TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 3: EFRON-STEIN AND POINCARE INEQUALITIES, SUBGAUSSIANITY
1. EFRON-STEIN AND POINCARE INEQUALITIES

Exercise 1 (Extending Gaussian Poincaré to C! functions).
Let f : R — R be any continuously differentiable function and X be a standard normal
random variable. Show that

Var[f(X)] < E[(f'(X))?]-

Proof. We can assume throughout the proof that E[(f'(X))?] < oo since otherwise there
is nothing to show. Let 7. be a standard mollifier and ,, be a smooth cut-off function
with uniformly (independent of n) bounded gradient and taking values 1 in [—n,n] and 0 in

[—n —1,n+1]° Let f. = f*n. and f.,, = ¥, f.. Since f € C, (f.) = (f')e, f- and (f')
converge uniformly over compacts towards f and f’, respectively. The latter holds for f.,
and (f’)c.,. Note that these functions are C2°. Hence, with the result from the lecture,

Var(fen(X)] < E [[(fon) (X)] S E[[((F))n(X)]] + CE [f2(X) Lngix|<nr1] -
By taking limit in €, we get
Var[(f)a(X)] < E [[(f)n(X)]] + CE [f*(X)Lngixi<nr] -

Since by assumption E[(f'(X))?] < oo, E[[(f")n(X)]?] converges to E[(f'(X))?] as n — oo.
If f(X) e L*(P), we thus can conclude. Otherwise we might distinguish between:

o fAx)e "2 = 0 as |z| = oo;

o liminf, ,o f2(x)e™*/2 > 0 for at least one of 400 or —oo.
In the first case, E [f*(X)1|x|einn+1]] < MaX[_n_1 _njUfn,n+1] (fQ(x)e*ﬁ/Q) — 0 asn — 00.
Therefore, if Var[f(X)] is well-defined (situation of our interest), i.e. that no co — oo occurs,
by taking limit in n, we obtain

Var[f(X)] < E[(f'(X))?]-

In the case liminf, . f2(z)e **/? > 0, we have that f(z) = O(e*’/*) as © — co. But this

would imply that (f'(x))? = O(22e”"/2), which is not integrable with respect to Gaussian
measure. Hence, contradiction to E[(f/(X))?] < co. O

Exercise 2 (Gaussian Poincaré for Lipschitz functions is better than direct Efron-Stein).

Let X be a standard Gaussian vector, f be L-Lipschitz function and set Z = f(X).
Compare the bounds for Var[Z] obtained using Gaussian Poincaré inequality to the ones
that you get by applying Efron-Stein inequality (in the most obvious way). What important
feature does Poincaré inequality have compared to Efron-Stein in this situation?

(1) Prove that for any Gaussian vectorY,

Var [mZaix Y] < mfalx VarlY;]

1



(2) Recall Exercise 2 Sheet 2. Use Gaussian Poincaré inequality to prove that
VD —1<E[Z],

where Z be a non-negative random variable such that Z* has a chi-squared distribution
with D degrees of freedom.

Can you get these bounds using Efron-Stein inequality?

Proof. Since f is L-Lipschitz, it is almost everywhere differentiable with |V f|| < L. Via
approximation argument as in the lecture, we obtain by Poincaré inequality that

Var[Z] < E[|Vf(X)|I") < L*.

On the other hand, a direct bound obtained by the Efron-Stein inequality is

d
Varlz] < £ S E[(7 - 2]

=1

Lipschitz ] 9 d N2 9

< §L§:EK&—XQ}:Ld

i=1
In particular, we see that the most naive application of Efron-Stein inequality together with
Lipschitz property gives a bound which depends on the dimension of the Gaussian vector.
Gaussian Poincaré inequality, on contrary, provides a uniform bound independent of the
dimension.

As for (1), there exists A such that AAT is the covariance matrix of Y. In law, max; Y; =
f(X), where f(z) = max;(Az);. Note that f is L-Lipschitz with [? = max;);a};, =

max; Var[Yj]. Indeed, |f(2) — f(y)| < max; [(A(z —y))i| < max; (/> af;lz — y| by Cauchy-
Schwarz. The first part of the exercise yields the desired result.
As for (2), recall that Z is distributed as absolute value of D-dimensional standard Gauss-

ian vector, | X|. Note that |- | is 1-Lipschitz. Therefore, we get

E[Z] = \/E[2?] — Var[Z] = /D — Var[Z] > VD —1> VD — 1.

Since Efron-Stein gives a bound on Var[Z] proportional to D, we won’t be able to obtain
the desired lower bound for E[Z] this way. O

Exercise 3 (Poisson Poincaré inequality).

Let f : Ny — R be a real-valued function defined on mon-negative integers, denote its
discrete derivative as Df(x) = f(x + 1) — f(z). Let X be a Poisson random variable with
intensity . Prove that

Var[f(X)] < uE[(Df(X))?].
Hint: infinite divisibility of Poisson distribution and Efron-Stein inequality might be useful.

