
TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 4: Concentration inequalities and their applications

Exercise 1 (Azuma-Hoeffding inequality and generalization). Let (Fn)n be a filtration,
(∆n)n be random variables satisfying

• (martingale difference property) ∆k is Fk-measurable and E[∆k|Fk−1] = 0 almost
surely;

• (predictable bounds) Ak, Bk are Fk−1-measurable and Ak ≤ ∆k ≤ Bk a.s.
Prove that

∑n
k=1 ∆k is subgaussian with variance proxy 1

4

∑n
k=1∥Bk − Ak∥2∞ and conclude

that

P
[∑

k≤n

∆k ≥ t
]
≤ exp

(
− 2t2∑n

k=1∥Bk − Ak∥2∞

)
.(0.1)

In the case |Bk−Ak| is not uniformly bounded, this bound is useless. So, prove the following
more general form:

P
[∑

k≤n

∆k ≥ t,
∑
k≤n

(Bk − Ak)
2 ≤ c2

]
≤ e−2t2/c2 .(0.2)

If you need a hint, see the footnote1.

Proof. Note that Hoeffding lemma (Exercise 5 Sheet 3) applied to ∆k conditionally on Fk−1

implies that

E
[
eλ∆k |Fk−1

]
≤ eλ

2(Bk−Ak)
2/8 ≤ eλ

2∥Bk−Ak∥2∞/8.

For any 1 ≤ k ≤ n, we get

E
[
eλ

∑k
j=1 ∆j

]
(A)
= E

[
eλ

∑k−1
j=1 ∆jE[eλ∆k |Fk−1]

]
≤ eλ

2∥Bk−Ak∥2∞/8E
[
eλ

∑k−1
j=1 ∆j

]
.

It follows by induction that E
[
eλ

∑n
j=1 ∆j

]
≤ e

λ2

8

∑n
j=1∥Bk−Ak∥2 . Hence,

∑n
j=1 ∆j is by def-

inition 1
4

∑n
j=1∥Aj − Bj∥2∞. An application of exponential Markov inequality optimized

in λ directly gives (0.1). To obtain (0.2), we apply exponential Markov inequality to
Mn = λ

∑n
k=1 ∆k − λ2

8

∑n
k=1(Bk − Ak)

2 for some λ > 0. Using the same trick as in (A)
combined with Hoeffding lemma, we get

P
[∑

k≤n

∆k ≥ t,
∑
k≤n

(Bk − Ak)
2 ≤ c2

]
≤ P[Mn ≥ λt− λ2/8c2] ≤ e−λt+λ2c2/8E[eλMn ]

≤ e−λt+λ2c2/8E[eλMn−1 ] ≤ · · · ≤ e−λt+λ2c2/8.

Optimizing in λ > 0 yields the result. □

1Consider λ
∑n

k=1 ∆k − λ2

8

∑n
k=1(Bk −Ak)

2.
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Exercise 2. (Concentration of the norm of vector with bounded entries) Let Xi’s be i.i.d.
uniformly bounded random variables with E[X2

i ] = 1, and set X = (X1, . . . , Xn). Apply
McDiarmid’s theorem or Azuma-Hoeffding in the most natural way to find a bound for
P[∥X∥ − E[∥X∥] ≥ t] of the form e−t2/cn. What do you get for cn? Does it depend on
n?

Actually, it is possible (with what you’ve learnt so far) to get such a bound with an absolute
(independent of n) constant c by proceeding in a slightly different way. More precisely, prove
that there exists C > 0 (independent of n!) such that for all t ≥ 0,

P[∥X∥ −
√
n ≥ t] ≤ e−t2/C2

;

P[|∥X∥ −
√
n| ≥ t] ≤ 2e−t2/C2

.

Hint: First look at variables Yi = X2
i −E[X2

i ]) and find a suitable bound for P[ 1
n

∑
i≤n Yi ≥ t]

(similarly for the absolute value of the sum); use the fact that for z, δ ≥ 0, |z−1| ≥ δ implies
that |z2 − 1| ≥ max(δ, δ2) and conclude.

