
TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 3: Efron-Stein and Poincaré inequalities, Subgaussianity

1. Efron-Stein and Poincaré inequalities

Exercise 1 (Extending Gaussian Poincaré to C1 functions).
Let f : R → R be any continuously differentiable function and X be a standard normal

random variable. Show that
Var[f(X)] ≤ E[(f ′(X))2].

Proof. We can assume throughout the proof that E[(f ′(X))2] < ∞ since otherwise there
is nothing to show. Let ηε be a standard mollifier and ψn be a smooth cut-off function
with uniformly (independent of n) bounded gradient and taking values 1 in [−n, n] and 0 in
[−n − 1, n + 1]c. Let fε = f ∗ ηε and fε,n = ψnfε. Since f ∈ C1, (fε)′ = (f ′)ε, fε and (f ′)ε
converge uniformly over compacts towards f and f ′, respectively. The latter holds for fε,n
and (f ′)ε,n. Note that these functions are C∞

c . Hence, with the result from the lecture,

Var[fε,n(X)] ≤ E
[
[(fε,n)

′(X)]2
]
≤ E

[
[((f ′)ε)n(X)]2

]
+ CE

[
f 2
ε (X)1n≤|X|≤n+1

]
.

By taking limit in ε, we get

Var[(f)n(X)] ≤ E
[
[(f ′)n(X)]2

]
+ CE

[
f 2(X)1n≤|X|≤n+1

]
.

Since by assumption E[(f ′(X))2] < ∞, E [[(f ′)n(X)]2] converges to E [(f ′(X))2] as n → ∞.
If f(X) ∈ L2(P), we thus can conclude. Otherwise we might distinguish between:

• f 2(x)e−x2/2 → 0 as |x| → ∞;
• lim infx→∞ f 2(x)e−x2/2 > 0 for at least one of +∞ or −∞.

In the first case, E
[
f 2(X)1|X|∈[n,n+1]

]
≤ max[−n−1,−n]∪[n,n+1]

(
f 2(x)e−x2/2

)
→ 0 as n → ∞.

Therefore, if Var[f(X)] is well-defined (situation of our interest), i.e. that no ∞−∞ occurs,
by taking limit in n, we obtain

Var[f(X)] ≤ E[(f ′(X))2].

In the case lim infx→∞ f 2(x)e−x2/2 > 0, we have that f(x) = O(ex
2/4) as x → ∞. But this

would imply that (f ′(x))2 = O(x2ex
2/2), which is not integrable with respect to Gaussian

measure. Hence, contradiction to E[(f ′(X))2] <∞. □

Exercise 2 (Gaussian Poincaré for Lipschitz functions is better than direct Efron-Stein).
Let X be a standard Gaussian vector, f be L-Lipschitz function and set Z = f(X).

Compare the bounds for Var[Z] obtained using Gaussian Poincaré inequality to the ones
that you get by applying Efron-Stein inequality (in the most obvious way). What important
feature does Poincaré inequality have compared to Efron-Stein in this situation?

(1) Prove that for any Gaussian vector Y ,

Var[
n

max
i=1

Yi] ≤
n

max
i=1

Var[Yi]
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(2) Recall Exercise 2 Sheet 2. Use Gaussian Poincaré inequality to prove that
√
D − 1 ≤ E[Z],

where Z be a non-negative random variable such that Z2 has a chi-squared distribution
with D degrees of freedom.

Can you get these bounds using Efron-Stein inequality?

Proof. Since f is L-Lipschitz, it is almost everywhere differentiable with ∥∇f∥ ≤ L. Via
approximation argument as in the lecture, we obtain by Poincaré inequality that

Var[Z] ≤ E[∥∇f(X)∥2] ≤ L2.

On the other hand, a direct bound obtained by the Efron-Stein inequality is

Var[Z] ≤ 1

2

d∑
i=1

E
[
(Z − Z ′

i)
2
] Lipschitz

≤ 1

2
L2

d∑
i=1

E
[
(Xi −X ′

i)
2
]
= L2d.

In particular, we see that the most naive application of Efron-Stein inequality together with
Lipschitz property gives a bound which depends on the dimension of the Gaussian vector.
Gaussian Poincaré inequality, on contrary, provides a uniform bound independent of the
dimension.

