TOPICS IN PROBABILITY. BETWEEN PARTS I AND II: RANDOM
PROJECTIONS, FIRST STEPS TOWARDS UNIVERSALITY

EXERCISE SHEET 6: LOG-SOBOLEV INEQUALITY AND RANDOM PROJECTIONS

Exercise 1 (Proof of Gaussian log-Sobolev inequality). (1) Complete the proof (sketched
in class) of Gaussian log-Sobolev inequality

Entlf] < SEIIV/I?/1]

under the assumption on boundedness of deriwatives of f > 0 up to third order by
filling in the missing details.
(2) Extend the result to continuously differentiable functions f > 0.

Proof. Using tensorization of entropy we can reduce the problem to the one-dimensional
case: to show is that for f: R — [0,00) € C*, Ent[f] < sE[(f")?/f], where E is taken w.r.t.
standard Gaussian measure.

We start with the proof under the assumption that f > 0 € C? with |f|,[f’],|f"] and
|| bounded, say, by C' > 0. For n € N, we define ¢ : R* — R by g(z1,...,2,) =

oo, IEl/\/_) Let X = (X1,...,X,) be a standard Gaussian vector. Since f(X;) has the
same law as g(X), we need to show that Ent[g(X)] < sE[((f')?/f)(X1)]. By tensorisation
of entropy,

Ent[g Z Ent;[g
where Ent;[g] = E;[g(X) log % E[ } and E;[-] = E[-|(X;);»]. Recall that P[|X;| > (logn)?] <
2e~(08m)*/2 g by assumptions on f, glog g is uniformly bounded, thus,
Q(X) (log n)2
Ent[g] <E Ei[g(X)log =——-2-1 ogn) + O(ne~os™?),
Z Ei[g(X)] (Xil<tos o1 ( )

For any 1 <i <mnandx € R" set ' = (x1,...,7,_1,0,2;11,...,%,). Then, by Taylor’s
theorem, since z — 2 = (0,...,0,z;,0,...,0):

9(x) = g(a') + Osg(a")w; + 581'1'9(1’2)37? + R (352)1}3

with |R ;4 (y)| bounded by maximum of the supremum norm of any third order partial
derivative, thus (since 9,9 = n=*2f") by C/n®?2. Furthermore,

Eilg(X)] = g(X') + dig(XE[X)] + %aiig(Xi)E[Xf] + O(n=*?)

=g(X") + éaiig(XZ) +0(n™3?).
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Here we have additionally used that X; is independent of the remaining coordinates (X ),
properties of conditional expectation and the fact that E[|X;|?] is a finite constant. Since by
assumption f > 0 is bounded away from 0 and clearly so is g then, we further get that for
n sufficiently large,

9(X") _ 1 0;9(X") n—3/2 _1: 13119()(1) n—3/2
= (1035 rom ™) =1 gt o

where we have used that 0;;g = f”/n = O(1/n) uniformly on R", and that (1 +z)t=1-z+
O(z?) for all |z| sufficiently small. Note further that %% = C’)( =3/2) ( Zg)Z o(n=3/2),

9(X) — 14+ 8Zg(XZ) 1 aug( )

ALY R 2 _ 32 . 2 3y,
Ei[g(X)] 9(X7) 5 gy K~ DHOETPO+ X+ X4 X))

Here O(n=%/2(1 + X; + X? + X)) means that variables X; to the respective powers 0, 1,2,3
appear with some pre-coefficients (might be different and random) that are in O(n=3/2)
(deterministic bound).

From now on, let us work on the event {|X;| < (logn)?}. We then get that ]Ef"[é)&)] =

1+ “‘(’g(z))X +3 a;é’;)f) J(X2—1)+O(n3/10g n) = 1+ O(n~"/2). Using the above expansion

of g and the fact that log(1 4+ z) =z — "“"2—2 + O(23) for all z close to zero, we obtain

9(X) log % = (g(Xi) +0,9(X") X + %aiig<Xi)Xi2 +O(n*?log® n)> X

9i9(X") ., | 19:ug(X") 2 _1,0ig(X)
(9<Xf> ey 00

)2X2 + O(n3/?1og" n))

1 (9ig(X"))?

