TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 4: CONCENTRATION INEQUALITIES AND THEIR APPLICATIONS
Exercise 1 (Azuma-Hoeffding inequality and generalization). Let (F,), be a filtration,
(Ap)n be random variables satisfying

e (martingale difference property) Ay is Fr-measurable and E[Ag|Fr—1] = 0 almost
surely;
e (predictable bounds) Ay, By are Fi_i-measurable and Ay < Ay < By a.s.

Prove that > _, Ay is subgaussian with variance prozy + > p_||Br — Agl|% and conclude
that

0-) P2 Azt <exp (‘ZZ:1||82:2— )

k<n

In the case | By, — Ag| is not uniformly bounded, this bound is useless. So, prove the following
more general form:

(0.2) P[Z Ap>t) (Br—Ap)? < 02] < e W
k<n k<n
If you need a hint, see the footnotcﬂ.
Proof. Note that Hoeffding lemma (Exercise 5 Sheet 3) applied to Ay conditionally on Fj_4
implies that

E [6>\Ak’]:k_1] < N BrmAR)?/8 < M Bu—Arls/8,

For any 1 < k < n, we get

E [eAle Aj] Wr [exzﬁgf AR | ;,H]] < NIBi- Al /8 [exzf;i AJ} .

n 2 n
It follows by induction that E [e)‘zjzl AJ‘] < e’ Zi=lB-Adl® - Henge, > 1A is by def-
inition }LZ?:IHAJ' — Bj||%. An application of exponential Markov inequality optimized
in A directly gives (0.1). To obtain (0.2), we apply exponential Markov inequality to
M, = XY A, — % Sor_1 (B — Ag)? for some A > 0. Using the same trick as in (A)
combined with Hoeffding lemma, we get

IP[Z Ap>t) (Br—Ap)? < CQ] < P[M, > Xt — N2/8¢%] < e MEN /AR [AM]
k<n k<n
< ef)\t+)\2c2/8E[€)\Mn_1] <l < e MHNESS

Optimizing in A > 0 yields the result. O

LConsider A Soro Ap— %2 Son (B — Ag)?.



Exercise 2. (Concentration of the norm of vector with bounded entries) Let X;’s be i.i.d.
uniformly bounded random variables with E[X?] = 1, and set X = (Xy,...,X,). Apply
McDiarmid’s theorem or Azuma-Hoeffding in the most natural way to find a bound for
P[|X| — E[|X]|]] > t] of the form e ¥/, What do you get for ¢,? Does it depend on
n?

Actually, it is possible (with what you ve learnt so far) to get such a bound with an absolute
(independent of n) constant ¢ by proceeding in a slightly different way. More precisely, prove
that there exists C' > 0 (independent of n!) such that for all t > 0,

PX| — vn > 1] <e /%
Pl X — v/n| > ] < 278/

Hint: First look at variables Y; = X7 —E[X?]) and find a suitable bound for P[X >, Vi > t]
(similarly for the absolute value of the sum); use the fact that for 2,6 > 0, |z —1| > 0 implies
that |2* — 1| > max(d,6%) and conclude.

Show further that there exists an absolute constant K > 0 (independent of n) such that
0 < /n—E[|X]]] < K and conclude that for any t > 2K,

P(I[| X - E[IX|]| = #] < 2e~/4.

Proof. Let us first apply McDiarmid’s theorem in the most obvious way, namely to f(z) =
||z|| restricted to the domain [—c, ¢|”, where ¢ > 0 is a constant which bounds | X;|. Clearly,
IID; f]| < ¢, and thus we get

P{IX|| — E[|X|] > £] < e/ Thar® = o2%/0e)

which is a poor bound that strongly depends on the dimension of the vector X. Thus,
let’s proceed in a different way. Consider V; = X? — E[X?] — these are again uniformly
bounded random variables (by ¢? in absolute value). By Azuma-Hoeffding with A, = Y
and Fi, = o(X; : 1 < k),

P[%ant

k=1

Y

< 6—2(tn)2/(n4c4) _ e—ntQ/(Qc‘l)

And by applying the same argument to —Y}’s, we get (A): P [|[£ 37 V| > ¢] < 2e~nt*/(2c)
In particular. we have shown that

! 2 4 1 2 4
]P)|:—||X||2_1Zt:| Seint /(26)7 ]P)|:‘_HXH2_1' Zt:| Szefnt /(20)
n n

Using the fact (check it) that for 2,6 > 0, |z — 1] > § implies |22 — 1] > § V 6% (and clearly
2z — 1> ¢ implies that 22 — 1 > 6 V §2), we obtain

1 t ot 2 (94
Pl X — SH<SP|ZIXIP=1> —=V —| <e /G
X0 = Vi 2 ) < P[P - 12 2w ] < e,
and analogously for ||| X|| — /n|. This completes the first part of the exercise. As for the
second, first note that by Cauchy-Schwarz, E[|| X||] < /E[||X||?] = v/n. Furthermore, recall
that you have shown in the lecture that Var[|| X||] < (2¢)? (since the norm is 1-Lipschitz and
—c < X; < c are independent). The latter implies that E[| X||] — v/n > /n — (2¢)? — /n >

