TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 3: Efron-Stein and Poincaré inequalities, Subgaussianity

1. EFRON-STEIN AND POINCARÉ INEQUALITIES

Exercise 1 (Extending Gaussian Poincaré to C^1 functions).

Let $f: \mathbb{R} \to \mathbb{R}$ be any continuously differentiable function and X be a standard normal random variable. Show that

$$Var[f(X)] \le \mathbb{E}[(f'(X))^2].$$

Proof. We can assume throughout the proof that $\mathbb{E}[(f'(X))^2] < \infty$ since otherwise there is nothing to show. Let η_{ε} be a standard mollifier and ψ_n be a smooth cut-off function with uniformly (independent of n) bounded gradient and taking values 1 in [-n, n] and 0 in $[-n-1, n+1]^c$. Let $f_{\varepsilon} = f * \eta_{\varepsilon}$ and $f_{\varepsilon,n} = \psi_n f_{\varepsilon}$. Since $f \in C^1$, $(f_{\varepsilon})' = (f')_{\varepsilon}$, f_{ε} and $(f')_{\varepsilon}$ converge uniformly over compacts towards f and f', respectively. The latter holds for $f_{\varepsilon,n}$ and $(f')_{\varepsilon,n}$. Note that these functions are C_c^{∞} . Hence, with the result from the lecture,

$$\operatorname{Var}[f_{\varepsilon,n}(X)] \leq \mathbb{E}\left[\left[(f_{\varepsilon,n})'(X)\right]^{2}\right] \leq \mathbb{E}\left[\left[((f')_{\varepsilon})_{n}(X)\right]^{2}\right] + C\mathbb{E}\left[f_{\varepsilon}^{2}(X)\mathbf{1}_{n\leq |X|\leq n+1}\right].$$

By taking limit in ε , we get

$$\operatorname{Var}[(f)_n(X)] \leq \mathbb{E}\left[\left[(f')_n(X)\right]^2\right] + C\mathbb{E}\left[f^2(X)\mathbf{1}_{n\leq |X|\leq n+1}\right].$$

Since by assumption $\mathbb{E}[(f'(X))^2] < \infty$, $\mathbb{E}[[(f')_n(X)]^2]$ converges to $\mathbb{E}[(f'(X))^2]$ as $n \to \infty$. If $f(X) \in L^2(\mathbb{P})$, we thus can conclude. Otherwise we might distinguish between:

- $\begin{array}{l} \bullet \ f^2(x)e^{-x^2/2} \to 0 \ \text{as} \ |x| \to \infty; \\ \bullet \ \lim\inf_{x \to \infty} f^2(x)e^{-x^2/2} > 0 \ \text{for at least one of} \ +\infty \ \text{or} \ -\infty. \end{array}$

In the first case, $\mathbb{E}\left[f^2(X)\mathbf{1}_{|X|\in[n,n+1]}\right] \leq \max_{[-n-1,-n]\cup[n,n+1]}\left(f^2(x)e^{-x^2/2}\right) \to 0 \text{ as } n \to \infty.$ Therefore, if Var[f(X)] is well-defined (situation of our interest), i.e. that no $\infty - \infty$ occurs, by taking limit in n, we obtain

$$\operatorname{Var}[f(X)] \le \mathbb{E}[(f'(X))^2].$$

In the case $\liminf_{x\to\infty} f^2(x)e^{-x^2/2} > 0$, we have that $f(x) = \mathcal{O}(e^{x^2/4})$ as $x\to\infty$. But this would imply that $(f'(x))^2 = \mathcal{O}(x^2e^{x^2/2})$, which is not integrable with respect to Gaussian measure. Hence, contradiction to $\mathbb{E}[(f'(X))^2] < \infty$.

Exercise 2 (Gaussian Poincaré for Lipschitz functions is better than direct Efron-Stein).

Let X be a standard Gaussian vector, f be L-Lipschitz function and set Z = f(X). Compare the bounds for Var[Z] obtained using Gaussian Poincaré inequality to the ones that you get by applying Efron-Stein inequality (in the most obvious way). What important feature does Poincaré inequality have compared to Efron-Stein in this situation?