90X+ Lo (XN (X2 — 1)+

X2+ 0mn3?logn).

Therefore, by properties of conditional expectation,

g(X
E [g(X) log —E [;()2)] 1{\X¢\§(logn)2}] = O( —-3/2 lOg n) + &g( ) [X 1{\X |<(log n)2 }]
1 i 1 (8ig(Xi))2
+50i9(X JE[(X7 — 1)1qx1<0gn)2y] + §WE[X¢21{|Xi|s<logn)2}]-

By symmetry of centered Gaussian law, E[X;1{x,<(ogn)2}] = 0; and since E[X?] = 1 and
E[(X? + 1)1{x,>(0gn2y] < 2(2e708™*/2 1 (logn)2e~(08M*/2) < n=3/2 we further obtain

1 (9ig(X"))

—+O n_3/210 671, .

Ei[g(X) log %Mx 1<(logn)2}] =
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Altogether, since X,’s are i.i.d., and )" , X;/y/n has the same law as @/”T_le, which, in

turn, converges to X; (a.s. or in law), by continuity and boundedness of frac(f’)%f,

1 [ (9i9(X7))? 6
Ent[g] < §E _;:1 % + O(n"?1og® n)
_1 -(fI)Q n—1 121000 1) P20 L (f)?
_QE_f( - X1) | +0O( log”n) — E[f(Xl)].

Let us now extend the result to strictly positive C! functions f. Note that in this case,
g = +/f is continuously differentiable, and the desired inequality rewritten in terms of ¢
takes form Ent[g?] < 2E[(¢')?]. We will show that the latter inequality is true for any
g : R — R € C'. To this end, assume that E[(¢')?] < oo, otherwise there is nothing
to show, and note that by the first part of this exercise we know that if ¢ # 0 € C?
(so that f = ¢* > 0) with g,¢,¢” and ¢" uniformly bounded (say, by C' > 0 finite), the
inequality is verified. Furthermore, since z — z log z is uniformly continuous on [0, (C'+1)?],
Ent[(g + €)?] — Ent[¢?] as ¢ € (0, 1) tends to zero. This observation allows us to extend the
result to g € C3(R,R) with ¢,¢’, ¢” and ¢g” uniformly bounded. We now proceed as in the
proof of the extension of Gaussian Poincaré inequality, see Exercise 1 Sheet 3. Namely, let 7.
be a standard mollifier and 1,, be a smooth cut-off function with uniformly (independent of n)
bounded derivatives up to third order and taking values 1 in [—n,n| and 0 in [-n—1,n+1]°.
Set g. = g * . and g., = Yng. € C°. By the above,

Bntlg?,] < 2E((g.,,)?

We saw in the proof of Exercise 1 Sheet 3 that by first taking limit ¢ — 0 and then
n — oo, the r.h.s. converges to 2E[(¢')?] as desired. Note that by uniform continu-
ity of x — xlogz on any compact subset of [0,00) and uniform convergence over com-
pacts of g. towards g, we may conclude that Ent[g?,] converges to Ent[g2] as ¢ — 0,
and also E[¢2 log g21,2<1] to E[g?log g*1,2<1] as n tends to infinity. By Monotone conver-
gence theorem, we further deduce that E[g2] converges to E[g?] and E[1[_,, ;92 log g21251] =
E[1_, 0% log g*1,2-1] towards E[g?log g*1,2+;] (since zlogz is increasing on [1,00)) as n
tends to infinity. It only remains to show that E[1(_,_1 _n)umn+1)9°02 log(g?1h2)14254] van-
ishes in the limit n — oo. We recall that in the proof of Exermse 1 Sheet 3, we further
proved that ¢%(z)e *"/2 — 0 as |x| — oo, hence, IE[1(—n-1,—n)umnt1)g°¢2 log(¢3)1g2>1]| <
SUD, (0,1 (710 T) MaXye(—n—1,—n)U(nnt1) @(y)e ¥’/ = 0 as n — co. Analogously we show
that ¢2(z)log g%(z)e **/2 — 0 as |z| — oo (on the event g2 > 1) to complete this part of
the proof. Suppose by contradiction (wlog) that liminf, . ¢*(z)log g*(z)e~*"/2 > 0, this
implies that ¢%(z) = Q(e*”/2/x2), and hence, (¢')2(z) = Q(e”/2(1 — 1/22)?) = Q(e**/2) as
x — oo. The latter contradicts our assumption that E[(¢')?] < oo.