—(2¢)?/+/n (for all n sufficiently large, for n uniformly bounded, the statement is anyway
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clear with a potentially slightly different (uniform) constant). The desired result follows from
the observations that ||| X ||—-E[[| X]|]] > | < [IX||—v7n|+vn—E[||X||] and /n—E[|| X||] < t/2.
Note that with the above more precise bound we actually get that for any ¢ > 0,

lim sup B[ | — E[IX[[]| > ] v B [X]| — Vil > 1] < /6
n—oo

O

Exercise 3 (Borell-TIS: concentration of supremum of Gaussian).
Let X € R™ be a Gaussian vector. Let 0% := sup?_, Var[X;]. Recall that then Z = sup; X;
satisfies Var[Z] < o2 and prove that for some suitable ¢ > 0 and all t > 0,

t2

P[|Z —E[Z]] > 1] < 2e” 27,

Remark: one could get the inequality with ¢ = 1, but one would need a sharper Gaussian
concentration inequality than the one proven in the lecture.

Proof. Let A be the square root of the positive-definite covariance matrix of X and let N
be a standard Gaussian vector. Then X = AN + p with g = E[X]. Define f : R" — R
as f(z) = max!",(Az + p);. In particular, f(IV) has the same distribution as Z. We saw
in the proof of Exercise 2 Sheet 3 that f is is o-Lipschitz. Hence, we can apply Gaussian
concentration inequality (proven in the lecture) and obtain

+2

B[1Z — EZ]] > 1] = P|f(N) ~ E[f(N)]| > ] < 2¢ %
for a suitable constant ¢ > 0. O

Exercise 4 (Empirical frequencies). Let (X;); be i.i.d. random variables with distribution
on a measurable space E. Set N,,(C) = #{k <n: X} € C}/n. By the law of large numbers,
N, (C) = u(C) forn > 1. We would like to control the deviation between the true probability
w(C) and its empirical average N, (C) uniformly over some countable class C of measurable
subsets of E. Thus, define Z,, = supsee | Nn(C) — u(C)|. Prove that

P[Z, — E[Z,] > 1] < e 2",
Proof. Let us look at 7, as a function f of variables Xi,...,X,. For 1 < k < n and any
z,w e FE,
’f(le e 7Xk’—].a Zan+17 Ce ,Xn) — f(Xl, Ce >Xk—1; w,Xk+1, Ce ,Xn)’

<sup [N, (Cy (X, ooy 2,000, X)) — No(C (X, w0, X)) <
ceC

Therefore, | D Z, || < 1/n, and by McDiarmid’s theorem,
PZ, — E[Z,] > ] < e %*/(Sima 1) — =20

S

O

Exercise 5 (Maximal eigenvalue of symmetric matrix with Rademacher entries). Let M be
an n x n symmetric matriv with i.i.d. Rademacher entries (M,;);<;. We are interested in

the mazimal eigenvalue of the matriz, Apax(M). Show that Var[Apn.x(M)] < 16 and
—£2/(dn(n 16
PAmax(M) — E[Amax (M)] > t] < e78/Un(nt1) A 2
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Hint: recall that Amax(M) = Sup,egn.jy=1(0, Mv), use this representation to find an esti-
mate on Dy f(M) with f(M) = Amax(M) for the variance bound, and on Dy f(M) for the
concentration bound.

Remark: It is actually possible (using the so-called Talagrand’s concentration inequality)
to show that Apax(M) is 16-subgaussian as you might expect from the variance bound.

Proof. Recall that Apax(M) = Sup,egn.jpj=1 (v, Mv). Denote by vmax(M) an eigenvector of M
with eigenvalue A\yax(M). Let ¢ < j be fixed. Choose a symmetric matrix M_ such that

)\maX(M—) = M~i~n—fj:1 Amax(M)-

In particular, (M_ )y = My, unless {k,l} = {i,j}, and thus,
Di;)\max(M) = )\max(M) - Amax(M—) S <Umax<M)a (M - M—)Umax(M)>
< 2UmaX(M)ivmaX(M)j<Mij - (M—)ij> < 4|UmaX(M)i||vmaX<M)j|
since both M;;, (M_);; take values +1. By a corollary of Efron-Stein, we thus get

VarApax(M)] S E | 16[vmax(M);[* [vmax (M);]* | < 16.
1<j
Here we have used that >, [omax(M);|* = 1.

By a fully analogous argument, D;jAma (M) < 4|vmaX(MJ(:J)),~||vmaX(MJ(:]))j|, where for
each i < j, Mi”) is a symmetric matrix /\maX(MJ(r”)) = SUPyy, —+1 Amax(M). In particular,
| DijAmax(M)]|oo < 4, since |v| = 1, and so each of its coordinates v; is at most of absolute
value one. Therefore, by McDiarmid’s theorem,

PAmax (M) — EAmax(M)] > 1] < 727/ Zisy 16 = =#/(n(n+1),

The remaining bound follows from Chebychev inequality and the above estimate on the
variance. 0
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