(1) Prove that for any Gaussian vector Y,

$$\operatorname{Var}[\max_{i=1}^{n} Y_i] \le \max_{i=1}^{n} \operatorname{Var}[Y_i]$$

(2) Recall Exercise 2 Sheet 2. Use Gaussian Poincaré inequality to prove that

$$\sqrt{D} - 1 \le \mathbb{E}[Z],$$

where Z be a non-negative random variable such that Z^2 has a chi-squared distribution with D degrees of freedom.

Can you get these bounds using Efron-Stein inequality?

Proof. Since f is L-Lipschitz, it is almost everywhere differentiable with $\|\nabla f\| \leq L$. Via approximation argument as in the lecture, we obtain by Poincaré inequality that

$$\operatorname{Var}[Z] \le \mathbb{E}[\|\nabla f(X)\|^2] \le L^2.$$

On the other hand, a direct bound obtained by the Efron-Stein inequality is

$$\operatorname{Var}[Z] \leq \frac{1}{2} \sum_{i=1}^{d} \mathbb{E}\left[(Z - Z_i')^2 \right] \stackrel{\text{Lipschitz}}{\leq} \frac{1}{2} L^2 \sum_{i=1}^{d} \mathbb{E}\left[(X_i - X_i')^2 \right] = L^2 d.$$

In particular, we see that the most naive application of Efron-Stein inequality together with Lipschitz property gives a bound which depends on the dimension of the Gaussian vector. Gaussian Poincaré inequality, on contrary, provides a uniform bound independent of the dimension.

As for (1), there exists A such that AA^T is the covariance matrix of Y. In law, $\max_i Y_i = f(X)$, where $f(x) = \max_i (Ax)_i$. Note that f is L-Lipschitz with $L^2 = \max_i \sum_j a_{ij}^2 = \max_i \operatorname{Var}[Y_i]$. Indeed, $|f(x) - f(y)| \leq \max_i |(A(x-y))_i| \leq \max_i \sqrt{\sum_j a_{ij}^2} |x-y|$ by Cauchy-Schwarz. The first part of the exercise yields the desired result.

As for (2), recall that Z is distributed as absolute value of D-dimensional standard Gaussian vector, |X|. Note that $|\cdot|$ is 1-Lipschitz. Therefore, we get

$$\mathbb{E}[Z] = \sqrt{\mathbb{E}[Z^2] - \operatorname{Var}[Z]} = \sqrt{D - \operatorname{Var}[Z]} \ge \sqrt{D - 1} \ge \sqrt{D - 1}.$$

Since Efron-Stein gives a bound on Var[Z] proportional to D, we won't be able to obtain the desired lower bound for $\mathbb{E}[Z]$ this way.

Exercise 3 (Poisson Poincaré inequality).

Let $f: \mathbb{N}_0 \to \mathbb{R}$ be a real-valued function defined on non-negative integers, denote its discrete derivative as Df(x) = f(x+1) - f(x). Let X be a Poisson random variable with intensity μ . Prove that

$$\operatorname{Var}[f(X)] \le \mu \mathbb{E}[(Df(X))^2].$$

Hint: infinite divisibility of Poisson distribution and Efron-Stein inequality might be useful.

Proof. Recall the Poisson limit theorem, which tells us that if $(X_i^n)_{i=1}^n$, $n \in \mathbb{N}$ are independent families of iid Bernoulli distributed random variables with parameter $p_n = \mu/n$, then $S_n :=$

 $\sum_{i=1}^n X_i^n$ converges in distribution to X. Let us now compute $\operatorname{Var}[f(S_n)|X_i^n:j\neq i]$:

$$Var[f(S_n)|X_j^n: j \neq i] = \mathbb{E}\left[\left(f(S_n) - \mathbb{E}[f(S_n)|X_j^n: j \neq i]\right)^2 |X_j^n: j \neq i\right]$$

$$= \mathbb{E}\left[\left(f(S_n) - \frac{\mu}{n}f(S_n - X_i + 1) - \left(1 - \frac{\mu}{n}\right)f(S_n - X_i)\right)^2 |X_j^n: j \neq i\right]$$

$$= \left(\frac{\mu}{n}\left(1 - \frac{\mu}{n}\right)^2 + \left(1 - \frac{\mu}{n}\right)\left(\frac{\mu}{n}\right)^2\right)(f(S_n - X_i + 1) - f(S_n - X_i))^2$$

$$= \frac{\mu}{n}\left(1 - \frac{\mu}{n}\right)(f(S_n - X_i + 1) - f(S_n - X_i))^2.$$