Proof. Recall the Poisson limit theorem, which tells us that if (X[*)?_,,n € N are independent

families of iid Bernoulli distributed random variables with parameter p,, = p/n, then S, =
2



> iy XJ' converges in distribution to X. Let us now compute Var[f(S,)| X} : j # ]:
Var{f(S,)| X+ # i) = E [ (£(S) = ELAS)IXS 1 # ) | X2 5 # 1]

(7050 = 215 - X 1) = (1= 2) g5, x0) g g ]
p A% AWIAS 9
P (1= 2) (5)) 0, - X+ ) - 405, - %)

n
1

= E(1=0) (180 = Xi + 1) = £(S0 = X)),

Therefore, by Efron-Stein inequality we obtain,

Var[f(S,)] < & (1= 5) SR [(/(S, = Xi 1) = /(S — X))’

n n

=1 (1= B)B[(f(Sar + D) = £S)?] = (1= ) E[(Dr (5.1
Note that the rhs converges to pE[(Df(X))?] as n — oc. O

2. SUBGAUSSIANITY

Exercise 4 (Subgaussian properties).

Let X be a random variable. Show that the following properties are equivalent so that the
parameters C; > 0 appearing in the properties below differ from each other by an absolute
constant factor, meaning that there exists C' > 0 such that property © implies property j with
parameter C; < CC; foralli,j =1,...,5

(1) The tails of X satisfy
P[IX| > 1] <2e7 /T for all t > 0.
(2) The moments of X satisfy
| X1, < Coy/p for allp > 1.
(3) The MGF of X? satisfies
1
E [e’\ZXQ} < %N for all [N < —.
Cs
(4) The MGF of X? is bounded at some point, namely
E [eXQ/CZ] < 2.
Moreover if E[X| = 0, then the above properties are also equivalent to
(5) The MGF of X satisfies
E [eAX] < O8N for all A € R.
More precisely, show that
e (3) = (4) with Cy > C5/+/log2;
° (4) = (1) with Cl > 04,'



e (3) = (5) with C5 > C5 (under mean zero assumption);
e (5) = (1) with C; > 2C5 (under mean zero assumption).

A random variable satisfying one of the above equivalent properties is called subgaussian.
To be more specific, we will call a random variable o*-subgaussian if property (5) holds for
X — E[X] with C? = ¢%/2. The constant o* is called the variance proxy. The smallest
such o is called the optimal variance prozy.

Proof. Note that when showing that property ¢ implies property j we can assume that i
holds with C; = 1, otherwise consider X/C;. It then would be sufficient to show that Cj is a
uniform constant (independent of any parameters such as p, A, etc) as specified in the above
bullet-points.

(1) = (2): follows from the integral identity:

o , 1/p\ P
E[| X|P] < / 2e U ptP~Ldt = pIl'(p/2) < pP/? (max M) = (Vm)PpP2.

0 p>1 pl/2=1/p

Taking the p-th root yields (2) for any constant greater or equal than /7.
(2) = (3): recall that by Stirling’s formula we get p! > (p/e)?. So,

]E|:6>‘2X2i| _ 1+2A2pE[X2p] < 1—|—Z (2p)\2)p 1

-7 2
=t p! =t (p/e)r 1 —2e\

provided that 2eA? < 1. Now we can use that on z € [0,1/2], 1/(1 — z) < e**. Thus, for all
|A] < ﬁé it holds E [e’\QXQ} < 1N Set Oy = 2v/e(= 2,/eCh).

(3) = (4): trivial.

(4) = (1): By Markov’s inequality we get P[|X| > t] < e ”E [eXQ] < 2e7 . Set C) =
1= 04.

(3) = (5): use that e* < x + ¢** for all z. Since E[X] = 0 in this case by assumption, we
get that for |\ <1

E [eAX] <E [6)‘2){2] < .

We have hence shown that the MGF of X is smaller or equal to e*” on \ € [—1,1]. So let
now |A| > 1. Since 2A\z < 2% + A\? and by (3),

B [ex){} <E [6A2/2€X2/2} < M261/2 < N,

Set 05 =1= 03.
(5) = (1): use exponential Markov’s inequality and optimize over A. Set C; =2C5. O

Exercise 5 (Hoeffding lemma).

Leta < X < b a.s. for some a,b € R. Then E [eA(X_]E[XD} < XM=/ That is, X is
(b — a)?/4-subgaussian.
Hint: consider function (\) = logE [eA(X_]E[X])}. Show that ¥"(\) can be interpreted as a
variance of X — E[X] with respect to a new appropriately chosen probability measure. Use

some suitable bound for variances that you know (sheet 2 might be helpful).
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Proof. Suppose wlog that E[X]| = 0. In particular, we have ¥(\) = log[E [eAX} and

E[X2M] (E [XeAX] )2

¢”()‘) = E[G)‘X] E[e/\X]

Let us define a new probability measure dQ = E[e:—AXX]dIP’. By rewriting the above equality
with respect to this new measure we obtain,
¥"(3) = Eq [X?] — Eq [X]* = Varg[X].

By Exercise 1 Sheet 2 we know that the rhs is less or equal to (b a)?. Now by fundamental
theorem of calculus (¢(0) = 0,%'(0) = 0) we obtain

//w” )dsdt < (b_a>

Exponentiation concludes the proof. [l
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