geq 1$. For which α 's is X_i integrable? Is it possible to find a different normalization of $\sum_{i=1}^n X_i$ such that the resulting variable converges in law (to some probability law)? What is the intuitive explanation?

Proof. The canonical statement of CLT does not remain true for general variables of infinite variance. For instance, let X_i 's be as in the star question. We will show on the next exercise sheet (Exercise 3 Sheet 8) that their characteristic function satisfies $\phi(t) \sim 1 - C|t|^{\alpha}(1+o(1))$ as |t| tends to 0 for an appropriate constant C > 0. Thus, as $n \to \infty$,

$$\phi_{\frac{\sum_{n=1/2}^n X_i}{n^{1/2}}}(u) = \phi(t/n^{1/2})^n \sim \left(1 - C\frac{|u|^\alpha(1+o(1))}{n^{\alpha/2}}\right)^n \sim e^{-C|u|^\alpha n^{1-\alpha/2}(1+o(1))} \sim 0.$$

For $\alpha \in (1,2)$, the variables X_i 's are integrable, hence, the counterexample to the first part is found.

Exercise 2 (Lindeberg-Feller CLT). Let $(X_i)_i$ be independent random variables with $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[X_i^2] = \sigma_i^2 < \infty$ (not necessarily equal to one another). Let $s_n^2 := \sum_{i=1}^n \sigma_n^2$. Show by adjusting the proof of Lindeberg exchange principle to this more general setting that if for any $\varepsilon > 0$,

$$\frac{1}{s_n^2} \sum_{i=1}^n \mathbb{E}[X_i^2 \mathbf{1}_{\{|X_i| > \varepsilon s_n\}}] \xrightarrow{n \to \infty} 0,$$

then $\frac{1}{s_n} \sum_{i=1}^n X_i$ converges in law to a standard normal variable.

Hint: Take Y_i 's (in the proof of the exchange principle) to be independent central normal with variance σ_i^2 , note that now \tilde{X}_k 's are not identically distributed — how does it affect (1.2)?

Find a sequence of independent random variables $(X_i)_i$ with mean zero and variance one such that $\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i$ does not converge in law to a standard normal variable.

Proof. Let Y_i 's be independent centered normal with variance σ_i^2 . We set

$$S_{n,k} := \frac{\sum_{i=1}^{k-1} X_i + \sum_{i=k}^n Y_i}{s_n},$$

so that $S_{n,n+1} = S_n$ and $S_{n,1} \sim N(0,1)$, and

$$S_{n,k}^0 := \frac{\sum_{i=1}^{k-1} X_i + \sum_{i=k+1}^n Y_i}{s_n}.$$

Analogously to the proof in the lecture, using Taylor's theorem up to second order with a remainder, we get that a.s.,

$$f(S_{n,k+1}) - f(S_{n,k}) = \frac{X_k - Y_k}{s_n} f'(S_{n,k}^0) + \frac{X_k^2 - Y_k^2}{2s_n^2} f''(S_{n,k}^0) + R_n(f, X_k/s_n) - R_n(f, Y_k/s_n),$$

where $|R_n(f,u)| \leq \max(\|f'''\|_{\infty}, \|f''\|_{\infty}) \min(u^3/6, u^2) =: C \min(u^3/6, u^2)$. More precisely, we used that $f(y) - f(x) = f'(x)(y-x) + f''(x)(y-x)^2 + R(x,y,f)$ with the remainder bounded by $|R(x,y,f)| \leq \min(\frac{\sup_{z \in [x,y]} |f'''(z)|}{6} (y-x)^3, \sup_{z \in [x,y]} |f''(z)| (y-x)^2)^1$. Note that R_n is integrable as X_k 's and Y_k 's are square-integrable. Since furthermore $\mathbb{E}[X_k] = \mathbb{E}[Y_k] = 0$, $\mathbb{E}[X_k^2] = \sigma_k^2 = \mathbb{E}[Y_k^2]$ (and X_k, Y_k are independent of $S_{n,k}^0$), we obtain that

$$|\mathbb{E}[f(S_n) - f(Y)]| \le C \sum_{k=1}^n \left(\mathbb{E}[\min(|X_k|^3/(6s_n^3), X_k^2/s_n^2)] + \mathbb{E}[\min(|Y_k|^3/(6s_n^3), Y_k^2/s_n^2)] \right),$$

where Y is a standard normal random variable.