Let f >0 € C', then by the previous part, for any € > 0, Ent[f + €] < 1E[(f")?/(f + ¢)].
Note that E[(f")?/(f+2)] < B[(f')%/f] and E[(f+¢) log(f+e)Lyo1se] > Elf log(f)1oaye] (as
xlog x is increasing on [1/e,00)). By uniform continuity of x — z log x on any compact subset
of [0,00), E[(f+¢)log(f+€)1j<1/c| converges as € € (0,1/2] — 0 towards E[f log(f)1s<1/e]-

The remaining term E[(f + )] log(E[f + ¢]) clearly converges to E[f]log(E[f]). O
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Exercise 2 (log-Sobolev inequality for general Gaussians). Let X € R™ has centered Gauss-
tan distribution with covariance matrix =. Show that for any continuously differentiable
function f : R™ — R the following holds,

Ent[f?] < 2E[(EVF(X), VF(X))).

Proof. Let A be the square root of the positive semi-definite matrix =. Then, X is equal in
law to AZ, where Z € R" is a standard Gaussian vector. Let us introduce g(z) = f(Ax),
which is continuously differentiable with Vg(z) = AT (V f)(Az). By applying log-Sobolev
inequality to g(Z), we get

Ent[f*] = Ent[g*(2)] < 2E[|Vg(Z)|I"] = 2E[(EV f(X), Vf(X))].
0

Exercise 3 (log-Sobolev implies Poincaré). Prove that Gaussian log-Sobolev inequality (for
standard Gaussian vector) implies Gaussian Poincaré inequality.

Hint: Let ¢ > 0 be small and use the log-Sobolev inequality for (1 + ¢f). Show that
Ent[(1 + ef)?] = 2e*Var[f(X)] + O(&?).

Proof. Let ¢ > 0 be small. By Gaussian log-Sobolev inequality, we obtain
Ent[(1 + ¢9)’] < 26°E[||Vg]]
Use that log(1 +vy) =y — y?/2 + O(y?) for y — 0. In particular, you get that

1
Butl(1+ 5] = 28 |(1-+29) (3~ BD] - 37 ~ ElP)) + 04")| = 2Varly] + O(B*),
By plugging eg, resp., instead of y we get that Ent[(1+ £g)?] = 2e?Var[g] + O(e?). Together
with the bounds for the entropy dividing by €% and taking the limit ¢ — 0 yields the desired
result. U

Exercise 4 (Weak Poincaré lemma). Let m € N be fized. Consider a random vector XN
uniformly distributed on the unit sphere SNt C RN. Let X™ denote the vector consisting
of its first m coordinates. Prove that as N tends to infinity the law of VNX™N converges
to standard Gaussian distribution in dimension m.

Proof. Let Y be a N-dimensional standard Gaussian vector. Then Y/ ||Y||, is uniformly
distributed on the N — 1 sphere. There are two ways to see this. The first one is based
on the fact that the unique law on the unit N-dimensional vectors which is invariant under
rotations is the uniform distribution on the N — 1-sphere. So, since standard Gaussian
distribution is invariant under rotations and rotations do not change the value of the norm
of the vector, we conclude that Y/ ||Y|, has to be uniformly distributed on the sphere.
Alternatively one can just consider E[f(Y/||Y]|,)] for all measurable non-negative functions
f, changing to polar coordinates in the integral (w.r.t. the Gaussian density) yields the
result. So, instead of X we will now work with Y/ ||Y||,. With the same notation as for
X™N we further conclude that X™ has the same law as Y™ /|| Y],.