Therefore, by Efron-Stein inequality we obtain,

$$\operatorname{Var}[f(S_n)] \leq \frac{\mu}{n} \left(1 - \frac{\mu}{n} \right) \sum_{i} \mathbb{E} \left[\left(f(S_n - X_i + 1) - f(S_n - X_i) \right)^2 \right]$$

$$= \mu \left(1 - \frac{\mu}{n} \right) \mathbb{E} \left[\left(f(S_{n-1} + 1) - f(S_{n-1}) \right)^2 \right] = \mu \left(1 - \frac{\mu}{n} \right) \mathbb{E} \left[\left(Df(S_{n-1}) \right)^2 \right].$$

Note that the rhs converges to $\mu \mathbb{E}[(Df(X))^2]$ as $n \to \infty$.

2. Subgaussianity

Exercise 4 (Subgaussian properties).

Let X be a random variable. Show that the following properties are equivalent so that the parameters $C_i > 0$ appearing in the properties below differ from each other by an absolute constant factor, meaning that there exists C > 0 such that property i implies property j with parameter $C_i \leq CC_i$ for all i, j = 1, ..., 5

(1) The tails of X satisfy

$$\mathbb{P}[|X| > t] < 2e^{-t^2/C_1^2}$$
 for all $t > 0$.

(2) The moments of X satisfy

$$||X||_{\mathbf{L}^p} \le C_2 \sqrt{p}$$
 for all $p \ge 1$.

(3) The MGF of X^2 satisfies

$$\mathbb{E}\left[e^{\lambda^2 X^2}\right] \le e^{C_3^2 \lambda^2} \quad \text{for all } |\lambda| \le \frac{1}{C_3}.$$

(4) The MGF of X^2 is bounded at some point, namely

$$\mathbb{E}\left[e^{X^2/C_4^2}\right] \le 2.$$

Moreover if $\mathbb{E}[X] = 0$, then the above properties are also equivalent to

(5) The MGF of X satisfies

$$\mathbb{E}\left[e^{\lambda X}\right] \le e^{C_5^2 \lambda^2} \quad for \ all \ \lambda \in \mathbb{R}.$$

More precisely, show that

- $(1) \Rightarrow (2)$ with $C_2 \ge \sqrt{\pi}C_1$;
- $(2) \Rightarrow (3)$ with $C_3 \geq 2\sqrt{e}C_2$;
- (3) \Rightarrow (4) with $C_4 \ge C_3/\sqrt{\log 2}$;
- $(4) \Rightarrow (1)$ with $C_1 \geq C_4$;

- $(3) \Rightarrow (5)$ with $C_5 \geq C_3$ (under mean zero assumption);
- (5) \Rightarrow (1) with $C_1 \geq 2C_5$ (under mean zero assumption).

A random variable satisfying one of the above equivalent properties is called **subgaussian**. To be more specific, we will call a random variable σ^2 -subgaussian if property (5) holds for $X - \mathbb{E}[X]$ with $C_5^2 = \sigma^2/2$. The constant σ^2 is called the **variance proxy**. The smallest such σ^2 is called the **optimal variance proxy**.

Proof. Note that when showing that property i implies property j we can assume that i holds with $C_i = 1$, otherwise consider X/C_i . It then would be sufficient to show that C_j is a uniform constant (independent of any parameters such as p, λ , etc) as specified in the above bullet-points.

 $(1) \Rightarrow (2)$: follows from the integral identity:

$$\mathbb{E}[|X|^p] \le \int_0^\infty 2e^{-t^2}pt^{p-1}\mathrm{d}t = p\Gamma(p/2) \le p^{p/2} \left(\max_{p\ge 1} \frac{\Gamma(p/2)^{1/p}}{p^{1/2-1/p}}\right)^p = (\sqrt{\pi})^p p^{p/2}.$$

Taking the p-th root yields (2) for any constant greater or equal than $\sqrt{\pi}$.

