
TOPICS IN PROBABILITY. BETWEEN PARTS I AND II: RANDOM
PROJECTIONS, FIRST STEPS TOWARDS UNIVERSALITY

Exercise sheet 6: log-Sobolev inequality and random projections

Exercise 1 (Proof of Gaussian log-Sobolev inequality). (1) Complete the proof (sketched
in class) of Gaussian log-Sobolev inequality

Ent[f ] ≤ 1

2
E[∥∇f∥2/f ]

under the assumption on boundedness of derivatives of f > 0 up to third order by
filling in the missing details.

(2) Extend the result to continuously differentiable functions f ≥ 0.

Proof. Using tensorization of entropy we can reduce the problem to the one-dimensional
case: to show is that for f : R → [0,∞) ∈ C1, Ent[f ] ≤ 1

2
E[(f ′)2/f ], where E is taken w.r.t.

standard Gaussian measure.
We start with the proof under the assumption that f > 0 ∈ C3 with |f |, |f ′|, |f ′′| and

|f ′′′| bounded, say, by C > 0. For n ∈ N, we define g : Rn → R+ by g(x1, . . . , xn) =
f(
∑n

i=1 xi/
√
n). Let X = (X1, . . . , Xn) be a standard Gaussian vector. Since f(X1) has the

same law as g(X), we need to show that Ent[g(X)] ≤ 1
2
E[((f ′)2/f)(X1)]. By tensorisation

of entropy,

Ent[g] ≤ E

[
n∑

i=1

Enti[g]

]
,

where Enti[g] = Ei[g(X) log g(X)
Ei[g(X)]

] and Ei[·] = E[·|(Xj)j ̸=i]. Recall that P[|Xi| > (log n)2] ≤
2e−(logn)2/2 and by assumptions on f , g log g is uniformly bounded, thus,

Ent[g] ≤ E

[
n∑

i=1

Ei[g(X) log
g(X)

Ei[g(X)]
1{|Xi|≤(logn)2}]

]
+O(ne−(logn)2).

For any 1 ≤ i ≤ n and x ∈ Rn, set xi = (x1, . . . , xi−1, 0, xi+1, . . . , xn). Then, by Taylor’s
theorem, since x− xi = (0, . . . , 0, xi, 0, . . . , 0):

g(x) = g(xi) + ∂ig(x
i)xi +

1

2
∂iig(x

i)x2i +R(i,i,i)(x
i)x3i

with |R(i,i,i)(y)| bounded by maximum of the supremum norm of any third order partial
derivative, thus (since ∂ijkg = n−3/2f ′′′) by C/n3/2. Furthermore,

Ei[g(X)] = g(X i) + ∂ig(X
i)E[Xi] +

1

2
∂iig(X

i)E[X2
i ] +O(n−3/2)

= g(X i) +
1

2
∂iig(X

i) +O(n−3/2).
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Here we have additionally used that Xi is independent of the remaining coordinates (Xj)j ̸=i,
properties of conditional expectation and the fact that E[|Xi|3] is a finite constant. Since by
assumption f > 0 is bounded away from 0 and clearly so is g then, we further get that for
n sufficiently large,

g(X i)

Ei[g(X)]
=

(
1 +

1

2

∂iig(X
i)

g(X i)
+O(n−3/2)

)−1

= 1− 1

2

∂iig(X
i)

g(X i)
+O(n−3/2)

where we have used that ∂iig = f ′′/n = O(1/n) uniformly on Rn, and that (1+x)−1 = 1−x+
O(x2) for all |x| sufficiently small. Note further that ∂ig

g
∂iig
g

= O(n−3/2), (∂iig
g
)2 = o(n−3/2),

g(X)

Ei[g(X)]
= 1 +

∂ig(X
i)

g(X i)
Xi +

1

2

∂iig(X
i)

g(X i)
(X2

i − 1) +O(n−3/2(1 +Xi +X2
i +X3

i )).

Here O(n−3/2(1 +Xi +X2
i +X3

i )) means that variables Xi to the respective powers 0, 1, 2, 3
appear with some pre-coefficients (might be different and random) that are in O(n−3/2)
(deterministic bound).