The idea is to use concentration of ||Y|, around v/N. Let us write f;, for the density of the

standard k-dimensional Gaussian vector. For any continuity set A of standard m-dimensional
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Gaussian measure and Z; i.i.d. standard normal random variables,

Ym,N
Ry-(A) =P {\/ﬁ
1Y),

€ A} —PIN(0,1,,) € A

N
—/dvfm(v) P \/_U cA _]-{vEA}

VI + 30 22

Furthermore, for any € > 0

IP[ Y €A
v|? N—m
NCEES

vV Nv |U\2
ez

+P |vj—iriNg_mZQ—l > e
N N &=
< Lpe-eiteay + P E Zj; > €

The goal is to show that the last term in the above inequality is bounded by 2e~N¢* for
some suitable absolute constant C' > 0 and all N sufficiently large (depending on v). Indeed,
since then by DCT, we get that

limsup |Ry.(A)| < /dvfm(v)|]—{v€[ls,1+5]A} — Lgpeayl-

N—o0

By continuity of Gaussian density and DCT, we further conclude that the latter converges
to zero as ¢ tends to zero.

For any fixed v, € € (0,1) and all N large enough such that (Jv|* + M)/N < &/4 and
N/(N — M) > 2/3, we have that

— B N—m
il 1
Pl 3+ Ej Z}—1>e| <P NEjZ,f—l >eVe
k=1 L k=1
N—m 7] N—m
1 N—M| 3¢ 1 €
<P||l— 72 — Zl<p 72 1] > =
= N;k N | "1l [N—M;k >2]

since for all z > 0, |z — 1| > § implies that |2% — 1| > max(d, 6?). The desired result follows
from (0.1) that is proved (or rather explained how to) in the solution of the next exercise. [

Exercise 5 (Almost isometric projection of uniformly distributed point on the sphere). Let
N be very large and let SN=1 C RY be a unit N —1-sphere. Let X be a point chosen uniformly
on SNt and T : RV — R™ be a projection on the first m coordinates. Find a suitable
normalization of T' by some power of T so that the following holds 1 — ¢ < ||CpormT X ||y <



1+ &' with probability at least 1 — 4e=c="m for some uniform constant ¢ > 0. Here cpopm 1S
some power of 57, which you need to find.
You might proceed as follows

o Find the normalization constant by computing L?>-norm of Tx and observing that for
the normalized operator it has to be equal to 1 (why?). Check yourself 2.

e LetY be a standard N -dimensional Gaussian vector. Prove that X has the same law
as Y/ ||Yy. Conclude that ||Y||, X has the law of N-dimensional standard Gaussian
vector.

e To prove that you actually get the "almost isometry" property for the normalized
operator Cporml', compare CpomT X and \/LET(HYHQX ) (what is the law of the latter
variable?).

e Additionally to the last step: estimate the concentration probability of the norm of m-
dimensional standard Gaussian around /m. Chernoff-type bounds might be helpful.

Proof. Let X be uniformly distributed on SV~!. We first choose a normalizing constant: we
want chorm ' X to be of almost unit norm with high probability, therefore, we have to pick a
constant in such a way that cpormZ' X has a unit norm at least w.r.t. L?>-norm. To this end,

E[|TX 5] = 3 ic, E[X?] = mE[X7]. On the other hand, 1 = E[||X|j5] = E[Y,.y X7] =
NE[X}]. Thus, |TX|;. = /%, which suggests the normalizing constant com = \/g

We saw in the previous exercise that vV NTX as N tends to infinity converges in law to
m-dimensional Gaussian. We want to use this fact as an intuition for our choice of the
auxiliary variable. Recall from the previous exercise as well that if Y is an N-dimensional
standard Gaussian vector, then X and Y/ |Y||, have the same law. On top of that one
can as well show that ||Y[|, X has standard Gaussian law. Indeed, it follows directly from
independence of Y/|Y, and |Y[,. The latter, in turn, you can check by considering
PY/ Y|, € A, ||Y], € (a,b)]: write it as an integral over Gaussian density and change to
polar coordinates, this way you get two decoupled densities — one of uniform distribution
on the sphere and the other of chi-distribution, which is the law of ||Y]],.