Show further that there exists an absolute constant K > 0 (independent of n) such that
0 ≤

√
n− E[∥X∥] ≤ K and conclude that for any t ≥ 2K,

P[|∥X∥ − E[∥X∥]| ≥ t] ≤ 2e−t2/(4C2).

Proof. Let us first apply McDiarmid’s theorem in the most obvious way, namely to f(x) =
∥x∥ restricted to the domain [−c, c]n, where c > 0 is a constant which bounds |Xi|. Clearly,
∥Dif∥ ≤ c, and thus we get

P[∥X∥ − E[∥X∥] ≥ t] ≤ e−2t2/
∑n

k=1 c
2

= e−2t2/(nc2),

which is a poor bound that strongly depends on the dimension of the vector X. Thus,
let’s proceed in a different way. Consider Yi = X2

i − E[X2
i ] – these are again uniformly

bounded random variables (by c2 in absolute value). By Azuma-Hoeffding with ∆k = Yk

and Fk = σ(Xi : i ≤ k),

P

[
1

n

n∑
k=1

Yk ≥ t

]
≤ e−2(tn)2/(n4c4) = e−nt2/(2c4).

And by applying the same argument to −Yk’s, we get (A): P
[
| 1
n

∑n
k=1 Yk| ≥ t

]
≤ 2e−nt2/(2c4).

In particular. we have shown that

P
[
1

n
∥X∥2 − 1 ≥ t

]
≤ e−nt2/(2c4); P

[∣∣∣∣ 1n∥X∥2 − 1

∣∣∣∣ ≥ t

]
≤ 2e−nt2/(2c4).

Using the fact (check it) that for z, δ ≥ 0, |z − 1| ≥ δ implies |z2 − 1| ≥ δ ∨ δ2 (and clearly
z − 1 ≥ δ implies that z2 − 1 ≥ δ ∨ δ2), we obtain

P[∥X∥ −
√
n ≥ t] ≤ P

[
1

n
∥X∥2 − 1 ≥ t√

n
∨ t2

n

]
≤ e−t2/(2c4),

and analogously for |∥X∥ −
√
n|. This completes the first part of the exercise. As for the

second, first note that by Cauchy-Schwarz, E[∥X∥] ≤
√

E[∥X∥2] =
√
n. Furthermore, recall

that you have shown in the lecture that Var[∥X∥] ≤ (2c)2 (since the norm is 1-Lipschitz and
−c ≤ Xi ≤ c are independent). The latter implies that E[∥X∥]−

√
n ≥

√
n− (2c)2 −

√
n ≥

−(2c)2/
√
n (for all n sufficiently large, for n uniformly bounded, the statement is anyway
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clear with a potentially slightly different (uniform) constant). The desired result follows from
the observations that |∥X∥−E[∥X∥] ≥ | ≤ |∥X∥−

√
n|+

√
n−E[∥X∥] and

√
n−E[∥X∥] ≤ t/2.

Note that with the above more precise bound we actually get that for any t > 0,

lim sup
n→∞

P[|∥X∥ − E[∥X∥]| ≥ t] ∨ P[|∥X∥ −
√
n| ≥ t] ≤ e−t2/(4C2)

□

Exercise 3 (Borell-TIS: concentration of supremum of Gaussian).
Let X ∈ Rn be a Gaussian vector. Let σ2 := supn

i=1Var[Xi]. Recall that then Z := supiXi

satisfies Var[Z] ≤ σ2 and prove that for some suitable c > 0 and all t > 0,

P[|Z − E[Z]| ≥ t] ≤ 2e−
t2

2cσ2 .

Remark: one could get the inequality with c = 1, but one would need a sharper Gaussian
concentration inequality than the one proven in the lecture.