From now on, let us work on the event {|Xi| ≤ (log n)2}. We then get that g(X)
Ei[g(X)]

=

1+ ∂ig(X
i)

g(Xi)
Xi+

1
2
∂iig(X

i)
g(Xi)

(X2
i −1)+O(n−3/2 log6 n) = 1+O(n−1/2). Using the above expansion

of g and the fact that log(1 + x) = x− x2

2
+O(x3) for all x close to zero, we obtain

g(X) log
g(X)

Ei[g(X)]
=

(
g(X i) + ∂ig(X

i)Xi +
1

2
∂iig(X

i)X2
i +O(n−3/2 log6 n)

)
×

×
(
∂ig(X

i)

g(X i)
Xi +

1

2

∂iig(X
i)

g(X i)
(X2

i − 1)− 1

2
(
∂ig(X

i)

g(X i)
)2X2

i +O(n−3/2 log6 n)

)
= ∂ig(X

i)Xi +
1

2
∂iig(X

i)(X2
i − 1) +

1

2

(∂ig(X
i))2

g(X i)
X2

i +O(n−3/2 log6 n).

Therefore, by properties of conditional expectation,

Ei[g(X) log
g(X)

Ei[g(X)]
1{|Xi|≤(logn)2}] = O(n−3/2 log6 n) + ∂ig(X

i)E[Xi1{|Xi|≤(logn)2}]

+
1

2
∂iig(X

i)E[(X2
i − 1)1{|Xi|≤(logn)2}] +

1

2

(∂ig(X
i))2

g(X i)
E[X2

i 1{|Xi|≤(logn)2}].

By symmetry of centered Gaussian law, E[Xi1{|Xi|≤(logn)2}] = 0; and since E[X2
i ] = 1 and

E[(X2 + 1)1{|Xi|>(logn)2}] ≤ 2(2e−(logn)2/2 + (log n)2e−(logn)2/2) ≪ n−3/2, we further obtain

Ei[g(X) log
g(X)

Ei[g(X)]
1{|Xi|≤(logn)2}] =

1

2

(∂ig(X
i))2

g(X i)
+O(n−3/2 log6 n).
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Altogether, since Xi’s are i.i.d., and
∑n

i=2Xi/
√
n has the same law as

√
n−1
n
X1, which, in

turn, converges to X1 (a.s. or in law), by continuity and boundedness of frac(f ′)2f ,

Ent[g] ≤ 1

2
E

[
n∑

i=1

(∂ig(X
i))2

g(X i)

]
+O(n−1/2 log6 n)

=
1

2
E

[
(f ′)2

f
(

√
n− 1

n
X1)

]
+O(n−1/2 log6 n)

n→∞−−−→ 1

2
E
[
(f ′)2

f
(X1)

]
.

Let us now extend the result to strictly positive C1 functions f . Note that in this case,
g :=

√
f is continuously differentiable, and the desired inequality rewritten in terms of g

takes form Ent[g2] ≤ 2E[(g′)2]. We will show that the latter inequality is true for any
g : R → R ∈ C1. To this end, assume that E[(g′)2] < ∞, otherwise there is nothing
to show, and note that by the first part of this exercise we know that if g ̸= 0 ∈ C3

(so that f = g2 > 0) with g, g′, g′′ and g′′′ uniformly bounded (say, by C > 0 finite), the
inequality is verified. Furthermore, since x 7→ x log x is uniformly continuous on [0, (C+1)2],
Ent[(g + ε)2] → Ent[g2] as ε ∈ (0, 1) tends to zero. This observation allows us to extend the
result to g ∈ C3(R,R) with g, g′, g′′ and g′′′ uniformly bounded. We now proceed as in the
proof of the extension of Gaussian Poincaré inequality, see Exercise 1 Sheet 3. Namely, let ηε
be a standard mollifier and ψn be a smooth cut-off function with uniformly (independent of n)
bounded derivatives up to third order and taking values 1 in [−n, n] and 0 in [−n−1, n+1]c.
Set gε = g ∗ ηε and gε,n = ψngε ∈ C∞

c . By the above,

Ent[g2ε,n] ≤ 2E[(g′ε,n)2]