As for (1), there exists A such that AAT is the covariance matrix of Y . In law, maxi Yi =
f(X), where f(x) = maxi(Ax)i. Note that f is L-Lipschitz with L2 = maxi

∑
j a

2
ij =

maxi Var[Yi]. Indeed, |f(x)− f(y)| ≤ maxi |(A(x− y))i| ≤ maxi
√∑

j a
2
ij|x− y| by Cauchy-

Schwarz. The first part of the exercise yields the desired result.
As for (2), recall that Z is distributed as absolute value of D-dimensional standard Gauss-

ian vector, |X|. Note that | · | is 1-Lipschitz. Therefore, we get

E[Z] =
√

E[Z2]− Var[Z] =
√
D − Var[Z] ≥

√
D − 1 ≥

√
D − 1.

Since Efron-Stein gives a bound on Var[Z] proportional to D, we won’t be able to obtain
the desired lower bound for E[Z] this way. □

Exercise 3 (Poisson Poincaré inequality).
Let f : N0 → R be a real-valued function defined on non-negative integers, denote its

discrete derivative as Df(x) = f(x + 1) − f(x). Let X be a Poisson random variable with
intensity µ. Prove that

Var[f(X)] ≤ µE[(Df(X))2].

Hint: infinite divisibility of Poisson distribution and Efron-Stein inequality might be useful.

Proof. Recall the Poisson limit theorem, which tells us that if (Xn
i )

n
i=1, n ∈ N are independent

families of iid Bernoulli distributed random variables with parameter pn = µ/n, then Sn :=
2



∑n
i=1X

n
i converges in distribution to X. Let us now compute Var[f(Sn)|Xn

j : j ̸= i]:

Var[f(Sn)|Xn
j : j ̸= i] = E

[(
f(Sn)− E[f(Sn)|Xn

j : j ̸= i]
)2 ∣∣Xn

j : j ̸= i
]

= E
[(
f(Sn)−

µ

n
f(Sn −Xi + 1)−

(
1− µ

n

)
f(Sn −Xi)

)2 ∣∣Xn
j : j ̸= i

]
=

(
µ

n

(
1− µ

n

)2
+
(
1− µ

n

)(µ
n

)2)
(f(Sn −Xi + 1)− f(Sn −Xi))

2

=
µ

n

(
1− µ

n

)
(f(Sn −Xi + 1)− f(Sn −Xi))

2.

Therefore, by Efron-Stein inequality we obtain,

Var[f(Sn)] ≤
µ

n

(
1− µ

n

)∑
i

E
[
(f(Sn −Xi + 1)− f(Sn −Xi))

2
]

= µ
(
1− µ

n

)
E
[
(f(Sn−1 + 1)− f(Sn−1))

2
]
= µ

(
1− µ

n

)
E
[
(Df(Sn−1))

2
]
.

Note that the rhs converges to µE[(Df(X))2] as n→ ∞. □

2. Subgaussianity

Exercise 4 (Subgaussian properties).
Let X be a random variable. Show that the following properties are equivalent so that the

parameters Ci > 0 appearing in the properties below differ from each other by an absolute
constant factor, meaning that there exists C > 0 such that property i implies property j with
parameter Cj ≤ CCi for all i, j = 1, . . . , 5

(1) The tails of X satisfy

P[|X| ≥ t] ≤ 2e−t2/C2
1 for all t ≥ 0.

(2) The moments of X satisfy

∥X∥Lp ≤ C2
√
p for all p ≥ 1.

(3) The MGF of X2 satisfies

E
[
eλ

2X2
]
≤ eC

2
3λ

2

for all |λ| ≤ 1

C3

.

(4) The MGF of X2 is bounded at some point, namely

E
[
eX

2/C2
4

]
≤ 2.

Moreover if E[X] = 0, then the above properties are also equivalent to
(5) The MGF of X satisfies

E
[
eλX
]
≤ eC

2
5λ

2

for all λ ∈ R.

More precisely, show that
• (1) ⇒ (2) with C2 ≥

√
πC1;

• (2) ⇒ (3) with C3 ≥ 2
√
eC2;

• (3) ⇒ (4) with C4 ≥ C3/
√
log 2;

• (4) ⇒ (1) with C1 ≥ C4;
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• (3) ⇒ (5) with C5 ≥ C3 (under mean zero assumption);
• (5) ⇒ (1) with C1 ≥ 2C5 (under mean zero assumption).