Now since ||Y||, X is an N-dimensional standard Gaussian vector, by projecting on the
first m coordinates, we get an m-dimensional standard Gaussian vector. So, T ||Y |, X =
Y|, TX is an m-dimensional standard normal vector. Let us show that the norm of Gauss-
ian is concentrated around square root of its dimension. For this, let Z be a standard
m-dimensional Gaussian. Then, by Bernstein inequality?.

Z2
121

(0.1) Pl

> u] < Qe—cmmin(u,u2)

Alternatively, one can obtain this inequality by applying exponential Markov inequality to

”ZHQ — 1, using that MGF of Z? is explicitly given by (1 — 2X)~"/2 for A < 1/2, Tayloring
log(l — 2)\) for |A| sufficiently small and optimizing in admissible \; repeating the same

Lhote that || X||, = 1

c — /N
norm m

3proof is based on Chernoff inequalities /exponential Markov inequality and the fact that Z? are subex-

ponential. The latter follows directly from one of the equivalent definitions of both subgaussian + subexpo-

nential. For the details please check Theorem 2.8.1 in "High-Dimensional Probability", Roman Vershynin)
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https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf

2
procedure with 12l 4,

m

Since for all z > 0, |z — 1| > ¢ implies that |22 — 1] > max(d, §?), we can conclude
HZ||2 o 1‘ Z ’U,:| S 2efcmu2.

|17

m
In our original setup we get the following,

N
P[\/—nmnz—l zu]
m

N 1
VTl = Y 1,7,

<P| = |[VF -,

<P > 5|+ || SlIv L X 1] 2

I

> E:| +2efc’mu2 < 4€fc’mu2
=5 >

where we used that ||7X||, < 1. This finishes the proof O

Exercise 6 (log-Sobolev for Rademacher random variables). Let Xy, ..., X, be i.i.d. sym-
metric Rademacher random variables, f : R™ — R. Show that

Ent[f?] < ZE[(f — f9)?,

where [ = f(X1,...,X,) and fO = f(X1,..., Xi_1, X, Xig1, ..., X)) with X! being an
independent copy of X;.

You may proceed as follows:

(1) Use tensorization of entropy to reduce to a one-dimensional problem;

(2) Verify the following inequality and prove that it yields the desired result,

a’ b? a? -+ a?+bv _ (a—0D)?
R: —loga®+ —logh® — 1 < :
Va,b e 5 loga —|—2 ogb 5 log—— < 5
Proof. Recall that by tensorization of entropy,
Ent[f?] <E | Y Ent®[f?]],
i=1

where Ent'”[f?] = E[f?log(f*)|(X;);] — E[f2|(X;);] og E[f?|(X;)i]. Thus, it suffices to
prove that Ent®[f2] < E[(f — f®)?|(X;),]. Note that given (X;);, f(X) can take two
different values with equal probability. Let us call them a,b. The desired inequality takes
the form,

a
1 2 | 2y

5 log(a”) + 7 log(b7) 5 5 5

Thus, it remains to verify this inequality for any a, b € R. Note that since (Ja|—[b])* < (a—b)?
(and the Lh.s. does not depend on the signs of a, b), we may assume wlog that a,b > 0. By
symmetry we may further assume that a > b. For a fixed value b > 0, define

2 2 2 | p2 2 | 2 2
_a 2 b° oy @’ +D a’+b*\  (a—b)
g(a) = 5 log(a®) + 5 log(b%) 5 log( 5 5

2 2 2 2 2 2 _ K2
b a+b10g(a+b>§(a b)'
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Observe that g(b) = 0,

2a?
/ .
(a) = alog s — (a = b)
2a? 2b% 2a? 2a?

" =1 —1=1 — 1.
g(a) Oga2+b2+a2+b2 Oga2_|_b2 a2+b2+

In particular, ¢’'(b) = 0 and since logx —x+1 < 0 for any x > 0, ¢”(a) < 0 for any a > b with
strict inequality for @ # b (hence, g (strictly) concave on [b,00)). Altogether this implies
that g(a) < 0 for all @ > b as desired. O
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