We saw in the proof of Exercise 1 Sheet 3 that by first taking limit ε → 0 and then
n → ∞, the r.h.s. converges to 2E[(g′)2] as desired. Note that by uniform continu-
ity of x 7→ x log x on any compact subset of [0,∞) and uniform convergence over com-
pacts of gε towards g, we may conclude that Ent[g2ε,n] converges to Ent[g2n] as ε → 0,
and also E[g2n log g2n1g2≤1] to E[g2 log g21g2≤1] as n tends to infinity. By Monotone conver-
gence theorem, we further deduce that E[g2n] converges to E[g2] and E[1[−n,n]g

2
n log g

2
n1g2>1] =

E[1[−n,n]g
2 log g21g2>1] towards E[g2 log g21g2>1] (since x log x is increasing on [1,∞)) as n

tends to infinity. It only remains to show that E[1(−n−1,−n)∪(n,n+1)g
2ψ2

n log(g
2ψ2

n)1g2>1] van-
ishes in the limit n → ∞. We recall that in the proof of Exercise 1 Sheet 3, we further
proved that g2(x)e−x2/2 → 0 as |x| → ∞, hence, |E[1(−n−1,−n)∪(n,n+1)g

2ψ2
n log(ψ

2
n)1g2>1]| ≤

supx∈[0,1](x log x)maxy∈(−n−1,−n)∪(n,n+1) g
2(y)e−y2/2 → 0 as n → ∞. Analogously we show

that g2(x) log g2(x)e−x2/2 → 0 as |x| → ∞ (on the event g2 > 1) to complete this part of
the proof. Suppose by contradiction (wlog) that lim infx→∞ g2(x) log g2(x)e−x2/2 > 0, this
implies that g2(x) = Ω(ex

2/2/x2), and hence, (g′)2(x) = Ω(ex
2/2(1 − 1/x2)2) = Ω(ex

2/2) as
x→ ∞. The latter contradicts our assumption that E[(g′)2] <∞.

Let f ≥ 0 ∈ C1, then by the previous part, for any ε > 0, Ent[f + ε] ≤ 1
2
E[(f ′)2/(f + ε)].

Note that E[(f ′)2/(f+ε)] ≤ E[(f ′)2/f ] and E[(f+ε) log(f+ε)1f>1/e] ≥ E[f log(f)1f>1/e] (as
x log x is increasing on [1/e,∞)). By uniform continuity of x 7→ x log x on any compact subset
of [0,∞), E[(f + ε) log(f + ε)1f≤1/e] converges as ε ∈ (0, 1/2] → 0 towards E[f log(f)1f≤1/e].
The remaining term E[(f + ε)] log(E[f + ε]) clearly converges to E[f ] log(E[f ]). □
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Exercise 2 (log-Sobolev inequality for general Gaussians). Let X ∈ Rn has centered Gauss-
ian distribution with covariance matrix Ξ. Show that for any continuously differentiable
function f : Rn → R the following holds,

Ent[f 2] ≤ 2E[⟨Ξ∇f(X),∇f(X)⟩].

Proof. Let A be the square root of the positive semi-definite matrix Ξ. Then, X is equal in
law to AZ, where Z ∈ Rn is a standard Gaussian vector. Let us introduce g(x) := f(Ax),
which is continuously differentiable with ∇g(x) = AT (∇f)(Ax). By applying log-Sobolev
inequality to g(Z), we get

Ent[f 2] = Ent[g2(Z)] ≤ 2E[∥∇g(Z)∥2] = 2E[⟨Ξ∇f(X),∇f(X)⟩].

□

Exercise 3 (log-Sobolev implies Poincaré). Prove that Gaussian log-Sobolev inequality (for
standard Gaussian vector) implies Gaussian Poincaré inequality.

Hint: Let ε > 0 be small and use the log-Sobolev inequality for (1 + εf). Show that
Ent[(1 + εf)2] = 2ε2Var[f(X)] +O(ε3).

Proof. Let ε > 0 be small. By Gaussian log-Sobolev inequality, we obtain

Ent[(1 + εg)2] ≤ 2ε2E[∥∇g∥2].