For $\varepsilon > 0$ small, write

$$X_k = X_k \mathbf{1}_{\{|X_k| \le \varepsilon s_n\}} + X_k \mathbf{1}_{\{|X_k| > \varepsilon s_n\}} =: \widetilde{X}_k + X_{k,>};$$

and analogously $Y_k = \widetilde{Y}_k + Y_{k,>}$. We then have

$$(0.1) \qquad \mathbb{E}[\min(|X_k|^3/(6s_n^3), X_k^2/s_n^2)] \le \frac{1}{6s_n^3} \mathbb{E}[|\widetilde{X}_k|^3] + \frac{1}{s_n^2} \mathbb{E}[X_{k,>}^2] \le \frac{\varepsilon \sigma_k^2}{6s_n^2} + \frac{1}{s_n^2} \mathbb{E}[X_{k,>}^2].$$

Note that by assumption, $\frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}[X_{k,>}^2]$ converges to zero as n tends to infinity. Therefore, for all n sufficiently large, $\sum_{k=1}^n \mathbb{E}[\min(|X_k|^3/(6s_n^3), X_k^2/s_n^2)] \leq \varepsilon/4$. Furthermore, Lindeberg's condition implies that $\max_k \frac{\sigma_k^2}{s_n^2} \to 0$ as n tends to infinity. Indeed, for any $\delta > 0$,

$$\max_k \sigma_k^2/s_n^2 = \max_k \mathbb{E}[X_k^2/s_n^2] \le \delta^2 + \sum_i \mathbb{E}[X_k^2/s_n^2 \mathbf{1}_{\{|X_k|\delta s_n\}}] \xrightarrow{n \to \infty} \delta^2 \xrightarrow{\delta \downarrow 0} 0.$$

Thus, Y_k 's also satisfy Lindeberg's condition: for any $\varepsilon > 0$,

$$\frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}[Y_k^2 \mathbf{1}_{\{|Y_k| > \varepsilon s_n\}}] \le \sum_{k=1}^n \frac{\sigma_k^2}{s_n^2} \mathbb{E}[Y^4] \max_k \mathbb{P}[|Y| > \varepsilon s_n/\sigma_k] \le 3\mathbb{P}[|Y| > \varepsilon s_n/\max_k \sigma_k] \xrightarrow{n \to \infty} 0.$$

Hence, (0.1) also holds for Y_k 's, and we conclude that for any $\varepsilon > 0$, there exists n_{ε} such that for all $n \geq n_{\varepsilon}$,

$$|\mathbb{E}[f(S_n) - \mathbb{E}[f(Y)]| \le \varepsilon(||f'||_{\infty} + ||f''||_{\infty} + ||f'''||_{\infty}).$$

With the same proof as in the lecture notes the desired CLT follows from the exchange principle.

Consider a sequence of independent random variables $(X_n)_n$, for each n supported in $\{-2^n,0,2^n\}$ with $\mathbb{P}[X_n=2^n]=\mathbb{P}[X_n=-2^n]=\frac{1}{2}4^{-n}$. Note that $\mathbb{E}[X_n]=0$, $\mathrm{Var}[X_n]=1$

This, in turn, follows from iterative application of fundamental theorem of calculus: $f(y) - f(x) = \int_x^y f'(z) dz = \cdots = f'(x)(y-x) + f''(x)(y-x)^2/2 + \int_x^y \int_x^z \int_x^u f'''(s) ds du dz$ and the latter summand is bounded by both $\sup |f'''| |y-x|^3/6$ and $2 \sup |f''| (y-x)^2/2$.

and its characteristic function is given by $\phi_n(t) = 1 - 4^{-n}(1 - \cos(2^n t))$ for each $n \in \mathbb{N}, t \in \mathbb{R}$. Therefore,

$$\begin{split} \phi_{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}}(t) &= \prod_{i=1}^{n}\left(1 - 4^{-i}(1 - \cos(2^{i}t/\sqrt{n}))\right) = \exp\left(\sum_{i=1}^{n}\log(1 - 4^{-i}(1 - \cos(2^{i}t/\sqrt{n})))\right) \\ &\geq \exp\left(\sum_{i=1}^{n}\log(1 - 2*4^{-i})\right) \xrightarrow[\text{unif in } t]{n \to \infty} \exp\left(\sum_{i=1}^{\infty}\log(1 - 2*4^{-i})\right) =: \delta > 0. \end{split}$$

Since characteristic function of any symmetric non-degenerate normal distribution is given by e^{-Ct^2} for some C > 0 and converges to zero as t tends to infinity, we conclude that $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$ cannot converge in law to normal distribution.

Exercise 3 (Sherrington-Kirkpatrick ground state).

Let us consider statistical mechanics model of n spins, i.e. particles that can be in one of two states $\{\pm 1\}$, due to Sherrington and Kirkpatrick, which models a rough energy landscape by introducing random interactions between the spins. More precisely, for a configuration of spins $\sigma \in \{-1,1\}^n$, let the energy $H(\sigma)$ be defined as

$$H(\sigma) = \frac{1}{n^{3/2}} \sum_{1 \le i < j \le n} X_{ij} \sigma_i \sigma_j,$$

where X_{ij} are independent with zero mean and unit variance. The ground-state energy, that is, the energy the system attains at zero temperature (when in thermal equilibrium), is given by

$$Z = \min_{\sigma \in \{-1,1\}^n} H(\sigma).$$

One of the basic questions to ask is whether Z is universal, more precisely, whether it depend significantly on the distribution of X_{ij} 's or not? Universality is important from the physical perspective: it states that macroscopic observations are insensitive to the microscopic details in the description of physical systems. We want to apply Universality theorem proven in the lecture, but Z is not three times differentiable w.r.t. X_{ij} . The solution is to introduce a suitable smooth approximation of the minimum.