 $(2) \Rightarrow (3)$: recall that by Stirling's formula we get $p! \geq (p/e)^p$. So,

$$\mathbb{E}\left[e^{\lambda^2 X^2}\right] = 1 + \sum_{p \ge 1} \frac{\lambda^{2p} \mathbb{E}\left[X^{2p}\right]}{p!} \le 1 + \sum_{p \ge 1} \frac{(2p\lambda^2)^p}{(p/e)^p} = \frac{1}{1 - 2e\lambda^2}$$

provided that $2e\lambda^2 < 1$. Now we can use that on $x \in [0, 1/2], 1/(1-x) \le e^{2x}$. Thus, for all $|\lambda| \le \frac{1}{2\sqrt{e}}$ it holds $\mathbb{E}\left[e^{\lambda^2 X^2}\right] \le e^{4e\lambda^2}$. Set $C_3 = 2\sqrt{e}(=2\sqrt{e}C_2)$.

- $(3) \Rightarrow (4)$: trivial.
- $(4) \Rightarrow (1)$: By Markov's inequality we get $\mathbb{P}[|X| \geq t] \leq e^{-t^2} \mathbb{E}\left[e^{X^2}\right] \leq 2e^{-t^2}$. Set $C_1 = 1 = C_4$.
- (3) \Rightarrow (5): use that $e^x \leq x + e^{x^2}$ for all x. Since $\mathbb{E}[X] = 0$ in this case by assumption, we get that for $|\lambda| \leq 1$

$$\mathbb{E}\left[e^{\lambda X}\right] \leq \mathbb{E}\left[e^{\lambda^2 X^2}\right] \leq e^{\lambda^2}.$$

We have hence shown that the MGF of X is smaller or equal to e^{λ^2} on $\lambda \in [-1, 1]$. So let now $|\lambda| \geq 1$. Since $2\lambda x \leq x^2 + \lambda^2$ and by (3),

$$\mathbb{E}\left[e^{\lambda X}\right] \leq \mathbb{E}\left[e^{\lambda^2/2}e^{X^2/2}\right] \leq e^{\lambda^2/2}e^{1/2} \leq e^{\lambda^2}.$$

Set $C_5 = 1 = C_3$.

(5) \Rightarrow (1): use exponential Markov's inequality and optimize over λ . Set $C_1 = 2C_5$.

Exercise 5 (Hoeffding lemma).

Let $a \leq X \leq b$ a.s. for some $a, b \in \mathbb{R}$. Then $\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\lambda^2(b-a)^2/8}$. That is, X is $(b-a)^2/4$ -subgaussian.

Hint: consider function $\psi(\lambda) = \log \mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right]$. Show that $\psi''(\lambda)$ can be interpreted as a variance of $X - \mathbb{E}[X]$ with respect to a new appropriately chosen probability measure. Use some suitable bound for variances that you know (sheet 2 might be helpful).

Proof. Suppose wlog that $\mathbb{E}[X] = 0$. In particular, we have $\psi(\lambda) = \log \mathbb{E}\left[e^{\lambda X}\right]$ and

$$\psi''(\lambda) = \frac{\mathbb{E}\left[X^2 e^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]} - \left(\frac{\mathbb{E}\left[X e^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]}\right)^2.$$

Let us define a new probability measure $d\mathbb{Q} = \frac{e^{\lambda X}}{\mathbb{E}[e^{\lambda X}]} d\mathbb{P}$. By rewriting the above equality with respect to this new measure we obtain,

$$\psi''(\lambda) = \mathbb{E}_{\mathbb{Q}} [X^2] - \mathbb{E}_{\mathbb{Q}} [X]^2 = \operatorname{Var}_{\mathbb{Q}} [X].$$

By Exercise 1 Sheet 2 we know that the rhs is less or equal to $\frac{1}{4}(b-a)^2$. Now by fundamental theorem of calculus $(\psi(0)=0,\psi'(0)=0)$ we obtain

$$\psi(\lambda) = \int_0^{\lambda} \int_0^t \psi''(s) ds dt \le \frac{\lambda^2 (b-a)^2}{8}.$$

Exponentiation concludes the proof.