Use that log(1 + y) = y − y2/2 +O(y3) for y → 0. In particular, you get that

Ent[(1 + y)2] = 2E
[
(1 + 2y)

(
y − E[y]− 1

2
(y2 − E[y]2)

)
+O(y3)

]
= 2Var[y] +O(E[y3]).

By plugging εg, resp., instead of y we get that Ent[(1 + εg)2] = 2ε2Var[g] +O(ε3). Together
with the bounds for the entropy dividing by ε2 and taking the limit ε→ 0 yields the desired
result. □

Exercise 4 (Weak Poincaré lemma). Let m ∈ N be fixed. Consider a random vector XN

uniformly distributed on the unit sphere SN−1 ⊂ RN . Let Xm,N denote the vector consisting
of its first m coordinates. Prove that as N tends to infinity the law of

√
NXm,N converges

to standard Gaussian distribution in dimension m.

Proof. Let Y be a N -dimensional standard Gaussian vector. Then Y/ ∥Y ∥2 is uniformly
distributed on the N − 1 sphere. There are two ways to see this. The first one is based
on the fact that the unique law on the unit N -dimensional vectors which is invariant under
rotations is the uniform distribution on the N − 1-sphere. So, since standard Gaussian
distribution is invariant under rotations and rotations do not change the value of the norm
of the vector, we conclude that Y/ ∥Y ∥2 has to be uniformly distributed on the sphere.
Alternatively one can just consider E[f(Y/ ∥Y ∥2)] for all measurable non-negative functions
f , changing to polar coordinates in the integral (w.r.t. the Gaussian density) yields the
result. So, instead of X we will now work with Y/ ∥Y ∥2. With the same notation as for
Xm,N , we further conclude that Xm,N has the same law as Y m,N/ ∥Y ∥2.

The idea is to use concentration of ∥Y ∥2 around
√
N . Let us write fk for the density of the

standard k-dimensional Gaussian vector. For any continuity set A of standardm-dimensional
4



Gaussian measure and Zi i.i.d. standard normal random variables,

RN,ε(A) := P
[√

N
Y m,N

∥Y ∥2
∈ A

]
− P[N (0, Im) ∈ A]

=

∫
dvfm(v)

P

 √
Nv√

|v|2 +
∑N−m

k=1 Z2
k

∈ A

− 1{v∈A}

 .

Furthermore, for any ε > 0

P

[
v√

|v|2
N

+ 1
N

∑N−m
k=1 Z2

k

∈ A

]

≤ P

 √
Nv√

|v|2 +
∑N−m

k=1 Z2
k

∈ A,

∣∣∣∣∣∣
√√√√ |v|2

N
+

1

N

N−m∑
k=1

Z2
k − 1

∣∣∣∣∣∣ ≤ ε


+ P

∣∣∣∣∣∣
√√√√ |v|2

N
+

1

N

N−m∑
k=1

Z2
k − 1

∣∣∣∣∣∣ > ε


≤ 1{v∈[1−ε,1+ε]A} + P

∣∣∣∣∣∣
√√√√ |v|2

N
+

1

N

N−m∑
k=1

Z2
k − 1

∣∣∣∣∣∣ > ε

 .
The goal is to show that the last term in the above inequality is bounded by 2e−CNε2 for
some suitable absolute constant C > 0 and all N sufficiently large (depending on v). Indeed,
since then by DCT, we get that

lim sup
N→∞

|RN,ε(A)| ≤
∫

dvfm(v)|1{v∈[1−ε,1+ε]A} − 1{v∈A}|.

By continuity of Gaussian density and DCT, we further conclude that the latter converges
to zero as ε tends to zero.