• Show that for any $\beta > 0$,

$$|Z - Z_{\beta}| \le \frac{n \log 2}{\beta}, \quad Z_{\beta} = -\frac{1}{\beta} \log \left(\sum_{\sigma \in \{-1,1\}^n} e^{-\beta H(\sigma)} \right).$$

- Combine part one with the universality theorem to show that the expected ground-state energy $\mathbb{E}[Z]$ is insensitive to the distribution of the variables X_{ij} . Assume that the third moments of X_{ij} 's exist and are uniformly bounded.
- \star : extend to the case of unbounded/non-existent third moments.

Proof. Let us prove the upper bound for $Z - Z_{\beta}$,

$$Z - Z_{\beta} = Z + \frac{1}{\beta} \log \left(\sum_{\sigma \in \{-1,1\}^n} e^{-\beta H(\sigma)} \right) \le Z + \frac{1}{\beta} \log \left(\sum_{\sigma \in \{-1,1\}^n} e^{-\beta Z} \right) = \frac{n}{\beta} \log 2.$$

On the other hand, if $\alpha \in \{-1,1\}^n$ is the (random) minimizing configuration, then

$$Z - Z_{\beta} = \frac{1}{\beta} \log \left(\sum_{\sigma \in \{-1,1\}^n} e^{-\beta(H(\sigma) - Z)} \right) = \frac{1}{\beta} \log \left(1 + \sum_{\sigma \neq \alpha} \underbrace{e^{-\beta(H(\sigma) - Z)}}_{\geq 0} \right) \geq 0 \geq -\frac{n}{\beta} \log 2.$$

As for the second part of the exercise, let us first assume that X_{ij} 's have third moments which are uniformly bounded by C > 0 and that Z^0 corresponds to Z with all X_{ij} being independent standard Gaussians, then by the universality theorem

$$\begin{split} |\mathbb{E}[Z] - \mathbb{E}[Z^0]| &\leq |\mathbb{E}[Z_{\beta}] - \mathbb{E}[Z_{\beta}^0]| + 2\frac{n}{\beta}\log 2 \leq 2\frac{n}{\beta}\log 2 + \frac{2C}{6}\sum_{1 \leq i < j \leq n} \left\| \partial^3 Z_{\beta} / \partial X_{ij}^3 \right\|_{\infty} \\ &\leq 2\frac{n}{\beta}\log 2 + \frac{2C}{6}\sum_{1 \leq i < j \leq n} 3\frac{\beta^2}{n^{9/2}} \leq 2\frac{n}{\beta}\log 2 + \frac{C\beta^2}{n^{5/2}} \leq \tilde{C}\left(\frac{n}{\beta} + \left(\frac{\beta}{n^{5/4}}\right)^2\right). \end{split}$$

So, choosing $\beta = n^u$ for any $u \in (1, 5/4)$ yields a good bound (which converges to 0 as n tends to infinity) on the difference of $\mathbb{E}[Z]$ and $\mathbb{E}[Z^0]$.

Extension to the general case (no assumption on third moments) can be done fully analogously to the proof of Exercise 1 Sheet 7.

Discussion of Z^0 : Note that since we are summing only over X_{ij} with i < j, we can consider matrix X, which has entries X_{ij} for $i \le j$ and X_{ji} for i > j, so that X is symmetric. Then there exist orthogonal matrix U and a diagonal matrix D so that $X = U^T DU$ and so

$$H(\sigma) = \frac{1}{2n} (U\sigma)^{T} \frac{D}{\sqrt{n}} (U\sigma) - \frac{\sum_{i} X_{ii}}{2n^{3/2}} = \frac{\|\sigma\|^{2}}{2n} \frac{(U\sigma)^{T} \frac{D}{\sqrt{n}} (U\sigma)}{\|U\sigma\|^{2}} - \frac{\sum_{i} X_{ii}}{2n^{3/2}}$$
$$= \frac{\left\|\sqrt{\frac{D}{\sqrt{n}}} (U\sigma)\right\|^{2}}{2\|U\sigma\|^{2}} - \frac{\sum_{i} X_{ii}}{2n^{3/2}} = \frac{\left\|\sqrt{\frac{X}{\sqrt{n}}}\sigma\right\|^{2}}{2\|\sigma\|^{2}} - \frac{\sum_{i} X_{ii}}{2n^{3/2}},$$

where \sqrt{D} is diagonal with potentially complex entries so that $\sqrt{D}^2 = D$ and $\sqrt{X} = U^T \sqrt{D}U$. The second term converges almost surely and in L² to zero as n tends to infinity. So, at the end of the day, exploring limiting behaviour of Z^0 is equivalent to investigating operator norm of $\sqrt{X/\sqrt{n}}$ restricted to the space of spin configurations, which is in turn equivalent to investigate the operator norm of X/\sqrt{n} restricted to the space of spin configurations. The latter can be bounded by absolute values of maximal and minimal eigenvalues of X/\sqrt{n} .