A random variable satisfying one of the above equivalent properties is called subgaussian.
To be more specific, we will call a random variable σ2-subgaussian if property (5) holds for
X − E[X] with C2

5 = σ2/2. The constant σ2 is called the variance proxy. The smallest
such σ2 is called the optimal variance proxy.

Proof. Note that when showing that property i implies property j we can assume that i
holds with Ci = 1, otherwise consider X/Ci. It then would be sufficient to show that Cj is a
uniform constant (independent of any parameters such as p, λ, etc) as specified in the above
bullet-points.

(1) ⇒ (2): follows from the integral identity:

E[|X|p] ≤
∫ ∞

0

2e−t2ptp−1dt = pΓ(p/2) ≤ pp/2
(
max
p≥1

Γ(p/2)1/p

p1/2−1/p

)p

= (
√
π)ppp/2.

Taking the p-th root yields (2) for any constant greater or equal than
√
π.

(2) ⇒ (3): recall that by Stirling’s formula we get p! ≥ (p/e)p. So,

E
[
eλ

2X2
]
= 1 +

∑
p≥1

λ2pE [X2p]

p!
≤ 1 +

∑
p≥1

(2pλ2)p

(p/e)p
=

1

1− 2eλ2

provided that 2eλ2 < 1. Now we can use that on x ∈ [0, 1/2], 1/(1− x) ≤ e2x. Thus, for all
|λ| ≤ 1

2
√
e

it holds E
[
eλ

2X2
]
≤ e4eλ

2 . Set C3 = 2
√
e(= 2

√
eC2).

(3) ⇒ (4): trivial.
(4) ⇒ (1): By Markov’s inequality we get P[|X| ≥ t] ≤ e−t2E

[
eX

2
]
≤ 2e−t2 . Set C1 =

1 = C4.
(3) ⇒ (5): use that ex ≤ x+ ex

2 for all x. Since E[X] = 0 in this case by assumption, we
get that for |λ| ≤ 1

E
[
eλX
]
≤ E

[
eλ

2X2
]
≤ eλ

2

.

We have hence shown that the MGF of X is smaller or equal to eλ2 on λ ∈ [−1, 1]. So let
now |λ| ≥ 1. Since 2λx ≤ x2 + λ2 and by (3),

E
[
eλX
]
≤ E

[
eλ

2/2eX
2/2
]
≤ eλ

2/2e1/2 ≤ eλ
2

.

Set C5 = 1 = C3.
(5) ⇒ (1): use exponential Markov’s inequality and optimize over λ. Set C1 = 2C5. □

Exercise 5 (Hoeffding lemma).
Let a ≤ X ≤ b a.s. for some a, b ∈ R. Then E

[
eλ(X−E[X])

]
≤ eλ

2(b−a)2/8. That is, X is
(b− a)2/4-subgaussian.
Hint: consider function ψ(λ) = logE

[
eλ(X−E[X])

]
. Show that ψ′′(λ) can be interpreted as a

variance of X − E[X] with respect to a new appropriately chosen probability measure. Use
some suitable bound for variances that you know (sheet 2 might be helpful).
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Proof. Suppose wlog that E[X] = 0. In particular, we have ψ(λ) = logE
[
eλX
]

and

ψ′′(λ) =
E
[
X2eλX

]
E [eλX ]

−

(
E
[
XeλX

]
E [eλX ]

)2

.

Let us define a new probability measure dQ = eλX

E[eλX]
dP. By rewriting the above equality

with respect to this new measure we obtain,

ψ′′(λ) = EQ
[
X2
]
− EQ [X]2 = VarQ[X].

By Exercise 1 Sheet 2 we know that the rhs is less or equal to 1
4
(b−a)2. Now by fundamental

theorem of calculus (ψ(0) = 0, ψ′(0) = 0) we obtain

ψ(λ) =

∫ λ

0

∫ t

0

ψ′′(s)dsdt ≤ λ2(b− a)2

8
.

Exponentiation concludes the proof. □
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