For any fixed v, ε ∈ (0, 1) and all N large enough such that (|v|2 +M)/N < ε/4 and
N/(N −M) ≥ 2/3, we have that

P

∣∣∣∣∣∣
√√√√ |v|2

N
+

1

N

N−m∑
k=1

Z2
k − 1

∣∣∣∣∣∣ > ε

 ≤ P

[∣∣∣∣∣ |v|2N +
1

N

N−m∑
k=1

Z2
k − 1

∣∣∣∣∣ > ε ∨ ε2
]

≤ P

[∣∣∣∣∣ 1N
N−m∑
k=1

Z2
k −

N −M

N

∣∣∣∣∣ > 3ε

4

]
≤ P

[∣∣∣∣∣ 1

N −M

N−m∑
k=1

Z2
k − 1

∣∣∣∣∣ > ε

2

]
since for all z ≥ 0, |z − 1| ≥ δ implies that |z2 − 1| ≥ max(δ, δ2). The desired result follows
from (0.1) that is proved (or rather explained how to) in the solution of the next exercise. □

Exercise 5 (Almost isometric projection of uniformly distributed point on the sphere). Let
N be very large and let SN−1 ⊂ RN be a unit N−1-sphere. Let X be a point chosen uniformly
on SN−1 and T : RN → Rm be a projection on the first m coordinates. Find a suitable
normalization of T by some power of m

N
so that the following holds 1 − ε ≤ ∥cnormTX∥2 ≤
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1 + ε1 with probability at least 1 − 4e−cε2m for some uniform constant c > 0. Here cnorm is
some power of m

N
, which you need to find.

You might proceed as follows
• Find the normalization constant by computing L2-norm of Tx and observing that for

the normalized operator it has to be equal to 1 (why?). Check yourself 2.
• Let Y be a standard N-dimensional Gaussian vector. Prove that X has the same law

as Y/ ∥Y ∥2. Conclude that ∥Y ∥2X has the law of N-dimensional standard Gaussian
vector.

• To prove that you actually get the "almost isometry" property for the normalized
operator cnormT , compare cnormTX and 1√

m
T (∥Y ∥2X) (what is the law of the latter

variable?).
• Additionally to the last step: estimate the concentration probability of the norm of m-

dimensional standard Gaussian around
√
m. Chernoff-type bounds might be helpful.

Proof. Let X be uniformly distributed on SN−1. We first choose a normalizing constant: we
want cnormTX to be of almost unit norm with high probability, therefore, we have to pick a
constant in such a way that cnormTX has a unit norm at least w.r.t. L2-norm. To this end,
E[∥TX∥22] =

∑
i≤m E[X2

i ] = mE[X2
1 ]. On the other hand, 1 = E[∥X∥22] = E[

∑
i≤N X

2
i ] =

NE[X2
1 ]. Thus, ∥TX∥L2 =

√
m
N

, which suggests the normalizing constant cnorm =
√

N
m

.

We saw in the previous exercise that
√
NTX as N tends to infinity converges in law to

m-dimensional Gaussian. We want to use this fact as an intuition for our choice of the
auxiliary variable. Recall from the previous exercise as well that if Y is an N -dimensional
standard Gaussian vector, then X and Y/ ∥Y ∥2 have the same law. On top of that one
can as well show that ∥Y ∥2X has standard Gaussian law. Indeed, it follows directly from
independence of Y/ ∥Y ∥2 and ∥Y ∥2. The latter, in turn, you can check by considering
P[Y/ ∥Y ∥2 ∈ A, ∥Y ∥2 ∈ (a, b)]: write it as an integral over Gaussian density and change to
polar coordinates, this way you get two decoupled densities — one of uniform distribution
on the sphere and the other of chi-distribution, which is the law of ∥Y ∥2.

Now since ∥Y ∥2X is an N -dimensional standard Gaussian vector, by projecting on the
first m coordinates, we get an m-dimensional standard Gaussian vector. So, T ∥Y ∥2X =
∥Y ∥2 TX is an m-dimensional standard normal vector. Let us show that the norm of Gauss-
ian is concentrated around square root of its dimension. For this, let Z be a standard
m-dimensional Gaussian. Then, by Bernstein inequality3.