Proof. Let A be the square root of the positive-definite covariance matrix of X and let N

be a standard Gaussian vector. Then X
law
= AN + µ with µ = E[X]. Define f : Rn → R

as f(x) = maxni=1(Ax + µ)i. In particular, f(N) has the same distribution as Z. We saw
in the proof of Exercise 2 Sheet 3 that f is is σ-Lipschitz. Hence, we can apply Gaussian
concentration inequality (proven in the lecture) and obtain

P[|Z − E[Z]| ≥ t] = P[|f(N)− E[f(N)]| ≥ t] ≤ 2e−
t2

2cσ2

for a suitable constant c > 0. □

Exercise 4 (Empirical frequencies). Let (Xi)i be i.i.d. random variables with distribution µ
on a measurable space E. Set Nn(C) := #{k ≤ n : Xk ∈ C}/n. By the law of large numbers,
Nn(C) ≈ µ(C) for n ≫ 1. We would like to control the deviation between the true probability
µ(C) and its empirical average Nn(C) uniformly over some countable class C of measurable
subsets of E. Thus, define Zn = supC∈C |Nn(C)− µ(C)|. Prove that

P[Zn − E[Zn] ≥ t] ≤ e−2nt2 .

Proof. Let us look at Zn as a function f of variables X1, . . . , Xn. For 1 ≤ k ≤ n and any
z, w ∈ E,

|f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)− f(X1, . . . , Xk−1, w,Xk+1, . . . , Xn)|

≤ sup
C∈C

|Nn(C, (X1, . . . , z, . . . , Xn))−Nn(C, (X1, . . . , w, . . . , Xn))| ≤
1

n
.

Therefore, ∥DkZn∥∞ ≤ 1/n, and by McDiarmid’s theorem,

P[Zn − E[Zn] ≥ t] ≤ e−2t2/(
∑n

k=1 1/n
2) = e−2nt2 .

□

Exercise 5 (Maximal eigenvalue of symmetric matrix with Rademacher entries). Let M be
an n × n symmetric matrix with i.i.d. Rademacher entries (Mij)i≤j. We are interested in
the maximal eigenvalue of the matrix, λmax(M). Show that Var[λmax(M)] ≤ 16 and

P[λmax(M)− E[λmax(M)] ≥ t] ≤ e−t2/(4n(n+1)) ∧ 16

t2
.
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Hint: recall that λmax(M) = supv∈Rn:|v|=1⟨v,Mv⟩, use this representation to find an esti-
mate on D−

ijf(M) with f(M) = λmax(M) for the variance bound, and on Dijf(M) for the
concentration bound.

Remark: It is actually possible (using the so-called Talagrand’s concentration inequality)
to show that λmax(M) is 16-subgaussian as you might expect from the variance bound.

Proof. Recall that λmax(M) = supv∈Rn:|v|=1⟨v,Mv⟩. Denote by vmax(M) an eigenvector of M
with eigenvalue λmax(M). Let i ≤ j be fixed. Choose a symmetric matrix M− such that

λmax(M−) = inf
Mij=±1

λmax(M).

In particular, (M−)kl = Mkl unless {k, l} = {i, j}, and thus,
D−

ijλmax(M) = λmax(M)− λmax(M−) ≤ ⟨vmax(M), (M −M−)vmax(M)⟩
≤ 2vmax(M)ivmax(M)j(Mij − (M−)ij) ≤ 4|vmax(M)i||vmax(M)j|

since both Mij, (M−)ij take values ±1. By a corollary of Efron-Stein, we thus get

Var[λmax(M)] ≤ E

[∑
i≤j

16|vmax(M)i|2|vmax(M)j|2
]
≤ 16.

Here we have used that
∑

i |vmax(M)i|2 = 1.
By a fully analogous argument, Dijλmax(M) ≤ 4|vmax(M

(ij)
+ )i||vmax(M

(ij)
+ )j|, where for

each i ≤ j, M (ij)
+ is a symmetric matrix λmax(M

(ij)
+ ) = supMij=±1 λmax(M). In particular,

∥Dijλmax(M)∥∞ ≤ 4, since |v| = 1, and so each of its coordinates vi is at most of absolute
value one. Therefore, by McDiarmid’s theorem,

P[λmax(M)− E[λmax(M)] ≥ t] ≤ e−2t2/
∑

i≤j 16 = e−t2/(4n(n+1)).

The remaining bound follows from Chebychev inequality and the above estimate on the
variance. □
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