P

[∣∣∣∣∣∥Z∥22m
− 1

∣∣∣∣∣ ≥ u

]
≤ 2e−cmmin(u,u2).(0.1)

Alternatively, one can obtain this inequality by applying exponential Markov inequality to
∥Z∥22
m

− 1, using that MGF of Z2
i is explicitly given by (1 − 2λ)−1/2 for λ < 1/2, Tayloring

log(1 − 2λ) for |λ| sufficiently small and optimizing in admissible λ; repeating the same

1note that ∥X∥2 = 1
2cnorm =

√
N
m

3proof is based on Chernoff inequalities/exponential Markov inequality and the fact that Z2
i are subex-

ponential. The latter follows directly from one of the equivalent definitions of both subgaussian + subexpo-
nential. For the details please check Theorem 2.8.1 in "High-Dimensional Probability", Roman Vershynin)
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procedure with −∥Z∥22
m

+ 1.
Since for all z ≥ 0, |z − 1| ≥ δ implies that |z2 − 1| ≥ max(δ, δ2), we can conclude

P
[∣∣∣∣∥Z∥2√

m
− 1

∣∣∣∣ ≥ u

]
≤ 2e−cmu2

.

In our original setup we get the following,

P

[∣∣∣∣∣
√
N

m
∥TX∥2 − 1

∣∣∣∣∣ ≥ u

]

≤ P

[∣∣∣∣∣
√
N

m
∥TX∥2 −

1√
m
∥∥Y ∥2 TX∥2

∣∣∣∣∣ ≥ u

2

]
+ P

[∣∣∣∣ 1√
m
∥∥Y ∥2 TX∥2 − 1

∣∣∣∣ ≥ u

2

]
≤ P

[
1√
m

∣∣∣√N − ∥Y ∥2
∣∣∣ ≥ u

2

]
+ 2e−c′mu2 ≤ 4e−c′mu2

where we used that ∥TX∥2 ≤ 1. This finishes the proof □

Exercise 6 (log-Sobolev for Rademacher random variables). Let X1, . . . , Xn be i.i.d. sym-
metric Rademacher random variables, f : Rn → R. Show that

Ent[f 2] ≤
n∑

i=1

E[(f − f (i))2],

where f = f(X1, . . . , Xn) and f (i) = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) with X ′

i being an
independent copy of Xi.

You may proceed as follows:
(1) Use tensorization of entropy to reduce to a one-dimensional problem;
(2) Verify the following inequality and prove that it yields the desired result,

∀a, b ∈ R :
a2

2
log a2 +

b2

2
log b2 − a2 + b2

2
log

a2 + b2

2
≤ (a− b)2

2
.

Proof. Recall that by tensorization of entropy,

Ent[f 2] ≤ E

[
n∑

i=1

Ent(i)[f 2]

]
,

where Ent(i)[f 2] = E[f 2 log(f 2)|(Xj)j ̸=i]−E[f 2|(Xj)j ̸=i] logE[f 2|(Xj)j ̸=i]. Thus, it suffices to
prove that Ent(i)[f 2] ≤ E[(f − f (i))2|(Xj)j ̸=i]. Note that given (Xj)j ̸=i, f(X) can take two
different values with equal probability. Let us call them a, b. The desired inequality takes
the form,

a2

2
log(a2) +

b2

2
log(b2)− a2 + b2

2
log

(
a2 + b2

2

)
≤ (a− b)2

2
.

Thus, it remains to verify this inequality for any a, b ∈ R. Note that since (|a|−|b|)2 ≤ (a−b)2
(and the l.h.s. does not depend on the signs of a, b), we may assume wlog that a, b ≥ 0. By
symmetry we may further assume that a ≥ b. For a fixed value b ≥ 0, define

g(a) =
a2

2
log(a2) +

b2

2
log(b2)− a2 + b2

2
log

(
a2 + b2

2

)
− (a− b)2

2
.
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Observe that g(b) = 0,

g′(a) = a log
2a2

a2 + b2
− (a− b);

g′′(a) = log
2a2

a2 + b2
+

2b2

a2 + b2
− 1 = log

2a2

a2 + b2
− 2a2

a2 + b2
+ 1.

In particular, g′(b) = 0 and since log x−x+1 ≤ 0 for any x ≥ 0, g′′(a) ≤ 0 for any a ≥ b with
strict inequality for a ̸= b (hence, g (strictly) concave on [b,∞)). Altogether this implies
that g(a) ≤ 0 for all a ≥ b as desired. □
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